Как обеспечить качественное застывание бетона зимой: кабели пнсв, вет и кдбс

Прогрев бетона в зимнее время проводом ПНСВ

Для качественного нагрева застывающей бетонной конструкции строителям понадобятся:

  • трансформаторный сварочный прибор на 200 ампер;
  • греющий провод ПНСВ диаметром 1.5 миллиметра;
  • алюминиевый кабель АВВГ;
  • изолента из хлопчатобумажного материала;
  • инструмент для бесконтактного определения текущей силы тока.

Провод ПНСВ.

Процесс прогрева бетона электродами из ПНСВ кабеля включает такие этапы:

Нарезка провода на небольшие отрезки для прогрева петель.
Как правило, для осуществления электропрогрева бетона достаточно 17 метровых отрезков.

Подвязка подготовленных отрезков к каркасу из арматуры

На данном этапе важно проследить, чтобы слой бетона над петлями не превышал 4 сантиметра.

Соединение подвязки с токопроводящим изолированным проводом из алюминия. Технологическая карта подразумевает подключение петель змееобразным способом.
Наращивание подсоединенных кабелей из алюминия и подключение их к сварочному устройству.

Изолирование проводов при помощи хлопчатобумажной ленты

Маркировку изолирующего материала следует поместить на концах проводов.

Число прогревочных петель напрямую зависит от мощности сварочного электроприбора. Для устройства с максимальной силой тока 250 Ампер можно использовать не более 8 проводов ПНСВ.

Поддержание температуры в бетоне

Стандартная методика

Прогрев бетона кабелем обычно применяется в том случае, если работы проводятся в зимний период. При этом существует риск замерзания воды в растворе, что приводит к замедлению гидратации цемента и снижению прочности бетона.

Чтобы избежать этого, инструкция рекомендует действовать по такой схеме:

Для обогрева массы раствора берется одножильный провод ПНСВ диаметром от 1,2 до 4 мм.

  • Провод нарезается одинаковыми фрагментами (чаще всего по 28 или 17м), которые свиваются в компактные спирали диаметром 30-40 мм.
  • Спиральные «нитки» соединяются между собой в несколько одинаковых групп и закладываются в опалубку внутрь арматурного каркаса.
  • Поскольку характеристики кабеля ПНСВ не позволяют использовать его на воздухе, на выводы систему устанавливаются так называемые «холодные концы» из более толстого провода.
  • Опалубка заливается бетоном, и после первичного схватывания вся система подключается к сети через понижающий трансформатор. Это устройство обеспечивает регулировку силу поступающего тока, что позволяет управлять температурой проводников внутри раствора.

Особенности греющих кабелей

Методика, описанная выше, довольно эффективна, однако она имеет ряд недостатков. Ключевым является необходимость использовать трансформатор для понижения напряжения.

Температурные показатели

Впрочем, можно обойтись и без этого громоздкого устройства. Естественно, при этом вместо стандартного провода ПНСВ нужно использовать специальные греющие кабели, такие как ВЕТ (Финляндия) или КДБС (РФ). Для подобных изделий характерны такие свойства:

Характеристика ВЕТ КДБС
Рабочее напряжение, Вольт 220-230 220-240
Линейная мощность, Вт/м 35-45

(в зависимости от модели и длины)

40
Сопротивление изоляционного слоя, МОм/м 103 103
Рекомендованный радиус изгиба, мм 25 35
Номинальный диаметр, мм 6 7
Размеры секций, м от 3,3 до 85 от 10 до 150
Класс защиты IP67 IP67

Подобные устройства предназначены для работы от обычной электросети с напряжением 220 В. Качественная поливинилхлоридная изоляция обеспечивает надежную защиту от замыканий и пробоев, кроме того, она не становится хрупкой даже при температуре -35С, что существенно расширяет «климатические рамки» применения подобных проводников.

В отличие от провода ПНСВ, кабели типа ВЕТ и КДБС не требуют подрезки. На краях секций устанавливаются концевые и соединительные муфты, что позволяет быстро собирать всю греющую систему с использованием минимального набора инструментов.

Бухта кабеля КДБС

Технология прогрева бетона зимой

Утеплённая опалубка. Термоактивные щиты вставляются непосредственно в конструкцию, что удобно для прогревания монолитных строений, позволяет поэтапно прогревать каждый этаж.

Преимущества:

  • небольшие затраты электроэнергии;
  • несложный монтаж;
  • возможность многократного использования.

