Разновидности преобразователей частоты

Топологии для формирования синусоидального сигнала

следующим образом

Плюсы:

  • Минимально возможное количество силовых транзисторов, а значит потери в 2 раза меньши и стоимость устройства тоже ниже
  • Сквозной ноль. Это упрощает процесс сертификации, особенно CE и ATEX. Связано это с тем, что сквозной ноль позволяет системам защиты по входу (например, УЗО) срабатывать так же при возникновение аварии в выходных цепях после преобразователя
  • Простая топология, что позволяем максимально уменьшить стоимость изделия при мелко-
    и средне серийном производстве

Минусы:

  • Необходимость двухполярного источника питания. Как видите на схему инвертора надо подавать ±380В и еще ноль
  • Удвоенное количество высоковольтных конденсаторов. Высоковольтные конденсаторы большой емкости и с малым ESR на мощностях от 3-4 кВт начинают составлять от 20 до 40%
    стоимости компонентов
  • Применение электролитических конденсаторов в «делителе». Они сохнут, подобрать конденсаторы с одинаковыми параметрами практически нереально, а если учесть, что параметры электролитов меняются в процессе эксплуатации, то и бессмысленно. Заменить на пленку можно, но дорого

Плюсы:

  • Очень высокая надежность. Она в основном обусловлена качеством системы управления силовыми транзисторами и не зависит от деградации компонентов
  • Входная емкость требуется в разы, а то и на порядок меньше. Необходимо лишь обеспечить расчетное значение ESR. Это позволяет использовать пленочные конденсаторы при сохранение себестоимости. Пленочные конденсаторы — не сохнут, лучше ведут в суровых температурах, рабочий ресурс на порядок выше, чем у электролитов
  • Минимальные пульсации напряжения на транзисторах, а значит можно применить транзисторы на меньшее напряжение
  • Простота и понятность алгоритмов работы. Это приводит к значительному уменьшению времени на разработку изделия, а также на его пуско-наладочные работы

Минусы:

  • Увеличенное количество силовых транзисторов, а значит необходимо более серьезное охлаждение. Увеличение цены на транзисторах, но за счет меньшего количества конденсаторов это скорее даже плюс
  • Повышенная сложность драйвера, особенно при требованиях к наличию гальванической развязки

Небольшой итог

Преобразователи частоты с непосредственной связью

ПЧ с непосредственной связью с питающей электросетью или циклоконверторы преобразуют напряжение частотой 50 Гц в переменное напряжение с регулируемой фазой и частотой. Электронные ключи таких устройств – управляемые и неуправляемые тиристоры, включенные по встречно-параллельным, мостовым, перекрестным и нулевым схемам.

Частота напряжения, поступающего на обмотки двигателя, изменяется путем циклического отпирания и запирания электронных ключей.

Элементная база тиристорных частотников стоит значительно дешевле силовых быстродействующих транзисторов. Преобразователи частоты такого типа:

  • Отличаются высоким к.п.д. Электрические потери уменьшаются за счет однократного преобразования напряжения.
  • Обеспечивают устойчивые механические характеристики двигателя на низких скоростях. Прямое преобразование позволяет выдавать на обмотки электродвигателя напряжение низкой частоты без уменьшения амплитуды. Жесткость механических характеристик привода на невысоких скоростях при этом не снижается.
  • Позволяют возвращать энергию в сеть при электродинамическом торможении двигателя. Частотники с гальванической связью с питающей сетью позволяют свободно обмениваться электроэнергий в генераторном режиме двигателя.

Мощность преобразователей с непосредственной связью практически не ограничена. Такие электроприводы можно легко модернизировать путем подключения дополнительных тиристорных модулей.

Устройства такого типа также имеют недостатки:

  • Несинусоидальное выходное напряжение. Гармоники вызывают дополнительный нагрев двигателя, шум при работе оборудования. Кроме того, паразитные составляющие поступают в сеть и ухудшают качество электроэнергии.
  • Сложность регулирования скорости двигателя выше номинальной. Непосредственные преобразователи способны изменять частоту только в меньшую сторону.

Относительная сложность схемы управления. Связь входной и выходной частоты определяется выражением f_(1 )=(m_n×f_2)/(2(n-1)+m_n ); где mn – пульсность напряжения, n – число участков синусоид в полуволне выходного напряжения, f_(1 )и f_(2 )– частоты на входе и выходе. Таким образом, для создания крутящего момента и сдвига фаз на 1200 относительно друг друга необходимо обеспечить строгую временную последовательность отпирания и запирания тиристоров.

