Чему равна электроемкость конденсатора

Энергия заряженного конденсатора

Как и любая система заряжен­ных тел, конденсатор обладает энер­гией. Вычислить энергию заряжен­ного плоского конденсатора с одно­родным полем внутри него не­сложно.

Энергия заряженного конденса­тора.Для того чтобы зарядить конденсатор, нужно совершить рабо­ту по разделению положительных и отрицательных зарядов. Согласно закону сохранения энергии эта ра­бота равна энергии конденсатора.

В том, что заряженный конденсатор обладает энергией, можно убедиться, если разрядить его через цепь, со­держащую лампу накаливания, рас­считанную на напряжение в не­сколько вольт (рис.4). При раз­рядке конденсатора лампа вспыхи­вает.

Энергия конденсатора пре­вращается в другие формы: тепло­вую, световую.

Выведем формулу для энергии плоского конденсатора.

Напряженность поля, созданного зарядом одной из пластин, равна Е/2, где Е — напряженность поля в конденсаторе. В однородном поле одной пластины находится заряд q, распределенный по поверхности дру­гой пластины (рис.5). Согласно формуле Wp=qEd. для потенциальной энергии заряда в однородном поле энергия конденсатора равна:

(1)

где q — заряд конденсатора, a d — расстояние между пластинами.

(2)

Так как Ed=U, где U — разность потенциалов между обкладка­ми конденсатора, то его энергия равна:

Эта энергия равна работе, ко­торую совершит электрическое поле при сближении пластин вплот­ную.

Заменив в формуле (2) раз­ность потенциалов или заряд с по­мощью выражения для элек­троемкости конденсатора, получим

(3)

Можно доказать, что эти форму­лы справедливы для энергии любого конденсатора, а не только для плос­кого.

Энергия электрического поля.Согласно теории близкодействия вся энергия взаимодействия заряженных тел сконцентрирована в электриче­ском поле этих тел. Значит, энергия может быть выражена через основную характеристику поля — напря­женность.

Совет

Так как напряженность электри­ческого поля прямо пропорциональ­на разности потенциалов

(U = Ed),то согласно формуле

(4)

энергия конденсатора прямо пропор­циональна напряженности электри­ческого поля внутри него: Wp~E2. Детальный расчет дает следующее значение для энергии поля, приходя­щейся на единицу объема, т.е. для плотности энергии:

где ε0 — электрическая постоянная

Постоянный ток. Сила и плотность тока. Закон Ома.

Постоянный электрический ток

Краткие теоретические сведения

1. Сила тока определяется по формуле

Для постоянного тока

где – заряд, прошедшей через поперечное сечение проводника за время .

2.Если ток постоянный, плотность тока во всем сечении однородного проводника не изменяется ,

где – площадь поперечного сечения проводника.

Закон Ома

для однородного участка цепи имеет вид:

где – разность потенциалов (напряжение) на концах участка; – сопротивление.

Для неоднородного участка цепи этот закон записывается так:

где – ЭДС источника тока на этом участке; – внутреннее сопротивление источника;

– внешнее сопротивление цепи; – падение напряжения на участке 1-2.

· Для замкнутой цепи .

4.Сопротивление цилиндрического однородного проводника равно ,

где – удельное сопротивление; – удельная проводимость;

– длина; S – площадь поперечного сечения проводника.

Вектор магнитной индукции.

Вектор магнитной индукции – аналог напряженности электрического поля. Основной силовой характеристикой маг­нитного поля является вектор магнитной индукции.Вектор индукции магнитного поля B⃗направлен от южного полюса S стрелки (свободно вращающейся в магнитном поле) к северному N

Закон Ампера.

Закон Ампера – сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником.

Магнитный момент витка с током – физическая величина характеризующий магнитные свойства системы в виде кругового витка с током Где, I ток протекающий по витку S площадь витка с током n нормаль к плоскости в которой находится виток

Расчет параметров конденсатора онлайн

Не знаю как Вам, а мне никогда не нравилось работать и вычислять ёмкости конденсаторов. Больше всего раздражало наличие в исходных данных, ёмкостей в разных номиналах, в пикофарадах, в нанофарадах, микрофарадах. Их приходилось переводить в Фарады, что влекло за собой глупейшие ошибки в расчетах. Конденсатор — в принципе это любая конструкция, которая может сохранять накопленный электрический потенциал. Если же эта конструкция, не только хранит электроэнергию, но и генерирует её, то это уже источник электропитания и никак не конденсатор.