Недостатки:

высокая стоимость.

Тепляк – старый проверенный способ. Каркас, возведённый над строительным объектом, накрывают плотной тканью. Внутрь помещают тепловую установку.

Плюсы:

  • быстрый прогрев;
  • использование как электричества, так и других видов топлива.

Минусы:

невозможность применения на больших площадях.

Индукционный метод. Данная технология применяется в армированных конструкциях, где металлические элементы являются сердечниками. Вокруг объекта с залитой бетонной массой размещают петлями кабель. Ему отводится роль индуктора. Сечение провода, количество витков определяются методом расчёта.

По кабелю пускают переменный ток. Появившееся в объекте электромагнитное поле нагревает расположенные внутри элементы армирования. Те, в свою очередь, прогревают бетон. Имеет существенный изъян: трудность в точных расчётах витков провода. Из-за этого применяется редко.

Инфракрасный прогрев возможен благодаря энергии, полученной от работающего в инфракрасном излучении прибора. Установку располагают перед опалубкой. Регулировка тепла осуществляется путём приближения или отдаления греющего элемента к сооружению.

Энергия за счёт лучей доходит до самых глубоких слоёв бетонной массы. Прогрев идёт постепенно, одновременно в верхних и нижних слоях.

Положительные моменты:

  • нет нужды в монтаже;
  • легко работать с любой формой объекта.

Отрицательные моменты:

  • из бетона вытравливается влага, что может плохо отразиться на его прочности;
  • высокая цена оборудования.

Термоэлектроматы – устройства, работающие в автономном режиме. Укладываются сверху бетонной массы, способствуют поддержанию заданного температурного режима по всей поверхности.

Преимущества:

  • качественный равномерный прогрев;
  • невозможность локального перегрева;
  • автоматический контроль температуры.

Недостатки:

  • дорогостоящее оборудование;
  • трудно найти качественный товар.

Отлично зарекомендовали себя методы прогрева бетона зимой с помощью понижающих трансформаторов. Существуют 2 способа: с применением провода ПНСВ и электродов.

Схема прогрева бетона зимой с помощью кабеля ПНСВ

  1. Провод наматывается на армопояс витками, количество которых определяется расчётным путём. Для равномерного прогревания витки надо располагать на одинаковом расстоянии друг от друга.
  2. Крепление к арматуре осуществляется специальными зажимами или обычной проволокой.
  3. Производится монтаж опалубки.
  4. Заливается бетон.
  5. Свободные концы кабеля подключаются к понижающему трансформатору.
  6. Тепло от нагретых проводов передаётся бетонной смеси, что способствует ускорению процесса гидратации.

Плюсы:

  • бюджетный способ использования электроэнергии;
  • лёгкая регуляция интенсивности подачи тепла;
  • недорогое оборудование.

Минусы:

  • необходимость точных электротехнических расчётов;
  • не всегда в месте строительства имеются необходимые мощности для работы с большими объёмами бетона.

Прогрев бетона зимой электродами

Прогрев бетона зимой электродами востребован в основном при заливке некрупных сооружений. Стальные стержни – электроды – могут располагаться внутри или снаружи объекта. Расстояние между ними зависит от температуры окружающей среды. При сильных морозах – не менее 30 см, при положительных значениях – 60-70 см.

После заливки бетона ток идёт от трансформатора к электродам и нагревает их.

Преимущество:

скорый монтаж.

Недостаток:

неэкономное потребление электроэнергии.

Прогрев проводом без трансформатора

Кабели КДБС, ВЕТ работают от обычной электросети с напряжением 220 вольт. Греющая система собирается быстро, с применением минимального набора инструментов. Кабели не боятся вибрации, поэтому возможно уплотнение бетонной массы.

Минус:

 большой расход электроэнергии.

Температура при строительстве

Данный параметр имеет большое влияние на набор бетоном окончательной прочности. Также следует учесть, что свежий раствор может промерзать в том случае, когда в течение 3 дней его температура была на уровне +10° С. Поэтому необходим электродный прогрев бетона в зимнее время.Знайте, что при укладке бетона при 5° С, вам придется ждать в 2 раза дольше достижения им прочности, сравнить которую можно с температурой 20° С.

Когда же столбик термометра опустится ниже точки замерзания, гидратация может просто остановиться. Нельзя также забывать следующее — несвязанная вода в бетонном растворе при замерзании начнет увеличиваться в объеме.