Так, основная сфера применения преобразователей частоты с гальванической связью с электросетью – низкоскоростные приводы мощного оборудования, а также двигатели механизмов, работающих с частыми остановками, перезапусками и реверсами.

МАРКИРОВКА

Схема модели индукционного комплекса на тиристорах

Устройства индукционного нагрева наиболее часто используют схему Мак-Мюррея или резонансный преобразователь, поскольку нагрузка носит явно выраженный индуктивный характер. Индукционные нагревательные приборы потребляют значительный ток, поэтому в мощных печах используются именно тиристоры, несмотря на более лучшие по параметрам транзисторы.

Поскольку для питания объектов промышленных предприятий используется трехфазный переменный ток, конструкция обязательно содержит выпрямитель, который на выходе образует постоянный ток.

Использование тиристоров в качестве ключевых элементов инвертора позволяет создавать простые и надежные схемы, основной недостаток которых заключается в достаточно сильных искажениях формы напряжения и высоком уровне электромагнитных помех.

Принцип действия нагрузки. Схема 3-фазного частотника

На схеме изображена электроэнергия эксплуатации частотника. Подобную диаграмму делают для мостовой схемы. Она чаще применяется при конструировании частотника для нагрузки оборудования и станков. Напряжение фазы в схеме увеличено.

Схема с одной фазой применяется для линии питания, эксплуатации механизма с большим сопротивлением индуктивности. Она действует в интервале мощности 10 – 20 кВт, редко при значительных мощностях. Для электропечи или станка в быту применяется такую схему:

Схема цепей с тремя фазами используется для механизмов на 20 кВт, моторов синхронных, экскаваторов и кранов. Популярной схемой с несколькими фазами 6-фазная схема. Она предусматривает применение уравнителя малого потенциала и большого тока. Прибор с током проводит и изменяет электроэнергию параллельно, в отличие от многих подобных устройств. Сделать его трудно, однако надежность у него больше, чем на тиристорах с одной фазой. Этот контроллер с реверсом имеет негативную сторону – КПД у него составляет меньше 70%.

Свой тиристорный преобразователь частоты изготовить, возможно, в зависимости от основы применения. На рисунке показана схема на базе Micro-Cap 9. Основным достоинством является необходимость в нагрузке нескольких узлов совместно.

Особенности процесса хроматирования и свойства покрытий

Общей проблемой хроматирования, за исключением использования растворов не содержащих хроматов (вариант С) является проблема очистки сточных вод и экологической безопасности. Кроме того, использование концентрированных растворов может привести к растворению тонких пленок цинкового или кадмиевого покрытия в углубленных местах изделий. Следует также учитывать, что при нагреве свыше 60С защитные свойства хроматных пленок снижается. Общим свойством хроматных пленок является также их низкая стойкость к истиранию и средняя или низкая пластичность.

Преимущества хроматных пленок кроме очевидного увеличения защитных свойств покрытий является способность восстановления небольших повреждений покрытия со временем («самозалечивание» хроматной пленки). Для резьбовых деталей, подвергнутых хроматированию преимуществом является их легкая «свинчиваемость».

Гальванические производства предлагают услуги хроматирования с использованием специальных добавок и составов, позволяющих получить, например, пленки цвета хаки. Детали с такими покрытиями используются в военной технике. Или пленки глубокого черного цвета, которые обладают повышенной коррозионной защитой и позволяют заменять химическое оксидирование металлических поверхностей.

Назначение и принцип работы

Что такое преобразователь напряжения. Так называют электронный прибор, изменяющий величину входного сигнала. Он может использоваться в качестве устройства, повышающего или понижающего его значение. Входное напряжение после преобразования может изменить как свою величину, так и частоту. Такие устройства, изменяющие постоянное напряжение (преобразовывающие его) в выходной сигнал переменного тока, получили название инверторов.

Преобразователи напряжения находят применение как в виде автономного устройства, питающего потребителей энергией переменного тока, так и могут входить в состав других изделий: систем и источников бесперебойного питания, устройств повышения постоянного напряжения до необходимой величины.

Инверторы представляют собой генераторы напряжения гармонических колебаний. Источнику постоянного тока с помощью специальной схемы управления создается режим периодического переключения полярности. В результате на выходных контактах устройства, к которым подключена нагрузка, формируется сигнал переменного напряжения. Его величину (амплитуду) и частоту определяют элементы схемы преобразователя.

