Определение напряженности электрического поля с помощью потенциала

Электроемкость уединенного проводника

Для связи величин заряда и напряжения введено понятие электрической емкости. Для уединенного проводника (такого, на который отсутствует влияние других заряженных тел) значение емкости – величина постоянная и равная отношению количества заряда к потенциалу. Другими словами, емкость показывает, какой заряд нужно сообщить проводнику, чтобы его потенциальная энергия увеличилась на единицу.

Электроемкость не зависит от степени заряженности. Роль играют только:

  • форма;
  • геометрические размеры;
  • диэлектрические свойства среды.

Так же, как и емкость электрического конденсатора, электроемкость проводника будет обозначаться в фарадах.

Обратите внимание! На практике электроемкость проводника составляет очень малую величину. Для увеличения значения, особенно при производстве конденсаторов, как элементов с нормированным значением емкости, разработаны особые технологии

Поток вектора магнитной индукции

Электростатическое поле характеризуется напряженностью, которая вместе с вектором электромагнитной индукции составляет электромагнитное поле.

Электрическое напряжение

Если заряженная частица движется в электромагнитном поле, то полную силу, которая воздействует на частицу, определяют по закону Лоренца:

F=q∙E+q∙vхB,

где:

  • q – величина заряда;
  • v – скорость движения;
  • E – величина электрического поля;
  • В – вектор магнитной индукции.

Обратите внимание! В указанной формуле приведены векторные величины. Крестом обозначено векторное произведение

Силу F воздействия на частицу принято называть силой Лоренца.

Данная формула является наиболее общей и может использоваться для вычисления при условии точечного заряда (в том числе единичного).

Закон Кулона

Закон Кулона был открыт экспериментально: в опытах с использованием крутильных весов измерялись силы взаимодействия заряженных шаров.

Закон Кулона формулируется так:
сила взаимодействия ​\( F \)​ двух точечных неподвижных электрических зарядов в вакууме прямо пропорциональна их модулям ​\( q_1 \)​ и \( q_2 \) и обратно пропорциональна квадрату расстояния между ними ​\( r \)​:

где ​\( k=\frac{1}{4\pi\varepsilon_0}=9\cdot10^9 \)​ (Н·м2)/Кл2 – коэффициент пропорциональности,
​\( \varepsilon_0=8.85\cdot10^{-12} \)​ Кл2/(Н·м2) – электрическая постоянная.

Коэффициент ​\( k \)​ численно равен силе, с которой два точечных заряда величиной 1 Кл каждый взаимодействуют в вакууме на расстоянии 1 м.

Сила Кулона направлена вдоль прямой, соединяющей взаимодействующие заряды. Заряды взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению.

Значение силы Кулона зависит от среды, в которой они находятся. В этом случае формула закона:

где ​\( \varepsilon \)​ – диэлектрическая проницаемость среды.

Закон Кулона применим к взаимодействию

  • неподвижных точечных зарядов;
  • равномерно заряженных тел сферической формы.

В этом случае ​\( r \)​ – расстояние между центрами сферических поверхностей.

Важно!
Если заряженное тело протяженное, то его необходимо разбить на точечные заряды, рассчитать силы их попарного взаимодействия и найти равнодействующую этих сил (принцип суперпозиции)

Проводники в электростатическом поле

Размещение проводника в электростатическом поле приводит к тому, что поле начнет действовать на носители заряда внутри проводящего предмета. Носители начинают перемещаться до тех пор, пока электростатическое поле вне поверхности ни обратится в нуль.

Поскольку поле внутри вещества отсутствует, то во всех точках проводящего материала энергия будет постоянной, а поверхность эквипотенциальной. Векторы напряженности поля направлены под прямым углом в любой точке поверхности проводника.

Под действием поля заряды внутри проводника отсутствуют, поскольку они сосредоточены исключительно на поверхности. Этот факт используется при экранировке – защите тел от влияния внешних электромагнитных и электростатических полей. Для экранирования может использоваться не только сплошной проводящий материал, но и сетка, так называемая «клетка Фарадея».