Конструкция конденсаторов может быть любой, но чаще всего в практике используется плоский конденсатор, состоящий из двух проводящих пластин, между которыми находится какой либо диэлектрик. Это связано с тем, что расчет ёмкости такого конденсатора ведется по известной формуле и простотой его создания. Свернув такой плоский конденсатор в рулон, мы получаем, что при фактическом скромном размере «рулона», там находится плоский конденсатор, длиной в десятки сантиметров и обладающий повышенной ёмкостью.

Емкости конденсаторов некоторых форм известны, и мы дальше их рассмотрим.

Но хотелось бы заметить, что на наш взгляд, потенциал развития конденсаторов до конца не завершен. Ведь форма конструкции какого либо конденсатора может быть любая, материалы из которого сделаны обкладки или диэлектрический слой тоже могут быть любыми в пределах таблицы Менделеева. Единственная сложность, это невозможность теоретически просчитать потенциальную ёмкость, новосозданного (другой конструкции) конденсатора. Это усложняет нахождение самой лучшей конструкции конденсатора.

Есть хорошая книга по рассмотрению электрической ёмкости различных фигур. Для любопытных рекомендую поискать на просторах Интернета: Расчет электрической ёмкости в авторстве Ю.Я.Иоселль 1981 года

Данный бот рассчитывает параметры типовых форм конденсаторов. Отличие от других калькуляторов, присутствующих в интернете, это возможность задавать параметры, которые Вам известны, для того что бы рассчитать остальные.

И последнее нововведение, которое вы можете использовать. Вам не обязательно придется переводить заданные данные в метры, фарады и т.д. Достаточно обозначить размерность данных.

Например, если ёмкость известна и равно 100 пикофарад, то боту можно так и написать c=100пикофарад или с=100пФ, бот сам переведет в Фарады.

Результат, тоже будет выдан оптимально визуальному восприятию пользователя.

Это стало возможно с созданием бота Система единиц измерения онлайн

История накопителей заряда

Самое раннее письменное свидетельство получения зарядов с помощью трения принадлежит учёному Фалесу из Милета (635—543 гг. до н. э.), который описал трибоэлектрический эффект от взаимодействия янтаря и сухой шерсти. Для приблизительно 2300 последующих лет любое получение электричества заключалось в трении двух различных материалов друг о друга.

Качественный рывок в знаниях о зарядах произошёл в эпоху Просвещения — период революционного развития научной мысли в образованных кругах. В это время электричество становится популярной темой, а энтузиастами было произведено немало опытов и экспериментов с генераторами на основе трения.

Открытие явления произошло во время опытов у обоих экспериментаторов, но с той разницей, что Мюссенбрук, во-первых, сделал немало усовершенствований первоначально созданного оборудования, а во-вторых, письменно сообщил коллегам о своих достижениях. Прошло совсем немного времени и учёные мира стали создавать накопители зарядов собственных конструкций. Это были первые шаги в эволюции конденсаторов, продолжающейся и в наши дни. Основные даты хронологии появления устройств для хранения зарядов:

  • 1746 г. — изобретение лейденской банки в результате экспериментов по доработке устройства Клейста;
  • 1750 г. — опыты Бенджамина Франклина с батареями конденсаторов;
  • 1837 г. — публикация Майклом Фарадеем теории диэлектрической поляризации — научной основы работы накопителей;
  • конец XIX в. — начало практического применения лейденских банок вместе с первыми устройствами постоянного тока;
  • начало XX в. — изобретение слюдяных и керамических конденсаторов.

Что такое конденсатор

Конденсатор – это двухполюсное устройство, имеющее постоянное или переменное емкостное значение и малую проводимость. Это элемент цепи, служащий накопителем энергии, что формирует электрическое поле; пассивный электронный компонент любого подключения. Содержит в себе несколько металлических электродов или обкладок, между которыми находится диэлектрик. Может иметь пакетную, трубчатую, дисковую, литую секционированную и рулонную конструкцию.