Управляющее устройство (контроллер) задает частоту переключения источника и форму выходного сигнала, а его амплитуду определяют элементы выходного каскада схемы. Они рассчитаны на максимальную мощность, которую потребляет нагрузка в цепи переменного тока.

Контроллер используется и для регулирования величины выходного сигнала, которое достигается управлением длительностью импульсов (увеличение или уменьшение их ширины). Информация об изменениях величины выходного сигнала на нагрузке поступает в контроллер по цепи обратной связи, на основании которой в нем формируется управляющий сигнал на сохранение необходимых параметров. Этот метод называется ШИМ (широтно-импульсной модуляцией) сигналов.

В схемах силовых выходных ключей преобразователя напряжения 12В могут использоваться мощные составные биполярные транзисторы, полупроводниковые тиристоры, полевые транзисторы. Схемы контроллеров выполняются на микросхемах, представляющих собой уже готовые к работе устройства с необходимыми функциями (микроконтроллеры), специально разработанных для таких преобразователей.

Схема управления обеспечивает последовательность работы ключей для обеспечения на выходе инвертора сигнала, необходимого для нормальной работы устройств потребителя. Кроме того, управляющая схема должна обеспечивать симметрию полуволн выходного напряжения

Это особенно важно для схем, в которых на выходе используются повышающие импульсные трансформаторы. Для них недопустимо появление постоянной составляющей напряжения, которая может появиться при нарушении симметрии

Существует много вариантов построения схем инверторов напряжения (ИН), но выделяют из них 3 основные:

  • ИН бестрансформаторный мостовой;
  • трансформаторный ИН с нулевым проводом;
  • мостовая схема с трансформатором.

Каждая из них находит применение в своей области в зависимости от примененного в нем источника питания и требуемой выходной мощности для питания потребителей. В каждой из них должны быть предусмотрены элементы защиты и сигнализации.

Защита от понижения и повышения напряжения источника постоянного тока определяет диапазон работы инверторов «по входу». Защита от повышенного и пониженного выходного переменного напряжения необходима для нормальной работы оборудования потребителя. Диапазон срабатывания устанавливается в соответствии с требованиями используемой нагрузки. Эти виды защиты обратимые, то есть при восстановлении параметров оборудования до нормы работа может быть восстановлена.

При срабатывании защиты вследствие короткого замыкания в нагрузке или чрезмерного возрастания выходного тока перед тем, как продолжить эксплуатацию оборудования, необходим тщательный анализ причин этого события.

Преобразователь 12В является наиболее приемлемым для создания локальной электросети. Наличие большого количества автомобилей и аккумуляторных батарей 12В постоянного тока позволяет их использовать для обеспечения запросов пользователей. Такие сети можно создавать в самых различных местах, начиная от собственного авто. Они мобильны и не зависят от места стоянки.

Преобразователь тока в напряжение

В большинстве случаев все электронные схемы нужны для обработки сигналов, представленных в виде напряжения. Однако иногда приходится иметь дело с сигналом в виде тока. Такие сигналы возникают, например, на выходе фоторезистора или фотодиода. Тогда желательно при первой же возможности преобразовать токовый сигнал в напряжение. Преобразователи напряжения в ток применяются в случае, когда ток в нагрузке должен быть пропорционален входному U и не зависеть от R нагрузки. В частности, при постоянном входном U ток в нагрузке также будет постоянным, поэтому такие преобразователи иногда условно называют стабилизаторами тока.

Формирование синусоидальной формы сигнала с помощью ШИМ

курильщика

Расчет значений для формирования синуса

n — значение скважности в данной дискретной точке
A — амплитуда сигнала, то есть максимальное значение скважности. У нас это 1000
pi/2 — 1/4 периода синуса попадает в pi/2, если считаем 1/2 периода, то pi
x — номер шага
N — количество точек

Использую для статьи старенький микроконтроллер STM32F100RBT6 (отладка STM32VL-Discovery), его частота 24 МГц.
Считаем сколько тактов будет длиться период 20 мс: 24 000 000 Гц / 50 Гц = 480 000 тиков
Значит половина периода длится 240 000 тиков, что соответствует частоте 24 кГц. Хотите повысить несущую частоту — берите камень шустрее. 24 кГц наши уши все таки услышат, но для тестов или железки, стоящей в подвале пойдет. Чуть позже я планирую перенести на F103C8T6, а там уже 72 МГц.
240 000 тиков… Тут логично напрашивается 240 точек на половину периода

Таймер будет обновлять значение скважности каждые 1000 тиков или каждые 41,6 мкс

тут

Схема инвертора напряжения

Наиболее распространённая схема инвертора напряжения состоит из четырех IGBT транзисторов VT1…VT4, включенных по схеме моста, и четырех обратных диодов, обозначенных VD1…VD4, параллельно соединенных с управляемыми полупроводниковыми ключами во встречном направлении. Преобразователь питает активно-индуктивную нагрузку. Именно она является самой распространенной, поэтому была взята за основу.

