Из двух полярных конденсаторов один неполярный
Бывают ситуации, когда нужен неполярный конденсатор, а в наличии только полярные. Тогда можно взять два полярных конденсатора с емкостью в два раза выше, чем должен получиться требуемый конденсатор и объединить их встречно-последовательно, то есть между собой плюс с плюсом или минус с минусом. А оставшиеся два вывода запаять в схему.
Если нужно срочно отремонтировать технику, а нужного конденсатора нет, то можно увеличить емкость конденсатора, как известно из школьной программы, соединив несколько приборов в одну цепь.
Такая проблема может также возникнуть, если, например, нужного номинала нет в продаже, то есть для нестандартных подключений, например, в радиотехнических опытах.
Как рассчитать емкость одного устройства
Этот показатель является одним из главных характеристик любого прибора. От этого показателя зависит сфера его использования, правила эксплуатации и предназначение. Указывается ёмкость в фарадах.
В России она указывается символом «Ф», в Европе — «F». На самих электронных устройствах можно увидеть такую символьную кодировку, pF, nF или uF. Это означает, что компонент имеет ёмкость 10-11,10-9 и 10-7 фарад.
Показатель можно рассчитать при помощь замеров мультиметром. В конструкции конденсатора имеются металлические пластины. Их поперечные параметры должны быть чуть больше, чем промежуток между ними.
Расшифровка маркировки
В центр такой пластины будет подключаться оболочка диэлектрика. В процессе работы устройства на выводы оболочки подаётся заряд. В итоге электроны начинают перемещаться, но не могут выходить за диэлектрик, и поэтому в пластинах собирается заряд.
Умение прибора накапливать электрическую энергию и будет его ёмкостью. Если провести аналогию с банкой для жидкости, то емкость — это будет объем.
Чтобы правильно рассчитать ёмкость, нужно воспользоваться формулой:
C= ε (A / d),
где:
- А — площадь самой маленькой пластины;
- d — промежуток между пластинами;
- ε — общая проницаемость диэлектрика.
В заключении необходимо отметить, что рассчитать емкость самостоятельно достаточно легко. В интернете много сервисов, которые помогут с расчетами. Эту величину необходимо знать для того, чтобы правильно присоединить конденсатор в цепь.
Расчет конденсатора для светодиодов
Необходимость подключить светодиод к сети – частая ситуация. Это и индикатор включения приборов, и выключатель с подсветкой, и даже диодная лампа.
Существует множество схем подключения маломощных индикаторных LED через резисторный ограничитель тока, но такая схема подключения имеет определённые недостатки. При необходимости подключить диод, с номинальным током 100-150мА, потребуется очень мощный резистор, размеры которого будут значительно больше самого диода.
Вот так бы выглядела схема подключения настольной светодиодной лампы. А мощные десяти ваттные резисторы при низкой температуре в помещении можно было бы использовать в качестве дополнительного источника отопления.
Применение в качестве ограничителя тока конде-ров позволяет значительно уменьшить габариты такой схемы. Так выглядит блок питания диодной лампы мощностью 10-15 Вт.
Принцип работы схем на балластном конденсаторе
В этой схеме конде-р является фильтром тока. Напряжение на нагрузку поступает только до момента полного заряда конде-ра, время которого зависит от его ёмкости. При этом никакого тепловыделения не происходит, что снимает ограничения с мощности нагрузки.
Чтобы понять, как работает эта схема и принцип подбора балластного элемента для LED, напомню, что напряжение – скорость движения электронов по проводнику, сила тока – плотность электронов.
В то же время при напряжении несколько вольт и силе тока десятки ампер плотность потока электронов значительно превысит пропускную способность матрицы диода, преобразовав излишки в тепловую энергию, и наш LED элемент попросту испарится в облачке дыма.
Расчет гасящего конденсатора для светодиода
- Разберем подробный расчет, ниже сможете найти форму онлайн калькулятора.
- Расчет емкости конденсатора для светодиода:
- С(мкФ) = 3200 * Iсд) / √(Uвх² — Uвых²)
С мкФ – ёмкость конде-ра.
Он должен быть рассчитан на 400-500В; Iсд – номинальный ток диода (смотрим в паспортных данных); Uвх – амплитудное напряжение сети — 320В; Uвых – номинальное напряжение питания LED.
- Можно встретить еще такую формулу:
- C = (4,45 * I) / (U — Uд)
- Она используется для маломощных нагрузок до 100 мА и до 5В.