Конденсатор

Конденсатор имеет в плоскую или цилиндрическую форму. Плоское устройство состоит из относительно далеко расположенных друг от друга пластин, а цилиндрический –  из нескольких полых коаксиальных проводящих цилиндров с радиусами r1 и r2 (основное условие – r1 > r2).

Термин из учебного пособия

Единица и формулы расчёта

Ёмкость в виде электрического свойства, способного хранить заряды, измеряется в фарадах (Ф) и обозначается С. Величина названа в честь английского физика Майкла Фарадея. Конденсатор ёмкостью 1 фарад способен хранить заряд в 1 кулон на пластинах с напряжением 1 вольт. Значение С всегда положительно.

Математическое выражение фарада

Ёмкость конденсатора — постоянная величина, означающая потенциальную способность хранить энергию. Количество заряда, хранимое в отдельно взятый момент, определяется уравнением Q=CV, где V — приложенное напряжение. Таким образом, регулируя напряжение на пластинах, можно увеличивать или уменьшать заряд. Эта формула ёмкости в виде C=Q/V в единичных значениях определяет, в чём измеряется ёмкость конденсатора в СИ, и является математическим выражением фарада.

Специалисты по электронике единицу в один фарад считают не совсем практичной, поскольку она представляет собой огромное значение. Даже 1/1000 F — это очень большая ёмкость. Как правило, для реальных электрических компонентов применяют следующие величины:

  • пикофарад — 10—12 Ф;
  • нанофарад — 10—9 Ф;
  • микрофарад — 10—6 Ф.

Диэлектрическая проницаемость

Фактор, благодаря которому изолятор определяет ёмкость конденсатора, называется диэлектрической проницаемостью. Обобщённая формула расчёта ёмкости конденсатора с параллельными пластинами представлена выражением C= ε (A / d), где:

  • А — площадь меньшей пластины;
  • d — расстояние между ними;
  • ε — абсолютная проницаемость используемого диэлектрического материала.

Диэлектрическая проницаемость вакуума ε0 является константой и имеет значение 8,84х10—12 фарад на метр. Как правило, проводящие пластины разделены слоем изоляционного материала, а не вакуума. Чтобы найти ёмкость конденсатора, пластины которого находятся в воздухе, можно воспользоваться значением ε0. Разницей диэлектрической проницаемости атмосферы и вакуума можно пренебречь, поскольку их значения очень близки.

На практике в формулах нахождения ёмкости конденсатора используется относительная диэлектрическая проницаемость в качестве коэффициента, означающая, насколько электрическое поле между зарядами уменьшается в диэлектрике по сравнению с вакуумом. Некоторые значения этой величины для различных материалов:

  • 1,0006 — воздух;
  • 2,5—3,5 — бумага;
  • 3—10 — стекло;
  • 5—7 — слюда.

Конденсаторы

Для практического использования электрической энергии необходимо уметь ее накапливать. Для этого используют специальные устройства — конденсаторы.

Конденсаторы — это устройства, которые состоят из двух или более проводников, разделенных тонким слоем диэлектрика.

Проводники, из которых состоит конденсатор, называются обкладками

Как правило, при зарядке конденсатора заряды его обкладок равны по величине и противоположны по знаку. Под зарядом конденсатора

понимают значение заряда положительно заряженной обкладки.

Термин «конденсатор » от латинского слова condensare — сгущать ввел А.Вольта (итальянский физик) в 1782 г. Первые электрические конденсаторы были изготовлены Э.Клейстом и П. Ван Мушенбреком в 1745 г. По имени города Лейдена, где работал Мушенбрек, французкий физик Жан Нолле назвал их лейденскими банками.

При небольших размерах конденсатор отличается значительной емкостью, не зависящей от наличия вблизи него других зарядов или проводников.

Электроемкостью конденсатора называют физическую величину, численно равную отношению заряда конденсатора к разности потенциалов между его обкладками:

\(~C = \dfrac{q}{\varphi_1 — \varphi_2}\) или \(~C = \dfrac qU .\)

Из этой формулы видно, что чем больше напряжение между обкладками конденсатора, тем больше на них заряд. Но для каждого конденсатора существует предельное (максимальное)напряжение , выше которого диэлектрик начнет разрушаться. При этом заряды обкладок конденсатора мгновенно нейтрализуются, происходитпробой , т.е. конденсатор выходит из строя.

