Частотно регулируемый привод (чрп) от компании danfoss

Векторное управление без обратной связи

Векторное управление (ВУ) без обратной связи используется для более широкого и динамичного регулирования скорости электрической машины. При пуске от преобразователя частоты электродвигатели могут развивать пусковой момент в 200% от номинального при частоте всего 0,3 Гц. Это значительно расширяет перечень механизмов, где может быть применен асинхронный электропривод с векторным управлением. Этот метод также позволяет управлять моментом машины во всех четырех квадрантах.

Ограничение вращающего момента осуществляется двигателем. Это необходимо для предотвращения повреждения оборудования, машин или продукции. Значение моментов разбивают на четыре различных квадранта, в зависимости направления вращения электрической машины (вперед или назад) и в зависимости от того, реализует ли электродвигатель режим рекуперативного торможения. Ограничения могут устанавливаться для каждого квадранта отдельно или же пользователь может задать общий вращающий момент в преобразователе частоты.

Двигательный режим асинхронной машины будет при условии, что магнитное поле ротора отстает от магнитного поля статора. Если магнитное поле ротора начнет опережать магнитное поле статора, то тогда машина войдет в режим рекуперативного торможения с отдачей энергии, проще говоря – асинхронный двигатель перейдет в генераторный режим.

Например, машина по закупорке бутылок может использовать ограничение момента в квадранте 1 (направление вперед с положительным моментом) для предотвращения чрезмерного затягивания крышки бутылки. Механизм производит движение вперед и использует положительный момент для того, чтобы закрутить крышку бутылки. А вот устройство, такое как лифт, с противовесом тяжелее, чем пустая кабина, будет использовать квадрант 2 (обратное вращение и положительный момент). Если кабина подымается на верхний этаж, то крутящий момент будет противоположен скорости. Это необходимо для ограничения скорости подъема и недопущения свободного падения противовеса, так как он тяжелее, чем кабина.

Обратная связь по току в данных преобразователях частоты ПЧ позволяет устанавливать ограничения по моменту и току электродвигателя, поскольку при увеличении тока растет и момент. Выходное напряжение ПЧ может изменятся в сторону увеличения, если механизм требует приложения большего крутящего момента, или уменьшатся, если достигнуто его предельно допустимое значение. Это делает принцип векторного управления асинхронной машиной более гибким и динамичным по сравнению с принципом U/F.

Также частотные преобразователи с векторным управлением и разомкнутым контуром имеют более быстрый отклик по скорости – 10 Гц, что делает возможным его применение в механизмах с ударными нагрузками. Например, в дробилках горной породы нагрузка постоянно меняется и зависит от объема и габаритов обрабатываемой породы.

В отличии от шаблона управления U/F векторное управление использует векторный алгоритм, для определения максимально эффективного напряжения работы электродвигателя.

Векторное управления ВУ решает данную задачу благодаря наличию обратной связи по току двигателя. Как правило, обратная связь по току формируется внутренними трансформаторами тока самого преобразователя частоты ПЧ. Благодаря полученному значению тока преобразователь частоты проводит вычисления вращающего момента и потока электрической машины. Базовый вектор тока двигателя математически расщепляется на вектор тока намагничивания (Id) и крутящего момента (Iq).

Используя данные и параметры электрической машины ПЧ вычисляет векторы тока намагничивания (Id) и крутящего момента (Iq). Для достижения максимальной производительности, преобразователь частоты должен держать Id и Iq разведенными на угол 90. Это существенно, так как sin 90 = 1, а значение 1 представляет собой максимальное значение крутящего момента.

В целом векторное управление асинхронным электродвигателем осуществляет более жесткий контроль. Регулирование скорости составляет примерно ±0,2% от максимальной частоты, а диапазон регулирования достигает 1:200, что позволяет сохранять вращающий момент при работе на низких скоростях.

Релейные схемы автоматизации

До появления частотных преобразователей в качестве устройства управления использовались релейные блоки.