Входные клеммы инвертора подключаются к Uип. Если таким источником служит диодный выпрямитель, то выход его обязательно шунтируется конденсатором C.

В силовой электронике наибольшее применение нашли транзисторы с изолированным затвором IGBT (именно они показаны на схеме) и GTO, IGCT тиристоры. При оперировании меньшими мощностями вне конкуренции полевые транзисторы MOSFET.

В момент времени t1 открываются VT1 и VT4, а VT2 и VT3 – закрыты. Образуется единственный путь для протекания тока через нагрузку: «+» Uип – VT1 – нагрузка RнLн – VT4 – «-» Uип. Таким образом, на интервале времени t1 ‑ t2 создается замкнутая цепь для протекания iн в соответствующем направлении.

Режим работы схемы

Для изменения направления iн снимаются управляющие импульсы с баз VT1 и VT4 и подаются сигналы на открытие второго и третьего VT2,3. В точке t2 на оси времени t, первый и четвертый VT1,4 закрыты, а второй и третий – открыты. Однако, поскольку нагрузка активно-индуктивная, то iн не может мгновенно изменить направление на противоположное. Этому будет препятствовать энергия, запасенная на индуктивности Lн. Поэтому он будет сохранять прежнее направление до тех пор, пока не рассеется все энергия, запасенная на индуктивности в виде магнитного поля, равная Wм = (Lн∙i2)/2.

В связи с этим, на отрезке времени t2 – t3 ток будет протекать через диоды VD2 и VD3, сохраняя прежнее направление на RнLн, но пройдет в обратном направлении через Uип или конденсатор C, если источником энергии является диодный выпрямитель. Поэтому следует обязательно установить конденсатор C, если преобразователь подключен к диодному выпрямителю. Иначе прервется путь протекания iн, в результате чего возникнут сильное перенапряжение, которое может повредить изоляцию потребителя и выведет из строя полупроводниковые приборы.

В момент времени t3 вся запасенная на индуктивности энергия снизится до нуля. Начиная с момента t3 до момента t4 под действием приложенного Uип через открытые полупроводниковые ключи VT2 и VT3 будет протекать iн через LнRн уже в другую сторону.

В точке t4, расположенной на оси времени t, снимается управляющий сигнал с VT1,3, а VT1 и VT4 открываются. Однако iн продолжает протекать в ту же сторону, пока не расходуется энергия, запасенная в индуктивности. Это будет происходить на интервале времени t4 – t5.

Работа схемы

Начиная с момента tiн изменить направление и потечет от Uип через LнRн по пути через VT1 и VT4. Далее все процессы, протекающие в электрической цепи, будут повторяться. На LнRн форма напряжения будет прямоугольной, но ток на активно-индуктивной нагрузке будет иметь пилообразную форму за счет наличия индуктивности, которая не позволяет ему мгновенно вырасти и снизиться. Если потребитель имеет чисто активный характер (индуктивность и емкость практически равны нулю), то формы iн и uн будет в виде прямоугольников.

Поскольку VT1…VT4 попарно открывались на всей протяженности соответствующих полупериодов, то на выходе преобразователя формировалось максимально возможное uн, поэтому через LнRн протекал iн максимальной величины. Однако часто требуется обеспечить плавное нарастание мощности на потребителе, например для постепенного увеличения яркости освещения или частоты вращения вала двигателя.

Следует пояснить, что сигналы, поступающие из системы управления СУ, подаются не сразу на базы полупроводниковых ключей, а посредством драйвера. Так как современные СУ построены на безе микроконтроллеров, которые выдают маломощные сигналы, не способные открыть IGBT, то для увеличения мощности открывающего импульса применяется промежуточное звено – драйвер. Кроме того на часто драйвер выполняет множество дополнительных функций – защищает транзистор от короткого замыкания, перегрева и т.п.

Критерии выбора датчика для GSM сигнализации 11:41

Проводные системы постепенно уступают место беспроводному оборудованию. Оно просто монтируется и поддерживает работу с различными типами датчиков.

Сигнал тревоги от них передается на диспетчерский пульт через радиоканалы, а далее сообщение поступает на телефон владельца объекта.