Виды конденсаторов

Конденсаторы можно классифицировать по следующим признакам и свойствам:

  • по форме обкладок различают конденсаторы плоские, сферические, цилиндрические и др.;
  • по типу диэлектрика (рис. 1) —бумажные (а), воздушные (б), слюдяные, керамические, электролитические (в) и т.д.;
  • по рабочему напряжению — низковольтные (напряжение пробоя до 100 В) и высоковольтные (выше 100 В);
  • по возможности изменения своей емкости — постоянной емкости (см. рис. 1, а, в), переменной емкости (см. рис. 1, б), подстроечные (рис. 2).
  • а
  • б
  • в

Рис. 1

  • Рис. 2
  • Рис. 3

Другие виды конденсаторов показаны на рисунке 3.

См. так же Wikipedia Классификация конденсаторов

Электроемкость плоского конденсатора C

зависит от площади обкладокS , расстояния между нимиd и диэлектрической проницаемости диэлектрика ε, заполняющего пространство между обкладками конденсатора, но не зависит от материала, из которого эти пластины изготовлены \(~C = \dfrac{\varepsilon_0 \cdot \varepsilon \cdot S}{d},\) где ε0 — электрическая постоянная.

*Вывод формулы

Поле плоского конденсатора можно рассматривать как совокупность полей двух бесконечных разноименно заряженных плоскостей (рис. 2, а и б). Напряженность поля (рис. 2, в) можно найти по принципу суперпозиции:

\(\vec{E}=\vec{E}_{1} +\vec{E}_{2},\)

где \( E_{1} = E_{2} =\dfrac{\sigma }{2\varepsilon _{0} \cdot \varepsilon } =\dfrac{q}{2\varepsilon _{0} \cdot \varepsilon \cdot S}\) — напряженности электрических полей каждой из обкладок конденсатора, σ

— поверхностная плотность заряда на обкладках конденсатора. Тогда в проекциях на ось 0Х:

справа и слева от пластин — \(E_х = 0\);

между пластин — \(E=2E_{1} =\dfrac{q}{\varepsilon _{0} \cdot \varepsilon \cdot S}.\)

  • а
  • б
  • в

Рис. 4 Электроемкость плоского конденсатора \(~C = \dfrac qU\), где \(U = E \cdot d,\) d

— расстояние между пластин. Следовательно, \(C =\dfrac{q}{E\cdot d} = \dfrac{q}{d} \cdot \dfrac{1}{E} = \dfrac{q}{d} \cdot \dfrac{\varepsilon _{0} \cdot \varepsilon \cdot S}{q} = \dfrac{\varepsilon _{0} \cdot \varepsilon \cdot S}{d}.\).

  • При быстром разряде конденсатора можно получить импульс большой мощности, например, в фотовспышках, электромагнитных ускорителях, импульсных лазерах и т. п.
  • Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
  • Емкость конденсатора заметно изменяется при малейших изменениях параметра конденсатора. Так малое изменение расстояния между обкладками учитывается в измерителях малых перемещений, изменение состава диэлектрика при изменении влажности фиксируется в измерителях влажности, учет изменения высоты диэлектрика между обкладками конденсатора позволяет измерять уровень жидкости и т.п.
  • Конденсаторы (совместно с катушками индуктивности и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.

Для чего нужен конденсатор

Конденсаторы широко используются во всех электронных и радиотехнических схемах. Они вместе с транзисторами и резисторами являются основой радиотехники. Применение конденсаторов в электротехнических устройствах и бытовой технике:

  • Важным свойством конденсатора в цепи переменного тока является его способность выступать в роли емкостного сопротивления (индуктивное у катушки). Если подключить последовательно конденсатор и лампочку к батарейке, то она не будет светиться. Но если подключить к источнику переменного тока, то она загорится. И светиться будет тем ярче, чем выше емкость конденсатора. Благодаря этому свойству они широко применяются в качестве фильтра, который способен довольно успешно подавлять ВЧ и НЧ помехи, пульсации напряжения и скачки переменного тока.
  • Благодаря способности конденсаторов долгое время накапливать заряд и затем быстро разряжаться в цепи с малым сопротивлением для создания импульса, делает их незаменимыми при производстве фотовспышек, ускорителей электромагнитного типа, лазеров и т. п.
  • Способность конденсатора накапливать и сохранять электрический заряд на продолжительное время, сделало возможным использование его в элементах для сохранения информации. А так же в качестве источника питания для маломощных устройств. Например, пробника электрика, который достаточно вставить в розетку на пару секунд пока не зарядится в нем встроенный конденсатор и затем можно целый день прозванивать цепи с его помощью. Но к сожалению , конденсатор значительно уступает в способности накапливать электроэнергию аккумуляторной батареи из-за токов утечки (саморазряда) и неспособности накопить электроэнергию большой величины.
  • Конденсаторы используются при подключении электродвигателя 380 на 220 Вольт. Он подключается к третьему выводу, и благодаря тому что он сдвигает фазу на 90 градусов на третьем выводе- становится возможным использования трехфазного мотора в однофазной сети 220 Вольт.
  • В промышленности конденсаторные установки применяются для компенсации реактивной энергии.

Конденсатор переменного тока.

Соединение конденсаторов: формулы

  1. Последовательное соединение
  2. Онлайн калькулятор
  3. Смешанное соединение
  4. Параллельное соединение
  5. Видео

В электронных и радиотехнических схемах широкое распространение получило параллельное и последовательное соединение конденсаторов. В первом случае соединение осуществляется без каких-либо общих узлов, а во втором варианте все элементы объединяются в два узла и не связаны с другими узлами, если это заранее не предусмотрено схемой.

Последовательное соединение

При последовательном соединении два и более конденсаторов соединяются в общую цепь таким образом, что каждый предыдущий конденсатор соединяется с последующим лишь в одной общей точке. Ток (i), осуществляющий зарядку последовательной цепи конденсаторов будет иметь одинаковое значение для каждого элемента, поскольку он проходит только по единственно возможному пути. Это положение подтверждается формулой: i = ic1 = ic2 = ic3 = ic4.

В связи с одинаковым значением тока, протекающего через конденсаторы с последовательным соединением, величина заряда, накопленного каждым из них, будет одинаковой, независимо от емкости. Такое становится возможным, поскольку заряд, приходящий с обкладки предыдущего конденсатора, накапливается на обкладке последующего элемента цепи. Поэтому величина заряда у последовательно соединенных конденсаторов будет выглядеть следующим образом: Qобщ= Q1 = Q2 = Q3.

Если рассмотреть три конденсатора С1, С2 и С3, соединенные в последовательную цепь, то выясняется, что средний конденсатор С2 при постоянном токе оказывается электрически изолированным от общей цепи. В конечном итоге величина эффективной площади обкладок будет уменьшена до площади обкладок конденсатора с самыми минимальными размерами. Полное заполнение обкладок электрическим зарядом, делает невозможным дальнейшее прохождение по нему тока. В результате, движение тока прекращается во всей цепи, соответственно прекращается и зарядка всех остальных конденсаторов.

Общее расстояние между обкладками при последовательном соединении представляет собой сумму расстояний между обкладками каждого элемента. В результате соединения в последовательную цепь, формируется единый большой конденсатор, площадь обкладок которого соответствует обкладкам элемента с минимальной емкостью. Расстояние между обкладками оказывается равным сумме всех расстояний, имеющихся в цепи.

Падение напряжения на каждый конденсатор будет разным, в зависимости от емкости. Данное положение определяется формулой: С = Q/V, в которой емкость обратно пропорциональна напряжению. Таким образом, с уменьшением емкости конденсатора на него падает более высокое напряжение. Суммарная емкость всех конденсаторов вычисляется по формуле: 1/Cобщ = 1/C1 + 1/C2 + 1/C3.

Главная особенность такой схемы заключается в прохождении электрической энергии только в одном направлении. Поэтому в каждом конденсаторе значение тока будет одинаковым. Каждый накопитель в последовательной цепи накапливает равное количество энергии, независимо от емкости. То есть емкость может воспроизводиться за счет энергии, присутствующей в соседнем накопителе.