Подключение одного светодиода
Для расчета емкости конде-ра нам понадобится:
- Максимальный ток диода – 0,15А;
- напряжение питания диода – 3,5В;
- амплитудное напряжение сети — 320В.
Для таких условий параметры конде-ра: 1,5мкФ, 400В.
Подключение нескольких светодиодов
При расчете конденсатора для светодиодной лампы необходимо учитывать, что диоды в ней соединены группами.
- Напряжение питания для последовательной цепочки – Uсд * количество LED в цепи;
- сила тока – Iсд * количество параллельных цепочек.
- Для примера возьмём модель с шестью параллельными линиями из четырёх последовательных диодов.
- Напряжение питания – 4 * 3,5В = 14В; Сила тока цепи – 0,15А * 6 = 0,9А;
- Для этой схемы параметры конде-ра: 9мкФ, 400В.
Простая схема блока питания светодиодов с конденсатором
Разберём устройство без трансформаторного блока питания для светодиодов на примере фабричного драйвера LED ламы.
- R1 – резистор на 1Вт, который уменьшает значимость перепадов напряжения в сети;
- R2,C2 – конде-р служит в качестве токоограничителя, а резистор для его разрядки после отключения от сети;
- C3 – сглаживающий конде-р, для уменьшения пульсации света;
- R3 – служит для ограничения перепадов напряжения после преобразования, но более целесообразно вместо него установить стабилитрон.
Какой конденсатор можно использовать для балласта?
В качестве гасящих конденсаторов для светодиодов используются керамические элементы рассчитанные на 400-500В. Использование электролитических (полярных) конденсаторов недопустимо.
Меры предосторожности
Безтрансформаторные схемы не имеют гальванической развязки. Сила тока цепи при появлении дополнительного сопротивления, например прикосновение рукой с оголённому контакту в цепи, может значительно увеличится, став причиной электротравмы.
Оцените, пожалуйста, статью. Мы старались:) (13
Последовательное включение конденсаторов в цепь
Когда в схеме выполнено последовательное соединение конденсаторов, оно выглядит как цепочка емкостных накопителей, где пластина первого и последнего накопителя емкости (конденсатора) подключены к источнику тока.
Последовательное соединение конденсатора:
Если тесты не пройдут так, как описано, вам нужно будет проверить всю сборку. Необходимо проверить цепь и кабель. Никакие детали собрания не подлежат пересмотру. Необходимо также проверить источник питания. Сборка «вспомогательных цепей», таких как преобразователи напряжения, матричные клавиатуры и другие, является отличным способом получить хорошую «платформу поддержки» для использования с микроконтроллерами и большой теорией их эксплуатации. Удача, успех и увидимся дальше!
Зачем поставить конденсатор в сигнальный путь?
Электрическая схема — Электрическая схема коммуникационного кабеля — План для подготовки печатной схемы — ручной метод. — Планировка для подготовки печатной схемы — метод теплопередачи.
Чтобы уменьшить частотную область передаваемых сигналов
Чтобы предотвратить переход напряжения от одного этажа к следующему. Вполне возможно отказаться от соединительного конденсатора для подключения нескольких электронных ступеней друг к другу, но это усложняет вычисление компонентов и требует большого контроля за поведением сборки, особенно при изменении температуры.
При последовательном соединении конденсаторов все устройства этого участка берут одинаковое количество электроэнергии, потому что в процессе участвует первая и последняя пластинка накопителей, а пластины 2, 3 и другие до N проходят зарядку посредством влияния. По этой причине заряд пластины 2 накопителя емкости равняется по значению заряду 1 пластины, но имеет обратный знак. Заряд пластины накопителя 3 равняется значению заряда пластины 2, но так же с обратным знаком, все последующие накопители имеет аналогичную систему заряда.
Чтобы предотвратить настройку потенциометра от плевки
Добавление двух конденсаторов для потенциометра с одним томом должно быть, как вы можете себе представить, избегать как можно больше, если только для того, чтобы избежать возникающего сложного импеданса, который они вносят, вызывая главным образом искажение фазы.
Для «нормального» редактирования аудио
Для «высококачественного» редактирования аудио
Это метод, который также используется для развязки источников питания, что дает очень хорошие результаты, потому что все работают в своей области компетенции. Поляризованные или неполяризованные конденсаторы. Это напряжение не должно передаваться на выход консоли, и это основная причина, по которой производитель эта консоль решила поставить конденсатор в этом месте. И при соединении двух, что у нас есть?