Также свойство перемещения заряженных частиц (электронов) используется в электростатических генераторах для получения напряжения в несколько миллионов вольт.

Взаимодействие зарядов. Два вида зарядов

Электрический заряд – скалярная физическая величина, характеризующая способность тела участвовать в электромагнитных взаимодействиях.

Обозначение – ​\( q \)​, единица измерения в СИ – кулон (Кл).

Существуют два вида электрических зарядов: положительный и отрицательный. Наименьший отрицательный заряд имеет электрон (–1,6·10-19 Кл), наименьший положительный заряд (1,6·10-19 Кл) – протон. Минимальный заряд, который может быть сообщен телу, равен заряду электрона (элементарный заряд). Если тело имеет избыточные (лишние) электроны, то тело заряжено отрицательно, если у тела недостаток электронов, то тело заряжено положительно.

Величина заряда тела будет равна

где ​\( N \)​ — число избыточных или недостающих электронов;
​\( e \)​ — элементарный заряд, равный 1,6·10-19 Кл.

Важно!
Частица может не иметь заряда, но заряд без частицы не существует. Электрические заряды взаимодействуют:

Электрические заряды взаимодействуют:

заряды одного знака отталкиваются:

заряды противоположных знаков притягиваются:

Прибор для обнаружения электрического заряда называется электроскоп. Основная часть прибора – металлический стержень, на котором закреплены два листочка металлической фольги, помещенные в стеклянный сосуд. При соприкосновении заряженного тела со стержнем электроскопа заряды распределяются между листочками фольги. Так как заряд листочков одинаков по знаку, они отталкиваются.

Для измерения зарядов можно использовать и электрометр. Основные части его – металлический стержень и стрелка, которая может вращаться вокруг горизонтальной оси. Стержень со стрелкой закреплен в пластмассовой втулке и помещен в металлический корпус, закрытый стеклянными крышками. При соприкосновении заряженного тела со стержнем стержень и стрелка получают электрические заряды одного знака. Стрелка поворачивается на некоторый угол.

Проводники в электрическом поле

Проводниками называют вещества, в которых может происходить упорядоченное перемещение электрических зарядов, т. е. протекать электрический ток.

Проводниками являются металлы, водные растворы солей, кислот, ионизованные газы. В проводниках есть свободные электрические заряды. В металлах валентные электроны взаимодействующих друг с другом атомов становятся свободными.

Если металлический проводник поместить в электрическое поле, то под его действием свободные электроны проводника начнут перемещаться в направлении, противоположном направлению напряженности поля. В результате на одной поверхности проводника появится избыточный отрицательный заряд, а на противоположной – избыточный положительный заряд.

Эти заряды создают внутри проводника внутреннее электрическое поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Под действием внешнего электростатического поля электроны проводимости в металлическом проводнике перераспределяются так, что напряженность результирующего поля в любой точке внутри проводника равна нулю. Электрические заряды расположены на поверхности проводника.

Важно!Если внутри проводника есть полость, то напряженность в ней будет равна нулю независимо от того, какое поле имеется вне проводника и как заряжен проводник. Внутренняя полость в проводнике экранирована (защищена) от внешних электростатических полей

На этом основана электростатическая защита.

Явление перераспределения зарядов во внешнем электростатическом поле называется электростатической индукцией.

Заряды, разделенные электростатическим полем, взаимно компенсируют друг друга, если проводник удалить из поля. Если такой проводник разрезать, не вынося из поля, то его части будут иметь заряды разных знаков.

Важно!
Во всех точках поверхности проводника вектор напряженности направлен перпендикулярно к его поверхности. Поверхность проводника является эквипотенциальной (потенциалы всех точек поверхности проводника равны)

Проблемы CRI и его аналоги

CRI не всегда дает точные показания, дело в том, что изначально он разрабатывался под источники света с непрерывным спектром. Речь идет о спектральном составе белого света, в нем содержится определенный набор цветов, которые в результате дают белое свечение с определенным оттенком (цветовой температурой).