Простейшая схема регулирования по уровню построена на базе магнитного пускателя и поплавкового реле. При увеличении уровня, контакты реле замыкаются, катушка магнитного пускателя оказывается под напряжением. Электродвигатель насосного агрегата запускается. При снижении уровня жидкости, реле размыкает управляющую цепь магнитного пускателя.

Такая схема обеспечивает ручное и автоматическое включение насосов, каскадный способ управления, индикацию режимов работы, остановку насосных агрегатов при пропадании перекачиваемой жидкости.

В нормальном режиме работает основной насосный агрегат. При снижении давления при пиках водопотребления или остановке основного насоса, срабатывает реле давления, включающее резервный насос с выдержкой времени. При необходимости включение и выключение насосов можно осуществлять в ручном режиме.
Релейные схемы управления относительно просты и дешевы, однако, обладают следующими недостатками:

  • Дополнительная нагрузка на электрическую сеть. Запуск электродвигателей осуществляется на полном напряжении сети. Ток при этом взрастает в несколько раз.
  • Невозможность плавного изменения производительности. Регулирование давления в сети осуществляется включением резервного насоса. Ступенчатое изменение давления не всегда удовлетворяет условиям техпроцесса.
  • Необходимость регулярного ремонта, технического обслуживания. Схемы такого типа содержат большое количество электроаппаратов и элементов автоматики. При частых коммутациях, контакты и механические части аппаратов быстро приходят в негодность.
  • Высокая нагрузка на трубопровод. При прямом пуске насосов резко увеличивается вероятность гидравлических ударов. При их возникновении повреждается запорно-регулирующая арматура, трубы и другие элементы системы водоснабжения.

Для ограничения пусковых токов и плавного разгона электродвигателей в релейных схемах часто устанавливают устройства плавного пуска. Однако, эти устройства не обеспечивают плавное изменение подачи. Для этого на трубопровод устанавливают регулирующую арматуру, что приводит к потерям давления и снижает общий к.п.д. системы водоснабжения.

Когда следует выбрать УПП и в каких случаях необходим частный преобразователь

При помощи преобразователя частоты можно решить практически любые задачи. Выбор УПП вместо частотника имеет в основном только экономическое обоснование. Перед выбором необходимо тщательно проанализировать условия работы электропривода, его цели и задачи, параметры питающей сети и другие факторы.

УПП выбирают:

  • Для обеспечения низкого крутящего момента при пуске механизма или технологической установки.
  • При небольшой или средней нагрузке.
  • Для эксплуатации на номинальной скорости вращения электродвигателя.
  • При необходимости снижения ударной нагрузки на шестеренки редуктора или другого механизма.
  • В условиях, когда плавный запуск и ограничение пусковых токов являются главными требованиями.

Частотные преобразователи целесообразно выбрать:

  • Для оборудования, работающего с переменной нагрузкой.
  • При необходимости изменения скорости вращения двигателя выше или ниже номинальной.
  • Для повышения энергоэффективности привода.

Главные преимущества устройств плавного пуска перед преобразователями частоты – небольшие габариты и низкая стоимость. Размеры и стоимость этих устройств одинаковой мощности могут различаться в 1, 5–10 раз.

Частотные преобразователи и УПП обеспечивают:

  • Снижение износа электродвигателей, а также производственного оборудования. За счет снижения негативного влияния токов большой величины, отсутствия ударной нагрузки при запуске возможно удлинить промежутки между текущими и капитальными ремонтами оборудования и электрических машин.
  • Экономию электроэнергии. Снижение потребляемой мощности в УПП достигается ограничением тока при запуске. Частотные преобразователи позволяют синхронизировать работу привода с требуемой нагрузкой.
  • Возможность управления приводом с удаленных пунктов и интеграции электроприводов в АСУТП или САР. Частотные преобразователи и УПП комплектуются микроконтроллерами, поддерживающие один или несколько протоколов обмена данными.
  • Защиту электродвигателя от перегрева, несимметричной нагрузки, перегрузок и других аварийных режимов. ЧП и УПП имеют входы для подключения датчиков температуры, реле аварий. Они осуществляют отключение двигателей при неисправностях или авариях в сети.