Формула нахождения заряда на конденсаторе, схема подключения конденсатора:
Когда выполняется последовательное соединение конденсаторов, напряжение на каждом накопители емкости будет различное, так как в зарядке одинаковым количеством электрической энергии участвуют разные емкости. Зависимость емкости от напряжения такова: чем она меньше, тем большее напряжение необходимо подать на пластины накопителя для его зарядки. И обратная величина: чем выше емкость накопителя, тем меньше требуется напряжения для его зарядки. Можно сделать вывод, что емкость последовательно соединенных накопителей имеет значение для величины напряжения на пластинах — чем она меньше, тем больше напряжения требуется, а также накопители большой емкости требуют меньшего напряжения.
Основное отличие схемы последовательного соединения накопителей емкости в том, что электроэнергия протекает только в одном направлении, а это означает, что в каждом накопителе емкости составленной батареи ток будет одинаковым. В этом виде соединений конденсаторов обеспечивается равномерное накопление энергии независимо от емкости накопителей.
Группу накопителей емкости можно также на схеме рассматривать как эквивалентный накопитель, на пластины которого подается напряжение, определяемое формулой:
Заряд общего (эквивалентного) накопителя группы емкостных накопителей последовательного соединения равен:
Общему значению емкости последовательно соединенных конденсаторов соответствует выражение:
Конденсаторы
Вашему вниманию подборка материалов: Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам |
Соединяем последовательно
[Емкость последовательно соединенных конденсаторов, нФ] = 1 / (1 / [Емкость первого конденсатора, нФ] + 1 / [Емкость второго конденсатора, нФ])
Эта формула может быть легко получена исходя из того, что ток, прошедший через конденсатор в течение периода времени, заряжает его до напряжения, обратнопропорционального его емкости. Если в полученном выражении сократить время, силу тока и напряжение, то получится приведенная формула.
[Напряжение на первом конденсаторе, В] = [Напряжение на соединенных последовательно конденсаторах, В] * [Емкость второго конденсатора, нФ] / ([Емкость второго конденсатора, нФ] + [Емкость первого конденсатора, нФ])
[Напряжение на втором конденсаторе, В] = [Напряжение на соединенных последовательно конденсаторах, В] * [Емкость первого конденсатора, нФ] / ([Емкость второго конденсатора, нФ] + [Емкость первого конденсатора, нФ])
Получается, что из двух конденсаторов на 1000 нФ на 200 В можно сделать один на 500 нФ, 400 В.
Включаем параллельно
[Емкость параллельно соединенных конденсаторов, нФ] = [Емкость первого конденсатора, нФ] + [Емкость второго конденсатора, нФ]
(читать дальше…) :: (в начало статьи)
1 | 2 | 3 | 4 |
:: ПоискТехника безопасности :: Помощь
К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.
Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи. сообщений.
4 резистора собраны последовательно.
Каждый 8 ом, 1200 Ватт.
Суммарная мощность соединения? Читать ответ…
Еще статьи
Электрическая емкость. Фарад. Farad. Единицы измерения. Доли, микрофар…
Понятие электрической емкости. Единицы измерения. Конденсаторы….
Колебательный контур. Схема. Расчет. Применение. Резонанс. Резонансная…
Расчет и применение колебательных контуров. Явление резонанса. Последовательные …
Обратноходовый импульсный источник питания. Онлайн расчет. Форма. Пода…
Как рассчитать обратноходовый импульсный преобразователь напряжения. Как подавит…
Пушпульный импульсный преобразователь напряжения, источник питания
Вы…
Как выбрать частоту работы контроллера и скважность для пуш-пульного преобразова..
Тиристорный выключатель, переключатель, коммутатор. Тиристор (тринисто…
Тиристор в переключательных схемах переменного тока. Схема твердотельного реле. …
Генератор, источник сигнала, напряжения, импульсов. Треугольная форма….
Оригинальная схема генератора треугольных импульсов. Расчет.
…
Мы повторили (собрали, наладили, настроили) резонансный фильтр высших …
Как собрать и наладить резонансный фильтр высших гармоник, чтобы на входе был ме…
Повышающий импульсный источник питания. Онлайн расчет. Форма. Подавлен…
Как рассчитать повышающий импульсный преобразователь напряжения. Как подавить пу…
Последовательно соединение конденсаторов
Последовательное соединение конденсаторов используют, если необходимо получить емкость меньшую емкости элемента. Такие элементы выдерживают более высокие напряжения. При последовательном соединении конденсаторов, обратная величина общей емкости равняется сумме обратных величин отдельных элементов. Для получения требуемой величины нужны определенные конденсаторы, последовательное соединение которых даст необходимую величину.