Спектральный состав света – набор излучений различных длин волн (цветов) в световом потоке. По спектральному составу можно определить степень излучения того или иного цвета.

Когда источник света в своем спектральном составе содержит все видимые длины волн, тогда такой спектр называют непрерывным. Пример:

  • солнечный свет;
  • лампы накаливания;
  • галогенные лампы.

От полноты спектрального состава зависит и соответствие видимых цветов реальным. Но не все лампы излучают в полном спектре.

У люминесцентных ламп так называемый рваный спектр. Он состоит из отдельных пиков в области различных длин волн. Если вспомнить о том, что мы сказали выше, то CRI не совсем корректно отражает индекс цветопередачи таких светильников.

Справка: В 2007 году Международная комиссия по освещению отметила, что «…индекс цветопередачи, разработанный комиссией, обычно неприменим для прогнозирования параметров цветопередачи набора источников света, если в этот набор входят светодиоды белого цвета».

Поэтому для повышения точности измерений светового потока в 2010 году разработали методику CQS, что расшифровывается, как Colour Quality Scale, или рус. Шкала качества цвета. Но и это не дало полноценной оценки качества источников света, потому что в ней не учитывалась насыщенность и тон освещаемых предметов.

И в 2015 году появился ТМ-30-15 – это стандарт, который учитывает больше параметров, а именно, кроме шаблонов, в оценке принимают участие тон, насыщенность и встречающиеся в быту предметы.

Однако ни в одной стране, на момент написания статьи, TM-30-15 не является обязательным для выполнения, но это не мешает уважающим себя производителям проверять продукцию и таким образом.

Зачастую при проверке значения по шкалам CQS и CRI выдают примерно одинаковые результаты, однако, происходит и так, что по TM-30-15 результаты оказываются ниже нормы. Пример измерения плохой цветопередачи светодиодной лампы описан в статье от независимых экспертов: https://geektimes.com/company/lamptest/blog/285034/

Скорее всего, причиной такого результата стал люминофор, специально подобранный для прохождения обязательных тестов, но все равно не обеспечивает нормальной цветопередачи.

Разность потенциалов на практике

С общепринятой точки зрения, разность потенциалов – это напряжение между двумя выбранными точками цепи. В то же время напряжение между каждой из этих точек и третьей точкой будет отличаться в полном соответствии с определением.

Наглядный пример:

  • Точка А в электрической схеме – напряжение 10 В относительно провода заземления;
  • В точке В напряжение составляет 25 В относительно того же провода.

Необходимо найти напряжение между точками А и В.

В данном случае искомая разность составляет:

UAB= ϕА-ϕВ=10-25=15 В.

Рассматриваемые понятия важны для минимального объема знаний в области электротехники и электроники, поскольку на них основываются все расчеты и практические решения. Без этих азов невозможно более углубленное изучение электрических дисциплин.

Поток вектора магнитной индукции

Электростатическое поле характеризуется напряженностью, которая вместе с вектором электромагнитной индукции составляет электромагнитное поле.

Если заряженная частица движется в электромагнитном поле, то полную силу, которая воздействует на частицу, определяют по закону Лоренца:

где:

  • q – величина заряда;
  • v – скорость движения;
  • E – величина электрического поля;
  • В – вектор магнитной индукции.

Обратите внимание! В указанной формуле приведены векторные величины. Крестом обозначено векторное произведение

Силу F воздействия на частицу принято называть силой Лоренца.

Данная формула является наиболее общей и может использоваться для вычисления при условии точечного заряда (в том числе единичного).

Потенциал

Система «заряд — электростатическое поле» или «заряд — заряд» обладает , подобно тому, как система «гравитационное поле — тело» обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал — это характеристика электростатического поля.