Выбор конкретного устройства зависит от требований к электроприводу и промышленному оборудованию и особенностей сети. Он осуществляется на основании анализа производственных факторов, инженерно-технических и экономических расчетов.

Программирование частотных преобразователей на примере VLT FC 302

Рассмотрим процесс программирования на примере частотного преобразователя VLT FC 302 производства компании «Данфосс». После выполнения всех соединений, проверки их правильности, сброса параметров к заводским настройкам требуется:

  1. Ввести паспортные данные электродвигателя и активировать функцию автоматической адаптации.
  2. Включить режим “Hand On”, запустить двигатель и проверить правильность вращения его вала.
  3. Перейти в пункт регулирования частоты и плавно изменять ее значения. Убедиться, что скорость вращения ротора электрической машины изменяется.
  4. Установить диапазон скорости электродвигателя с учетом возможностей электрической машины и оборудования, соединенного с ней.
  5. Задать конфигурацию принципа управления, аналоговых входов частотника для управления по изменению технологических параметров, энкодера и других вспомогательных элементов привода.
  6. Задать настройки ПИД-регулирования.
  7. Сохранить настройки в памяти частотника.

При ошибках программирования при попытках включения привода электродвигатель не запускается, на экран дисплея выводится соответствующее сообщение. Оповещение об ошибках выводится также при неправильно произведенных подключениях. В таких случаях необходимо проверить корректность введенных данных и схему электрических соединений.

Внимание! Коды команд, параметров и разделов меню в частотниках разных производителей и моделей могут серьезно отличаться. Для того чтобы правильно установить настройки, необходимо ознакомиться с руководством по программированию

Существуют модели, которые могут сохранять несколько конфигураций. Они не требуют корректировки при изменениях в режимах работы оборудования.

После программирования делается первый запуск привода. При этом проверяется корректность его работы во всех режимах. При необходимости в установленную программу вносят корректировки и осуществляют тестирование еще раз. От грамотного программирования частотника зависит корректная работа двигателя и функционирование промышленного оборудования и технологических установок, общая энергоэффективность электропривода.

Выбор частотного преобразователя для крана

Компания Danfoss выпускает несколько серий специализированных преобразователей частоты для электропривода кранов. Например, Automation Drive, Micro Drive и другие. Выбор этих устройств осуществляется по следующим характеристикам:

  • Номинальной электрической мощности, напряжению и току. Электрические характеристики ПЧ должны соответствовать параметрам приводного двигателя. Номинальный ток преобразователя выбирают с запасом 20-30%.
  • Функциям. Модельный рад частотных преобразователей Danfoss для крановых электродвигателей включает модели с управлением механическим тормозом, контролем состояния конечных выключателей, удержания груза без наложения тормоза при нулевой частоте вращения вала.
  • Исполнению. Степень защиты корпуса ПЧ от влаги и пыли должна соответствовать условиям его эксплуатации.
  • Возможности рекуперации. Для увеличения экономической эффективности на краны большой грузоподъемности целесообразно подобрать частотный преобразователь с функциями рекуперации электроэнергии в сеть.
  • Типу крана и схеме подключения. Параметры и функционал ПЧ должны соответствовать выбранной схеме электропривода, количеству электродвигателей и требованиям к грузоподъемному оборудованию.

При модернизации грузоподъемного оборудования выбор частотного преобразователя электропривода подъемных механизмов делается на основании анализа технической и экономической целесообразности. При помощи ПЧ можно управлять как ходовым, так и грузоподъемным двигателем и значительно снизить затраты на эксплуатацию кранов любого типа.