ИССЛЕДОВАНИЕ ПОСЛЕДОВАТЕЛЬНОГО, ПАРАЛЛЕЛЬНОГО И СМЕШАННОГО СОЕДИНЕНИЯ КОНДЕНСАТОРОВ
Цель работы:
Научиться составлять батареи конденсаторов и определять их емкость.
Теоретическая часть
Соединение конденсаторов параллельно
При параллельной схеме
подключения все обкладки конденсаторов соединяются в две группы, причем один вывод с каждого конденсатора соединяется в одну группу с другими, а второй — в другую. Наглядный пример параллельного соединения и схема
на картинке
Все параллельно соединенные
конденсаторы подключаются к одному источнику напряжения, поэтому существует на них две точки разности потенциалов или напряжения. На всех выводах конденсаторов будет абсолютно одинаковое напряжение.
При подключении параллельно все конденсаторы вместе, образуют принципиально одну емкость, величина которой будет равняться сумме всех емкостей подключенных в цепи конденсаторов. При параллельном подключении через каждый из конденсаторов потечет разный ток, который будет зависеть от величины емкости каждого из них. Чем выше емкость, тем больший ток потечет через неё.
Параллельное соединение
очень часто встречается в жизни. С его помощью можно из группы конденсаторов собрать любую необходимую емкость. Например, для запуска 3 фазного электродвигателя в однофазной сети 220 Вольт в результате расчетов Вы получили что необходима рабочая емкость 125 мкФ. Такой емкости конденсаторов Вы не найдете в продаже. Для того, что бы получить необходимую емкость придется купить и соединить параллельно 3 конденсатора один на 100 мкФ, второй- на 20, и третий на 5 мкФ.
Соединение конденсаторов последовательно
При последовательном соединении
конденсаторов каждая из обкладок соединяется только в одной точке с одной обкладкой другого конденсатора. Получается цепочка конденсаторов. Крайние два вывода подключаются к источнику тока, в результате чего происходит перераспределение между ними электрических зарядов. Заряды на всех промежуточных обкладках одинаковые величине с чередованием по знаку.
Через все соединенные конденсаторы последовательно протекает одинаковой величины ток, потому что у него нет другого пути прохождения.Общая же емкость
будет ограничиваться площадью обкладок самого маленького по величине, потому что как только зарядится полностью конденсатор с самой маленькой емкостью- вся цепочка перестанет пропускать ток и заряд остальных прервется. Высчитывается же ем
кость по этой формуле:
Но при последовательном
соединении увеличивается расстояние (или изоляция) между обкладками до величины равной сумме расстояний между обкладками всех последовательно подключенных конденсаторов. Например, если взять два конденсатора с рабочим напряжением 200 Вольт и соединить последовательно, то изоляция между их обкладками сможет выдержать 1000 Вольт при подключении в схему.
Из выше сказанного можно сделать вывод
, что последовательно соединять необходимо:
1. Для получения
эквивалентного меньшего по емкости конденсатора.
2. Если необходима емкость
, работающая на более высоких напряжениях.
3. Для создания
емкостного делителя напряжения, который позволяет получить меньшей величины напряжение из более высокого.
Практически, для получения первого и второго достаточно просто купить один конденсатор с необходимой величиной емкости или рабочим напряжением. Поэтому данный метод соединения в жизни не встречается.
Выбор аккумулятора
Никель — кадмиевая превосходно выдерживает низкую температуре, однако довольно тяжелая для такого инструмента.
Литий — ионновая подходит для температуры до -10℃, при не большой толщине льда. Она подойдет для бурения лунок, при толщине ледового покрова до шестнадцати сантиметров и можно использовать до шестидесяти раз.
Предлагаем ознакомиться Полезен ли яблочный сок для почек
Лучше взять с собой запасной и также положить его в тепло.
Далее нужно определиться, как можно модернизировать бур. Это можно произвести с помощью переходника.
Соединение конденсаторов в батарею: способы выполнения
Существует 3 способа соединения, каждый из которых преследует свою определённую цель:
- Параллельное – выполняется в случае необходимости увеличить ёмкость, оставив напряжение на прежнем уровне.
- Последовательное – обратный эффект. Напряжение увеличивается, ёмкость уменьшается.