Вспомним . Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело — наоборот.

Потенциальная энергия поля — это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.

Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Разность потенциалов, единицы измерения — Справочник химика 21

    Единицей электрического потенциала в Международной системе единиц и практической единицей измерения потенциала является вольт (в) — разность электрических потенциалов между двумя точками электрического поля, при перемещении ме жду которыми заряда в 1 к соверщается работа в 1 дж (1 ед, эл. напр. СГС = 3- 10 в). 

    Х/3/2 2 единицы измерения 1 В = 1 кг м /(с -А) = =1 Дж/(А с) =1 Вт/А.] Единица измерения электрического потенциала, вольт, есть разность потенциалов между двумя точками проводящей проволоки, по которой проходит ток 1 ампер, когда мощность, рассеиваемая на участке между этими точками, составляет 1 ватт. Знак э. д. с. определяется в соответствии с правилом, согласно которому положительный заряд должен двигаться от большего потенциала к меньшему. Э. д. с. гальванического элемента — это разность электрических потенциалов между двумя кусками металла одного и того же состава, представляющих собой концы цепи проводящих фаз. Например, в элементе Даниэля (см.) 

    В исследуемый раствор опущены стеклянный 2 и сравнительный 3 электроды. Между стеклянным электродом и раствором возникает разность потенциалов, пропорциональная активности ионов водорода, т. с. pH. Для измерения потенциала необходим второй, сравнительный электрод, потенциал которого постоянен и не зависит от pH. Для защиты от воздействия исследуемого раствора и возможного искажения показаний прибора сравнительный электрод помещают вне раствора и соединяют трубкой, заканчивающейся пористой перегородкой 4, через которую непрерывно протекает насыщенный раствор хлористого калия. Возникающую между электродами разность потенциалов регистрируют потенциометром /, градуированным в единицах измерения pH. 

    Стандартный потенциал ср зависит от природы электрода и характеризует его электрохимическую активность. Для данного растворителя и заданной температуры величина стандартного потенциала постоянна. Абсолютное значение ф» определить невозможно, так как с помощью вольтметра измеряют только разность потенциалов двух электродов. Поэтому для измерения ф» составляют элемент из стандартного водородного электрода (СВЭ), потенциал которого условно принимают за нуль при любой температуре, и стандартного исследуемого электрода. СВЭ изображен на рис. 11.4. Он состоит из платиновой пластинки, опущенной в раствор кислоты с активностью ионов водорода, равной единице. Платиновая пластинка находится под током газообразного водорода, подаваемого под давлением 1,013-10 Па (1 атм) при постоянной температуре (более подробно о водородном электроде см. 11.9). 

    Измерительный прибор в элементе определит разницу между способностями к приему или отдаче электронов, проявляемыми обеими ячейками. Если электроны переходят из ячейки с водородным электродом в кадмиевый раствор, то ясно, что водород имеет более сильную тенденцию к отдаче электронов. Если же электроны переходят к водородному электроду, то относитель ные тенденции обратны. Измерительное устройство, если это вольтметр, будет фиксировать не только направление тока, не и разность электрических потенциалов. Эта разность электриче ских потенциалов между двумя ячейками является мерой разли чия в способностях к отдаче электронов обеими частями элемента Обычной единицей, применяемой для измерения электриче ского потенциала, является вольт, и поэтому величины Е° дают ся в вольтах. Вольты могут быть легко пересчитаны в килокалории на моль перенесенных электронов (сокращенно ккал-эквивалент , или ккал-экв ) умножением величины напряжения на 23,053 ккал-экв -В .  

    По конструктивным данным трубопровода, который будет уложен в месте измерений, и результатам определения Ка рассчитывается начальная скорость коррозии трубы г к в единицах плотности тока. Затем используют формулы (29) или (31), в которых иВ = /С . Далее вычисляют разность Д = / к — /пр и на бланке диаграммы через точ

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.