Возможно, вам также будет интересно

В настоящее время сервоприводы как исполнительные устройства востребованы для широкого круга задач в разных отраслях промышленности, в том числе для задач автоматизации: поворотных столов и вращателей, транспортеров шаговых и непрерывного действия, толкателей и лифтов с переменным ходом, устройств запрессовки и систем манипулирования. Именно для таких задач компания Festo разработала простое и …

С июля этого года Федеральная служба по регулированию алкогольного рынка (ФС РАР) вводит новые требования для производства и импорта алкоголя. Будет необходимо вести учет каждой марки, указывать их при отгрузке продуктов, а также формировать группы продукции (коробка, паллета, набор) под одним штриховым кодом, по которому можно будет определить все уникальные штрихкоды продукции, входящей в сос…

Правильно организованная инфраструктура информационных архитектур позволяет сотруднику предприятия принимать решения на основе необходимой ему информации и освобождает его от наплыва огромного количества ненужных данных.

Основные характеристики, необходимые для программирования

Каждой характеристике присвоен свой буквенно-цифровой код, который зависит от производителя и конкретной модели частотника. Для программирования необходимо рассчитать и ввести следующие основные параметры:

  • Режим эксплуатации электродвигателя (усредненное число включений, отключений, реверсов электрической машины в заданный промежуток времени).
  • Требуемое время разгона и динамического торможения электродвигателя.
  • Наибольшую рабочую частоту электрической машины.
  • Максимальное значение тока в % от номинального.
  • Условия пуска двигателя при подаче напряжения в сети.
  • Алгоритм автоматического регулирования, который положен в основу функционирования САР.
  • Режим сброса ошибок, вызывающих остановку электродвигателя.

В процессе программирования также задается назначение аналоговых и дискретных выходов и выходов преобразователей частоты. Входы ЧП бывают 2-х типов:

  • Дискретные входы. Служат для подключения реле, кнопочных станций и других двухпозиционных устройств. При задании их конфигурации можно присвоить каждой кнопке определенное значение частоты ЧП.
  • Аналоговые входы с уровнем сигнала 0-10В и 4-20 мА. Первые используют для подключения потенциометров, предназначенных для бесступенчатой регулировки частоты. Рекомендуемое их сопротивление составляет 1 кОМ или более. Токовые входы предназначены для датчиков скорости, положения вала, технологических параметров. По ним осуществляется управление электроприводом по событиям.

Перечень вводимых параметров зависит от модели и назначения преобразователя частоты, алгоритма регулирования, особенностей промышленного оборудования. При программировании следует учесть, что некоторые характеристики невозможно изменять при работающем электроприводе.

Эффективность применения ЧРП в различных областях

Экономический эффект от применения частотного регулирования хорошо иллюстрируется на примере насосных станций городской системы водоснабжения. Работа данных систем характеризуется необходимостью поддержания определенного давления в водоводе, которое функционально связано с изменяющимся во времени потреблением воды. До появления систем управления, использующих частотный привод, регулирование давления осуществлялось количеством одновременно находящихся в работе насосных агрегатов, а также положением задвижек, то есть, дросселированием.

На рисунке 2 представлен график сравнительного потребления мощности при использовании дросселирования и частотного регулирования.

Рисунок 2. Потребление мощности при использовании дросселирования и частотного регулирования.

Точка пересечения графиков, в которой значения мощности и потока достигают 100%, соответствует полностью открытой задвижке (при регулировании дросселированием) и работе агрегата на полную мощность (при частотном регулировании). В этом режиме применение ЧРП не приносит экономического эффекта. Но при дросселировании, когда задвижка открыта лишь частично, потребляемая электродвигателем мощность в несколько раз больше, чем в варианте с применением частотного регулирования и полностью открытой задвижкой. При этом, разница в потреблении тем больше, чем меньше требуемая производительность агрегата. Это обусловливает существенную экономию электрической энергии при внедрении ЧРП, так как режим ограничения подачи имеет большой удельный вес в графике работы насосов (например, в ночное время при практическом отсутствии потребления).

В некоторых случаях, необходимость плавного регулирования угловой скорости валов механизмов диктуется самой технологией. Например, мощность котлов и энергоблоков тепловых станций регулируется плавным изменением производительности механизмов подачи топлива. На ГРЭС и ТЭЦ, работающих на угле, последний, перед подачей в топку котла, измельчается в мельницах до пылевидного состояния. Подачу угольной пыли в топку выполняет ППЛ (питатель пыли лопастный). Привод этого механизма традиционно осуществляется двигателем постоянного тока с регулируемыми оборотами. Регулирование производится посредством тиристорного блока управления. Электродвигатели постоянного тока имеют целый ряд эксплуатационных недостатков. Они дороги, щеточный механизм этих электрических машин подвержен быстрому износу, весьма чувствителен к загрязнениям и нуждается в периодической регулировке и чистке.