Любая модель такой системы имеет автономное питание и не зависит от электричества, тем самым гарантируя бесперебойную и эффективную работу. Сигнализация GSM в стандартной комплектации оснащается датчиком движения, а при необходимости может работать с большим количеством различных извещателей.

  1. Беспроводные охранные системы — сфера применения
  2. Виды датчиков и их особенности
  3. Обзор популярных извещателей
  4. Совет специалиста — выбираем и прицениваемся
  5. Монтаж и настройка
  6. Заключение

Самодельный преобразователь частоты на тиристорах

Я взял двигатель асинхронного типа мощностью 2 кВт. Все собирал самостоятельно. Нужно было получить из сети в 220 вольт три фазы для управления электродвигателем. Нужно было управлять оборотами двигателя, не получать скачков выходного напряжения.

Посмотрев информацию в Интернете, нашел схемы различного рода. Предлагается очень много разных вариантов. Я остановился именно на этой схеме, так как его мощность до 4 кВт, функции защиты работают нормально.

Я взял корпус от системного блока компьютера и вмонтировал в него все детали. Можно было сэкономить, и сделать по-другому, но у меня уже был этот шкаф. Блок питания я покупал отдельно.

Хотя можно было собрать схему блока питания самому. Ни с кем не советовался и сам начал собирать. Собрал набор конденсаторов с реле, диодный мост с полевыми транзисторами. Установил вентилятор охлаждения на случай, если будет двигатель нагрузки 4 кВт, и будет нагреваться. При двигателях 2-3 кВт преобразователь работает нормально, никаких проблем с нагревом нет. Я решил сделать так, чтобы вентилятор не работал постоянно, так как он будет засасывать в шкаф пыль, потом его надо будет чистить. Решил сделать так, чтобы кулер включался и выключался при определенных температурах.

Для этого я сделал небольшую плату регулировки с реле, хотя можно тоже ее купить. За полдня собрал эту плату из имеющихся деталей. В шкафу имеется шунт, который настроен для двигателя 4 кВт. Если будет перегрузка по току, то двигатель выключится. Плата преобразователя сделана на микроконтроллере. Если поменять контроллер и поставить кварц на 20 мГц и два конденсатора в обвязке кварца, то можно поменять прошивку, вынести на панель корпуса монитор, ручку регулятора оборотов. При работе можно будет изменять частоту.

Но я делать этого не стал, так как нужны были дополнительные деньги. Этот частотник мне обошелся около трех тысяч рублей, это на 2017 год. Заводской преобразователь на тиристорах такого же класса, пусть даже в меньшем корпусе обошелся бы около 7-10 тысяч рублей. Это зависит от бренда изготовителя.

Такой частотный преобразователь можно применять на станках с ЧПУ на шпиндель, вывести контроль на пульт управления. Проверим, как он работает. Включаем старт, двигатель плавно включился и работает. Выключаем его, затем включаем реверс и повторяем операции. Все работает нормально.

Недавно купил выпрямитель за 1000 рублей. Это недорого для тиристорного выпрямителя. Такие диоды приходится заказывать из других регионов. Если управляющий электрод замкнуть на анод, то он превращается в диод. Если убираем, то превращается в тиристор. Если к проводам припаять плату управления, то им можно управлять. Получается тиристорный выпрямитель. Я поставил его на сварочный аппарат. На ручную дуговую сварку не стоит ставить тиристорный выпрямитель, так как при сварке большие пульсации, сварочный шов получается плохого качества. Для полуавтомата тиристоры подойдут, там пульсации не важны.

Бестрансформаторные преобразователи напряжения

В последнее время они стали очень популярны, так как на их изготовление, а в частности, производство трансформаторов, нужно тратить немалые средства, ведь обмотка их выполняется из цветного металла, цена на который постоянно растёт. Основное преимущество таких преобразователей это, конечно же, цена. Среди отрицательных сторон есть одно существенно отличающее его от трансформаторных блоков питания и преобразователей. В результате пробоя одного или нескольких полупроводниковых приборов, вся выходная энергия может попасть на клеммы потребителя, а это обязательно выведет его из строя. Вот простейший преобразователь переменного напряжения в постоянное. Роль регулирующего элемента играет тиристор.

Проще обстоят дела с преобразователями, в которых отсутствуют трансформаторы, но работающие на основе и в режиме повышающего напряжение аппарата. Здесь даже при выходе одного элемента или нескольких на нагрузке не появится опасной губительной энергии.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.