Онлайн калькулятор, для расчета емкости конденсаторов соединенных последовательно в электрической цепи.

Параллельное соединение конденсаторов

Параллельным считается такое соединение, при котором конденсаторы соединяются между собой двумя контактами. Таким образом в одной точке может соединяться сразу несколько элементов.

Данный вид соединения позволяет сформировать единый конденсатор с большими размерами, площадь обкладок которого будет равна сумме площадей обкладок каждого, отдельно взятого конденсатора. В связи с тем, что емкость конденсаторов находится в прямой пропорциональной зависимости с площадью обкладок, общая емкость составить суммарное количество всех емкостей конденсаторов, соединенных параллельно. То есть, Собщ = С1 + С2 + С3.

Поскольку разность потенциалов возникает лишь в двух точках, то на все конденсаторы, соединенные параллельно, будет падать одинаковое напряжение. Сила тока в каждом из них будет отличаться, в зависимости от емкости и значения напряжения. Таким образом, последовательное и параллельное соединение, применяемое в различных схемах, позволяет выполнять регулировку различных параметров на тех или иных участках. За счет этого получаются необходимые результаты работы всей системы в целом.

electric-220.ru

Во всех электронных устройствах используются конденсаторы. При их конструировании или изготовлении своими руками параметры устройств рассчитываются по специальным формулам.

Работа электрического поля

Электрическое поле называется потенциальным. Это значит, что работа его сил не зависит от траектории движения заряда, исключительно от энергии начального и конечного положения. Напомним, согласно определению:

Электрическое поле воздействует исключительно на электрические заряды. Создаётся двумя путями:

  1. Электрическими зарядами. Силовые линии начинаются на положительных и заканчиваются на отрицательных зарядах.
  2. Изменяющимся магнитным полем. При этом образуется электромагнитная волна, что используется в генераторах.

Когда говорят, что излучение приборов действует на человека, подразумеваются и магнитная, и электрическая составляющие. Особенно опасна первая, которая с большим трудом экранируется. Электрическое поле, рассматриваемое в физике школьного курса, считается стационарным, а линии напряжённости его параллельны. Приводятся два примера:

  1. Допустим, заряд перемещается вдоль линий поля на некоторое расстояние l. Тогда работа находится по упрощённой формуле A = Fl, где F – сила, действующая на заряд.
  2. Теперь предположим, что заряд переместился из прежней точки по косой линии. Так, что проекция пути lb на силовые линии снова равна l. Участок прямолинейный, угол отклонения – В. Работа вычисляется по формуле с учётом геометрических соотношений как A = FlbcosB = Fl.

Этот простой случай, легко распространяется на любую форму линий напряжённости. Сие означает, что в электрическом поле работа не зависит от траектории, а значит, равна разнице потенциалов поля: А = П1 – П2. Формула применима для любого поля. Чтобы адаптировать выражение, вводят понятие электрического потенциала как энергию единичного положительного заряда – ф = П / q1. Тогда формула для работы принимает иной вид.

Электрическим напряжением между двумя точками называется разница потенциалов между ними. Умножая указанное значение на величину заряда, поскольку величина удельная, получаем: А = (ф1 – ф2) q = U q. Потенциал через величины поля находится:

ф = q / 4 ε Пи r,

где q – величина заряда, создающего поля; ε – диэлектрическая проницаемость среды (для воздуха и вакуума равна единице); Пи = 3,14; r – расстояние до исследуемой точки от упомянутого заряда. Формула годится далеко не для любых случаев, приведена для примера. Допустимо применять для заряда, распределённого по поверхности шара, и точек, лежащих вне указанной поверхности.

Формула

Нахождение тока конденсаторного заряда происходит по формуле, представленной ниже. Измеряется он в фарадах, что равно кулону или вольту.

Формула нахождения заряда конденсатора

В целомэто элемент электросети, накапливающий и сохраняющий напряжение в ней. Бывает разного типа и размера, к примеру, электролитическим, керамическим и танталовым. Состоит, в основном, из нескольких токопроводящих обкладок с диэлектриком. Его емкость зависит от размеров диэлектрика и заполнителя между обкладками. Заряжается благодаря электричеству. Определить ток конденсаторного заряда можно измерительными приборами и формулой.