Кроме применения двигателей постоянного тока, функция бесступенчатого регулирования реализуется с помощью механических вариаторов, например, в крупных станочных приводах. Применение механических коробок передач всегда сопровождается существенными потерями, к тому же, такие системы обладают ограниченным диапазоном регулирования.

Использование частотного привода, укомплектованного асинхронным двигателем, имеющим короткозамкнутый ротор, позволяет избавиться от перечисленных недостатков двигателей постоянного тока и механических систем регулирования. Следует особо подчеркнуть, что наибольшую выгоду приносит применение именно электродвигателей с короткозамкнутым ротором. Эти машины наиболее дешевы, конструктивно просты, не имеют щеточного аппарата и могут быть приспособлены для работы в самых тяжелых условиях.

Внедрение систем управления, использующих частотно регулируемый привод, является инновационным мероприятием и, как правило, быстро окупается.

Для консультации или заказа частотно регулируемых приводов воспользуйтесь формой обратной связи на странице контактов.

Оценка технологического эффекта

При внедрении частотного регулирования в связи с уменьшением рабочей частоты вращения вала привода снижается износ насоса. В связи с плавными пусками и остановами уменьшаются гидравлические и механические нагрузки на технологическое оборудование (трубопроводы, запорную и регулирующую арматуру). Все перечисленное обусловливает увеличение сроков службы и межремонтного ресурса. То же можно сказать и про нагрузки на питающую сеть в связи с исключением пусковых токов при пусках электродвигателей насосов напрямую от сети.

Рис. 2. Силовая схема подключения трехнасосной станции

Ориентировочно срок службы насосного агрегата с электродвигателем увеличивается на 10%, при этом затраты на обслуживание уменьшаются на 10%.

Таким образом, высокая инвестиционная привлекательность внедрения станций управления, оснащенных преобразователями частоты, устройствами плавного пуска, а также объединения станций управления в единую систему АСУ ТП основана на следующих факторах:

  • прямой экономии от снижения потребления электроэнергии при регулировании производительности насосных агрегатов (для разных объектов от 25 до 50%);
  • прямой экономии за счет снижения непроизводительных утечек воды при оптимизации давления в напорном трубопроводе (не менее 25–30 % общего объема утечек);
  • экономии фонда заработной платы сокращаемого дежурного персонала;
  • резком снижении аварийности на сетях (не менее чем в 5–10 раз);
  • увеличении не менее чем в 3 раза ресурса и межремонтных сроков насосов, электродвигателей, коммутационного оборудования;
  • снижении затрат на электрическое отопление на объектах, бытовое обеспечение дежурного персонала;
  • значительном увеличении надежности системы в целом благодаря устранению «человеческого фактора» и автоматической диагностике системой всех ее элементов и своевременном устранении возможных аварийных ситуаций.

Для получения максимального эффекта экономии от применения ПЧ необходимо предварительно провести обследование и изучение сети. Сейчас это сделать достаточно просто – есть переносные ультразвуковые расходомеры, позволяющие быстро и точно определить фактические характеристики сети и насосного агрегата.

Все здесь сказанное относится к работе сетей с правильным подбором насосов. Как правило, насосы для сети подбираются с «запасом», запас при применении ПЧ не теряется, при нештатном увеличении расхода ПЧ с таким насосом обеспечит и нештатный режим.