Если процессы замерзания и оттаивания будут повторяться многократно, это станет причиной:

  • разрыхления структуры;
  • уменьшения влаги;
  • выветривания бетона;
  • цена работ увеличится.

Но, когда смесь набрала прочность превышающую 5 Н/мм2, она становится устойчивой к однократному замерзанию. При этом срок распалубки необходимо увеличить на период, когда бетон был ниже 0° С.

Общая схема прогрева бетона в зимнее время электродами

В этом случае необходимо следить за тем, чтобы он быстро набирал прочность, чтобы промерзание не нарушило процесс.

К примеру:

  • в течение месяца бетон следует защищать от осадков в виде снега и дождя;
  • он не должен первую зиму соприкасаться с рассыпной солью, использующуюся против обледенения.

Температура свежего состава относительно DIN 1045 не должна быть ниже параметров, которые принимаются в зависимости от окружающей температуры и вида и количества цемента.

В первом случае это приведет к быстрому твердению и снижению пластичности материала, что затруднит с ним работу.

Также это станет причиной:

  • больших усадок;
  • преждевременного набора прочности;
  • низкой итоговой прочности бетонного материала.

Чтобы этого не происходило, в каждом конкретном случае разрабатывается, например, технологическая карта прогрева бетона электродами.

Как защитить

Для этого следует провести следующие действия:

  • подогревайте воду для затворения и заполнитель, никогда не применяйте замороженный последний компонент;
  • используйте цементы повышенного класса прочности. Они быстрее твердеют и выделяют при этом процессе больше тепла, чем цементы низших классов прочности;

Использование для бурения отверстий оборудования с алмазными коронками

  • увеличивайте содержание цемента, чтобы ускорить набор прочности;
  • понизьте соотношение между цементом и водой, это позволит раствору быстрее затвердеть и набрать прочность, одновременно выделяя высокий уровень тепла;
  • добавляйте своими руками в особых случаях и после проведения испытаний на соответствие ускоритель твердения. Не используйте хлорсодержащие ускорители твердения в предварительно напряженном бетоне.

Что необходимо делать при транспортировке раствора и его укладке:

  • защищайте транспортные средства от теплопотерь. Не используйте открытые лотки и транспортерные ленты;
  • укладывайте по возможности предварительно подогретый бетон в подогретую опалубку и сразу же уплотняйте;
  • держите арматуру и плоскости опалубки свободными от снега, для прогрева можете использовать нагретый воздух или пламенные горелки. Никогда не используйте струю горячей воды;
  • не укладывайте бетон на замерзшие конструкции и на замерзшую землю;
  • поддерживайте температуру бетона по возможности в течение первых 3 дней не ниже +10° С, а также отапливайте примыкающие помещения.

Особенности методики

Общая схема работы

Сама методика прогрева бетонной массы с использованием электродов достаточно проста.

Реализуется она по такому алгоритму:

  • Внутри опалубки монтируются токопроводящие элементы, подключенные к источнику питания. Конфигурация размещения и тип электродов подбирается отдельно в зависимости от особенностей конструкции.
  • После того как электроды размещены, в опалубку заливается раствор. Находясь в жидком состоянии, он превращается в один из элементов электрической цепи, который достаточно хорошо проводит ток.
  • На электроды подается напряжение, благодаря чему в теле бетона создается электрическое поле. Оно постепенно отдает свою энергию окружающему веществу, нагревая его.
  • За счет изменения параметров тока (сила, напряжение) можно своими руками регулировать степень нагрева.

Фото подключенных электродов

В результате во время набора цементом прочности в нем поддерживается оптимальная температура. Такой обработки вполне достаточно, чтобы обеспечить однородную структуру застывшего материала. Резка железобетона алмазными кругами это подтверждает – на пробных образцах практически не обнаруживаются пустоты и рыхлые области.

Время прогрева зависит от множества факторов, среди которых важнейшими являются объем бетонируемой конструкции и наружная температура. В некоторых случаях отапливать раствор приходится до 4-5 недель, т.е. до полного набора прочности. Впрочем, чаще всего дополнительное тепло требуется только на начальных этапах.