Энергия заряженного проводника

Любой заряженный проводник, подобно заряженному конденсатору, обладает энергией*.

* Конечно, энергией обладает и заряженный диэлектрик, но вычислить его энергию сложно. Для проводника это сделать нетрудно, так как все его точки имеют одинаковый потенциал.

Будем заряжать проводник, перемещая к нему из бесконечности электрический заряд малыми порциями Δq. Все дальнейшие рассуждения подобны использованным выше для вычисления энергии конденсатора.

При перемещении заряда Δq электрическое поле проводника совершает работу

ΔА = Δq(φ∞ — φ), (1.27.7)

где φ — потенциал проводника, имеющего заряд q. Потенциал на бесконечности считаем равным нулю (φ∞ = 0). Тогда

где С — емкость проводника. В результате энергия заряженного проводника

В отличие от формул (1.27.3) здесь φ — потенциал проводника (вместо напряжения U), а С — емкость уединенного тела, а не конденсатора.

От чего зависит емкость

Емкость это свойство накопления и удержания электрозаряда. Чем она больше, тем больше заряд, увеличивающий вместимость сосуда с газовым баллоном. Она зависит от того, какова форма и размер электродов. Также зависит от того, какое расположение и свойство имеет диэлектрик, разделяющий электрод. Есть плоский конденсаторный источник с параллельной и цилиндрической пластиной.

Имеет не только специально предусмотренное устройство, но и несколько проводников, которые разделены при помощи диэлектрика. Емкость существенно влияет на электротехнические установки переменного тока. К примеру, источник с определенной емкостью имеется электрический провод с живым электрическим кабелем, жилой и металлической кабельной оболочкой.

От чего зависит емкость

Концепция Вольты

Как свидетельствуют записки учёного, уже в 1778 году он получил представление о разнице потенциалов, которые называл tension – напряжение. С 1775 года Вольта придерживается концепции электрической ёмкости – capacita, выдвинутой его учителем Беккарией. Вольта уже знает, что электрофорус способен накопить заряд, называет прибор конденсатором, и решает подтвердить теорию практикой. Иначе – найти взаимосвязь напряжения, ёмкости и объёмом (quantita) заряда.

Вольта начал с лейденской банки. Он заряжал её от статического генератора и пробовал определить энергию конденсатора тремя путями:

  1. Наблюдал получаемую искру электрической дуги от различной конструкции лейденских банок, заряженных одинаковым напряжением.
  2. Измерял количество произведённой электростатическими генераторами трения работу, пока показания электрометра не росли до определённого уровня.
  3. Разряжал лейденские банки на открытом воздухе и пытался сравнить производимый ими электрический шок по истечении времени.

Все перечисленное привело исследователя к странным выводам, что высокие лейденские банки более вместительные (при одинаковых площадях обкладок и прочих равных условиях). Вероятно, это связано со скоростью разряда их дуги на воздухе вследствие различий в кривизне поверхностей. Силу разряда Вольта увязывал с электрическим током: чем быстрее течёт флюид, тем более жаркий (по ощущениям) эффект. В результате, Вольта счёл, что разница потенциалов единственная определяет процесс возникновения удара.  Он решил, что напряжение допустимо измерить двумя путями:

  1. Через количество оборотов генератора статического заряда.
  2. Сравнивая силу электрического удара при разряде лейденской банки.

Вольта нашёл, что заряжая пустую лейденскую банку от полной, шок получается вдвое слабее. Постепенно (1782 год) Вольта пришёл к выводу, что вышеуказанные величины соотносятся между собой: tension x capacity ~ load, в современном мире выглядит как U C = q или C = q / U.

Вольта заключил, что ёмкость больше там, где при меньшем напряжении вмещается больше заряда. Последовало заключение, что количество накопленного флюида прямо пропорционально площади обкладок плоского конденсатора. Что согласуется с современными формулами. Вольта обобщил знания на случай произвольного проводника (экспериментировал со стержнями лейденских банок). Изменяя расстояние между обкладками, установил:

С ~ S / d.