- Смешанное – увеличивается как ёмкость, так и напряжение.
Теперь рассмотрим каждый из способов более подробно.
Параллельное соединение: схемы, правила
На самом деле всё довольно просто. При параллельном соединении расчёт общей ёмкости можно вычислить путём простейшего сложения всех конденсаторов. Итоговая формула будет выглядеть следующим образом: Собщ= С₁ + С₂ + С₃ + … + Сn. При этом напряжение на каждом их элементов будет оставаться неизменным: Vобщ= V₁ = V₂ = V₃ = … = Vn.
Соединение при таком подключении будет иметь следующий вид:
Получается, что подобный монтаж подразумевает подключение всех пластин конденсаторов к точкам питания. Такой способ встречается наиболее часто
Но может произойти ситуация, когда важно увеличить напряжение. Разберёмся, каким образом это сделать
Последовательное соединение: способ, используемый реже
При использовании способа последовательного подключения конденсаторов напряжение в цепи возрастает. Оно складывается из напряжения всех элементов и выглядит так: Vобщ= V₁ + V₂ + V₃ +…+ Vn. При этом ёмкость изменяется в обратной пропорции: 1/Собщ= 1/С₁ + 1/С₂ + 1/С₃ + … + 1/Сn. Рассмотрим изменения ёмкости и напряжения при последовательном включении на примере.
Дано: 3 конденсатора с напряжением 150 В и ёмкостью 300 мкф. Подключив их последовательно, получим:
- напряжение: 150 + 150 + 150 = 450 В;
- ёмкость: 1/300 + 1/300 + 1/300 = 1/С = 299 мкф.
Внешне подобное подключение обкладок (пластин) будет выглядеть так:
Выполняют такое соединение в том случае, если есть опасность пробоя диэлектрика конденсатора при подаче напряжения в цепь. Но ведь существует и ещё один способ монтажа.
Полезно знать! Применяют также последовательное и параллельное соединение резисторов и конденсаторов. Это делается с целью снижения подаваемого на конденсатор напряжения и исключения его пробоя. Однако следует учитывать, что напряжения должно быть достаточно для работы самого прибора.
Смешанное соединение конденсаторов: схема, причины необходимости применения
Такое подключение (его ещё называют последовательно-параллельным) применяют в случае необходимости увеличения, как ёмкости, так и напряжения. Здесь вычисление общих параметров немного сложнее, но не настолько, чтобы нельзя было разобраться начинающему радиолюбителю. Для начала посмотрим, как выглядит такая схема.
Составим алгоритм вычислений.
- всю схему нужно разбить на отдельные части, высчитать параметры которых просто;
- высчитываем номиналы;
- вычисляем общие показатели, как при последовательном включении.
Выглядит подобный алгоритм следующим образом:
Как подключать конденсаторы
В электротехнике есть два основных вида соединения деталей — параллельное и последовательное. Конденсаторы также можно подключать по любому из указанных способов. Есть ещё особая — мостовая схема. Она имеет собственную область использования.
В схеме может быть последовательное и параллельное соединение конденсаторов
Параллельное подключение конденсаторов
При параллельном соединении все конденсаторы объединены двумя узлами. Чтобы параллельно подключить конденсаторы, скручиваем попарно их ножки, обжимаем пассатижами, потом пропаиваем. У некоторых конденсаторов большие корпуса (банки), а выводы маленькие. В таком случае используем провода (как на рисунке ниже).
Так физически выглядит параллельное подключение конденсаторов
Если конденсаторы электролитические, следите за полярностью. На них должны стоять «+» или «-«. При их параллельном подключении соединяем одноимённые выводы — плюс к плюсу, минус — к минусу.
Расчёт суммарной ёмкости
При параллельном подключении конденсаторов их номинальная ёмкость складывается. Просто суммируете номиналы всех подключённых элементов, сколько бы их ни было. Два, три, пять, тридцать. Просто складываем. Но следите, чтобы размерность совпадала. Например, складывать будем в микрофарадах. Значит, все значения переводим в микрофарады и только после этого суммируем.
Расчёт ёмкости при параллельном подключении конденсаторов
Когда на практике применяют параллельное соединение конденсаторов? Например, тогда, когда надо заменить «пересохший» или сгоревший, а нужного номинала нет и бежать в магазин некогда или нет возможности. В таком случае подбираем из имеющихся в наличии. В сумме они должны дать требуемое значение. Все их проверяем на работоспособность и соединяем по приведенному выше принципу.