Немаловажными факторами являются также следующие:

  • социальный (повышение качества водоснабжения и экономия расходов на ремонт оборудования);
  • экологический (снижение потребления электроэнергии обеспечивает снижение выброса СО2). Нормативно-технической базой для обоснования экономической эффективности являются следующие документы:
  • Инструкция по расчету экономической эффективности применения частотно-регулируемого электропривода. Министерство топлива и энергетики РФ; 1997.
  • ВРД 39-1.10-052–2001. Методические указания по выбору и применению асинхронного частотно-регулируемого привода мощностью до 500 кВт. ОАО «Газпром» (Управление энергетики). 2001.
  • ГОСТ 13109–97. Совместимость технических средств электромагнитная. «Нормы качества электрической энергии в системах электроснабжения общего назначения».

Семейство частотных приводов Power Flex от Rockwell Automation

Компания Rockwell Automation, бессменный лидер на силовом электротехническом рынке, выпустила новую серию частотных электроприводов Allen-Bradley PowerFlex в диапазоне мощностей от 0.25kW до 6770kW. Новая высокоэффективная серия сочетает в себе компактное конструктивное исполнение, широкие функциональные возможности и отличные эксплуатационные характеристики. Применяется в пищевой, бумажной, текстильной промышленности, металлообработке, деревообработке, насосно-вентиляционном оборудовании и т.д. В палитре представлены два класса приводов – Компонентный и Архитектурный. Модели из Компонентного класса предназначены для решения стандартных задач регулирования, а приводы Архитектурного класса за счет гибкого изменения конфигурации могут быть легко адаптированы и встроены в системы управления различного силового оборудования. Все модели предлагают исключительные коммуникационные возможности, широкую гамму панелей оператора и средств программирования, что в значительной степени облегчает эксплуатацию и ускоряет запуск оборудования.

PowerFlex 4

Привод Powerflex 4 является наиболее компактным и недорогим представителем данного семейства. Являясь идеальным устройством регулирования скорости, данная модель обеспечивает универсальность применения с соблюдением требований производителей и конечных пользователей в отношении гибкости, компактности и простоты эксплуатации.

В приводе реализован вольт-частотный закон управления с возможностью компенсации скольжения. Прекрасным дополнением к данной модели является версия ультракомпактного приводы Power@Flex4M, c расширенным рабочим диапазоном мощностей до 2.2 kW при однофазном исполнении и до 11kW-для трехфазного напряжения 400VAC. Предлагаемая ценовая шкала на данную модель позволяет надеяться если не на хит сезона, то на достаточно широкую ее популярность.

PowerFlex 7000

Привода серии PowerFlex 7000 являются уже третьим поколением приводов среднего напряжения от Rockwell Automation. Предназначены для регулирования скорости, момента, направления вращения асинхронных и синхронных двигателей переменного тока. Уникальный дизайн серии PowerFlex 7000 представляет собой запатентованную разработку под маркой PowerCage силовых блоков, содержащих основные силовые компоненты приводы. Новый модульный дизайн прост и представлен небольшим количеством компонентов, что обеспечивает высокую надежность и облегчает эксплуатацию. К основным преимуществам приводов среднего напряжения можно отнести: уменьшение эксплуатационных расходов, возможность запуска больших двигателей от небольших источников питания и повышение качественных характеристик контролируемого технологического процесса и используемого оборудования.

В зависимости от выходной мощности поставляются привода трех типоразмеров:

  • Корпус А – Диапазон мощностей 150-900 кВт при питающем напряжении 2400-6600 В
  • Корпус В – Диапазон мощностей 150-4100 кВт при питающем напряжении 2400-6600В
  • Корпус С – Диапазон мощностей 2240-6770 кВт при питающем напряжении 4160-6600 В

Приводы PowerFlex 7000 могут поставляться с таких вариантами исполнения, как 6-пульсная или 18-пульсная схема или с ШИМ-преобразователем, что дает пользователю существенную гибкость в вопросе снижения влияния гармоник питающей сети. Кроме этого, он обеспечивает прямое бессенсорное векторное управление для улучшения регулирования в зоне низких скоростей, по сравнению с приводами, использующими метод регулирования U/f, а также возможность регулирования момента двигателя, как это осуществляется в приводах постоянного тока. В качестве панели оператора предлагается модуль с жидкокристаллическим дисплеем на 16 строк и 40 знаков.

Allen-Bradley www.rockwell.com

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.