Что фактически стало выражением ёмкости плоского конденсатора. Вольта объяснил зависимость наличием некоего сопротивления (resistance) между обкладками, подразумевая воздух. Изменяя дистанцию, удаётся варьировать этот параметр в обе стороны. Это слегка не согласуется с современными концепциями, но Вольта помог Георгу Ому 40 лет спустя вывести зависимость между током и напряжением.

Фактически измерения проделывались на основе работы поля, проявлявшейся лишь вследствие заряда конденсатора. Очевидно, что указанная величина равна энергии – одной из первых физических характеристики, использованных для вывода аналитических выражений.

Метки

  • алгоритм расчет цепей при несинусоидальных периодических воздействиях
  • алгоритм расчета цепей периодического несинусоидального тока
  • баланс мощностей
  • ВАХ нелинейного элемента
  • Векторная диаграмма
  • ветви связи
  • взаимная индуктивность
  • взаимная проводимость
  • вольт-амперная характеристика нелинейного элемента
  • второй закон Кирхгофа
  • второй закон Кирхгофа для магнитных цепей
  • входная проводимость
  • гармоники напряжения
  • гармоники тока
  • Генератор напряжения
  • генератор тока
  • главные контуры
  • графический метод расчета нелинейных электрических цепей
  • динамическое сопротивление
  • дифференциальное сопротивление
  • емкость двухпроводной линии
  • емкость коаксиального кабеля
  • емкость конденсатора
  • емкость однопроводной линии
  • емкость плоского конденсатора
  • емкость цилиндрического конденсатора
  • закон Ампера
  • закон Био Савара Лапласа
  • закон Ома
  • закон полного тока
  • закон электромагнитной индукции
  • Законы Кирхгофа
  • индуктивность
  • индуктивность двухпроводной линии
  • индуктивность однопроводной линии
  • индуктивность соленоида
  • катушка со сталью
  • Конденсатор в цепи постоянного тока
  • контурные токи
  • коэффициент амплитуды
  • коэффициент гармоник
  • коэффициент искажения
  • коэффициент магнитной связи
  • коэффициент мощности трансформатора
  • коэффициент трансформации
  • коэффициент формы
  • кусочно-линейная аппроксимация
  • магнитная постоянная
  • магнитная цепь
  • магнитный поток рассеяния
  • метод активного двухполюсника
  • метод двух узлов
  • метод контурных токов
  • метод наложения
  • метод узловых напряжений
  • метод узловых потенциалов
  • метод эквивалентного генератора
  • метод эквивалентного источника ЭДС
  • Метод эквивалентных преобразований
  • методы расчета магнитных цепей
  • независимые контуры
  • нелинейный элемент
  • несинусоидальный периодический ток
  • обобщенный закон Ома
  • опорный узел
  • основной магнитный поток
  • параллельное соединение конденсаторов
  • первый закон Кирхгофа
  • первый закон Кирхгофа для магнитных цепей
  • последовательное соединение конденсаторов
  • последовательный колебательный контур
  • постоянная составляющая тока
  • потери в меди
  • потери в стали
  • приведенный трансформатор
  • Примеры расчета схем при несинусоидальных периодических воздействиях
  • принцип взаимности
  • принцип компенсации
  • расчет гармоник тока
  • расчет магнитной цепи
  • расчет нелинейных цепей постоянного тока
  • расчет цепей несинусоидального тока
  • Расчет цепи конденсаторов
  • расчет цепи с несинусоидальными периодическими источниками
  • Резонанс в электрической цепи
  • решение задач магнитные цепи
  • сила Ампера
  • сила Лоренца
  • Символический метод
  • собственная проводимость
  • статическое сопротивление
  • сферический конденсатор
  • теорема об эквивалентном источнике
  • теорема Тевенена
  • топографическая диаграмма
  • Трансформаторы
  • трехфазная система
  • удельная энергия магнитного поля
  • уравнения трансформатора
  • Цепи с конденсаторами
  • частичные токи
  • чередование фаз
  • ЭДС самоиндукции
  • эквивалентная схема трансформатора
  • электрическая постоянная
  • электроемкость
  • энергия магнитного поля
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.