Пример расчёта
Например, включили параллельно два конденсатора — 8 мкФ и 12 мкФ. Следуя формуле, их номиналы просто складываем. Получаем 8 мкФ + 12 мкФ = 20 мкФ. Это и будет суммарная ёмкость в данном случае.
Пример расчёта конденсаторов при параллельном подключении
Последовательное соединение
Последовательным называется соединение, когда выход одного элемента соединяется со входом другого. Сравнить можно с вагонами или цепочкой из лампочек. По такому же принципу последовательно соединяют и конденсаторы.
Вот что значит последовательно соединить конденсаторы
При подключении полярных электролитических «кондеров» надо следить за соблюдением полярности. Плюс первого конденсатора подаете на минус второго и так далее. Выстраиваете цепочку.
Как определить ёмкость последовательно соединенных конденсаторов
При последовательном соединении конденсаторов суммарная ёмкость элементов будет меньше самого маленького номинала в цепочке. То есть, ёмкость последовательно соединённых конденсаторов уменьшается. Это также может пригодиться при ремонте техники — замена конденсатора требуется часто.
Последовательно соединённые конденсаторы
Использовать формулу расчёта приведённую выше не очень удобно, поэтому её обычно используют в преобразованном виде:
Формула расчёта ёмкости при последовательном соединении
Это формула для двух элементов. При увеличении их количества она становится значительно сложнее. Хотя, редко можно встретить больше двух последовательных конденсаторов.
Пример расчёта
Какая суммарная ёмкость будет если конденсаторы на 12 мкФ и 8 мкФ соединить последовательно? Считаем: 12*8 / (12+8) = 96 / 20 = 4,8 мкФ. То есть, такая цепочка соответствует номиналу 4,8 мкФ.
Пример расчета ёмкости при последовательном подключении конденсаторов
Как видите, значение меньше чем самый маленький номинал в последовательности. А если подключить таким образом два одинаковых конденсатора, то результат будет вполовину меньше номинала. Например, рассчитаем для двух ёмкостей по 12 мкФ. Получим: 12*12 / (12 + 12) = 144 / 24 = 6 мкФ. Проверим для 8 мкФ. Считаем: 8*8 / (8+8) = 64 / 16 = 4 мкФ. Закономерность подтвердилась. Это правило можно использовать при подборе номинала.
Последовательное и параллельное соединение конденсаторов
На практике часто используются тела, обладающие малыми (и очень малыми) размерами, которые могут накопить большой заряд, при этом имея небольшой потенциал. Такие объекты называют конденсаторами. Одна из основных характеристик конденсатора – это его емкость.
Имея в резерве набор конденсаторов, обладающих разными параметрами, можно расширить спектр величин емкостей и диапазон рабочих напряжений, если применять их соединения.
Различают три типа соединений конденсаторов: последовательное, параллельное и смешанное (параллельное и последовательное).
Последовательное соединение конденсаторов
Последовательное соединение изконденсаторов изображено на рис. 1
Здесь (рис.1) положительная обкладка одного конденсатора соединяется с отрицательной обкладкой следующего конденсатора. При таком соединении обкладки соседних конденсаторов создают единый проводник. У всех конденсаторов, соединенных последовательно на обкладках имеются равные по величине заряды. Электрическая емкость последовательного соединения конденсаторов вычисляется по формуле:
где– электрическая емкость i-го конденсатора.
Если емкости конденсаторов при последовательном соединении равны, то емкость последовательного их соединения составляет:
где– предельное напряжение каждого конденсатора соединения. При последовательном соединении конденсаторов следует следить за тем, чтобы ни на один из конденсаторов батареи не падало напряжение, превышающее его максимальное рабочее напряжение.
Параллельное соединение конденсаторов
Параллельное соединение N конденсаторов изображено на рис. 2.
При параллельном соединении конденсаторов соединяют обкладки, обладающие зарядами одного знака (плюс с плюсом; минус с минусом). В результате такого соединения одна обкладка каждого конденсатора имеет одинаковый потенциал, например,, а другая. Разности потенциалов на обкладках всех конденсаторов при их параллельном соединении равны.
При параллельном соединении конденсаторов суммарная емкость соединения рассчитывается как сумма емкостей отдельных конденсаторов:
При параллельном соединении конденсаторов напряжение равно самой наименьшей величине рабочего напряжения конденсатора из состава рассматриваемого соединения.
Заключение
Источник