Типы электродов

Типы электродов

Для реализации данного метода применяют токонесущие элементы различной конфигурации. Изучить их конструктивные особенности можно, проанализировав приведенную здесь таблицу:

Тип электрода Характеристика
Пластинчатый Имеет форму вытянутой по длине пластины, чаще всего изготавливается из того же металла, что и сама арматура. Монтируется на опалубку с внутренней стороны без заглубления в толщу раствора.
Полосовой Представляет собой полосу металла шириной от 40 до 50 см. Пары полосовых электродов размещаются по краям участка таким образом, чтобы ток проходил между ними.
Струнный Применяется при изготовлении вытянутых в длину конструкций (колонн, столбов, капитальных свай и т.д.). Струна закладывается в центр опалубки, а по периферии устанавливается токопроводящая полоса.
Стержневой Представляет собой обрезок арматуры толщиной от 5 до 12 мм. Устанавливается поодиночке или группами с шагом до 50 см, при этом заглубляется в раствор практически на всю длину. Крайние элементы монтируют таким образом, чтобы исключить контакт с опалубкой. Электроды стержневого  типа применяются при прогреве конструкций сложной формы.

Стержни из арматуры в толще заливки

 В зависимости от типа задействованных деталей выделяют такие методы повышения температуры:

  • Поверхностная (периферийная) обработка – электроды накладываются на поверхность раствора без погружения, часто с использованием специальных токопроводящих подложек. После окончания работы могут быть демонтированы и использованы повторно на другом объекте.
  • Погружной (сквозной) электроподогрев бетона – электроды находятся внутри материала, и после его отвердевания не извлекаются. Чтобы прочность конструкции не снижалась, токопроводящие элементы размещаем не ближе, чем в 30 мм от поверхности.

Погружная схема

Использование сварочных аппаратов

Мастера, которые пытаются реализовать данную методику самостоятельно, часто интересуются, как греть бетон электродами с применением сварочного аппарата (см.также статью «Как осуществляется прогрев бетона сварочным аппаратом»).

Действительно, это вполне возможно:

  • Обычный сварочный аппарат включает в себя два блока – двигатель и собственно сварочный генератор. При этом мощности последнего достаточно, чтобы обеспечить обогрев около 50м3 бетонного раствора.
  • Перед началом работы в цемент опускаем электроды. Для большинства задач достаточно шага в 20-30 см.
  • Электроды соединяем последовательно, формируя несколько параллельных цепей.
  • Для наблюдения за напряжением между цепями специалисты рекомендуют устанавливать лампу накаливания.
  • Цепи подключаем к аппарату и подаем напряжение. Контроль нагрева осуществляем в специальных скважинах.

Такое устройство вполне можно использовать

Особенности методик

Прогрев бетона с помощью сварочного аппарата обладает своими особенностями:

  • время нагрева бетонной конструкции серьезно зависит от температуры окружающей среды;
  • залитую цементно-песчаную смесь следует накрывать тонким слоем опилок, дабы избежать чрезмерного испарения воды из толщи цементно-песчаной смеси;
  • следует избегать чрезмерного перегрева конструкции.

Технология прогрева бетона электродами включает два вида:

  1. Сквозной.
    Подобный вид нагрева применяется для бетонных конструкций, имеющий сложную форму или большую толщину. Как правило, при таком методе прогрева все электроды устанавливаются на расстоянии не менее 30 миллиметров от опалубки.
  2. Периферийный.
    Электроды устанавливаются на поверхности конструкции. Метод позволяет извлечь нагревающие элементы после застывания залитой бетоном площадки.

При осуществлении прогрева электродами следует учитывать следующие факторы:

  • испарение влаги, вследствие которого необходимо все время регулировать подаваемый на электроды ток;
  • нагреваемая поверхность должна быть полностью накрыта теплоизоляционным материалом, чтобы повысить КПД электродов и уменьшить тепловые потери;
  • при стержневом прогреве все электроды следует располагать на одинаковых расстояниях, во избежание перегревов отдельных участков;
  • неэффективность электродного прогрева для малых конструкций;
  • необходимость замера текущей температуры цементно-песчаной смеси через определенные промежутки времени;
  • схема подключения токопроводящих элементов для прогрева бетона электродами должна быть разработана для каждого случая индивидуально.


Прогрев бетона сварочным аппаратом.

При использовании сварочного устройства специалисты рекомендуют:

  • изолировать поверхность прогреваемой конструкции для избегания серьезных тепловых потерь;
  • стараться ограничить потерю воды при применении сварочного устройства для прогрева железобетонного сооружения;
  • подключать к сварочному аппарату только подходящие для текущих работ электроды;
  • устанавливать контрольную лампу накаливания, для проверки напряжения;
  • постоянно следить за температурой конструкции и не допускать перегревов;
  • не замыкать сварочную цепь на внутрибетонную арматуру, поскольку такой метод невероятно энергозатратен.

Прогрев бетонных конструкций при помощи специальных кабелей обладает серьезными преимуществами, перед нагревом с использованием трансформаторного сварочного устройства:

  • питание от бытовой электрической сети 220 вольт;
  • существенное сокращение времени застывания бетона;
  • высокая экономность;
  • сравнительно простая конструкция;
  • возможность автоматической поддержки температуры в монолитной конструкции.

Физический процесс застывания

Бетонирования является одним из самых распространенных технологических процессов при ведении строительства. Он применяется не только для создания фундаментов, но и различных перекрытий, опор и капитальных стен. Затвердевание цементно-песчаной или цементно-гравийной смеси происходит в ходе химической реакции гидратации, когда молекулы воды и вещества, в ней растворенные, создают новое химическое соединение.

Она является необратимой и сопровождается выделением некоторое количество тепла, которое при положительных внешних температурах поддерживает взаимодействие веществ в течение первых семи суток после заливки бетона в опалубку.

Однако его может быть недостаточно, если строительство ведется в демисезонный и тем более в зимний период, когда наружные температуры опускаются значительно ниже нуля. В этом случае часть веществ в химическую реакцию не вступает, что значительно снижает фактическую прочность бетонных конструкций.

Кроме того, неизрасходованная вода замерзает и расширяется, разрушая их изнутри. Чтобы такого не происходило, применяются различные способы прогрева залитой массы. Самым простым и эффективным является укладка внутри массива тепловыделяющего электрического кабеля, каким и является провод ПНСВ.

Технология прогрева кабелем ПНСВ

Для эффективного прогрева необходима точная регулировка мощности. В противном случае недостаточный или чересчур сильный нагрев прогревочного провода может вызвать разрушение монолита. При перегреве изоляционная оболочка может расплавиться, и жилы проводов тогда войдут в контакт с арматурой, вследствие чего произойдёт короткое замыкание. Чтобы это не происходило, применяют специальные схемы подключения греющего проводника.

Варианты схем подключения

В результате теоретических разработок и опытных исследований было определено напряжение величиной 70 вольт, при котором ПНСВ наиболее эффективно «работает» с твердеющим раствором. Для создания оптимальных условий обогрева потребуется понижающий трансформатор.

Трансформаторная понижающая подстанция

Перед монтажом электропроводки делают расчёт длины провода. Затем определяют схему укладки и способ подключения кабеля, величину рабочего выходного напряжения с учётом объёма бетонного раствора, окружающей температуры и габарита монолитной конструкции. Чтобы не погрязнуть в сложных расчётах, пользуются онлайн калькулятором, который учитывает все вышеперечисленные параметры. Используют две самые распространённые схемы укладки и подключения кабеля: это звезда и треугольник.

Варианты подключения

Рекомендации по монтажу

Предварительные расчеты

Расчет кабеля для прогрева бетона осуществляется довольно просто:

  • По стандартам на обогрев одного кубометра раствора необходимо закладывать от 0,5 до 1,5 кВт мощности.
  • Для экономии электроэнергии можно добавить в состав бетона антиморозные присадки, а также обустроить утепленную опалубку. Цена дополнительных материалов при этом будет компенсирована сокращением затрат электричества.
  • При заливке перекрытий стандартной толщины обычно укладывается до 4 погонных метров греющего провода на квадратный метр площади.
  • Когда осуществляется заливка объемного монолита, проводники укладываются ярусно, с зазором не менее 30-40 см.

Укладка греющих контуров

Рекомендованная схема закладки

Сборка отопительной системы своими руками осуществляется довольно просто:

  • Вначале возводим опалубку и монтируем арматурный каркас.
  • Затем оцениваем, где прогрев бетона будет наиболее актуален, и набираем кабельную продукцию из секций соответствующей длины.
  • Чаще всего прогревают поверхность материала, места примыкания горизонтальных и вертикальных плоскостей и т.д.

Резка железобетона алмазными кругами может повредить греющие элементы

  • Внутрь опалубки укладываем кабели таким образом, чтобы все проводники залегали не менее чем в 20 см от поверхности застывшего бетона.
  • Во избежание появления трещин и заломов на полимерной изоляции повороты нужно делать плавными. Радиус изгиба для разных моделей будет разным, но в большинстве случаев специалисты делают его равным 40-50 мм — с запасом.
  • Для равномерного распределения температуры в толще бетона проводники желательно раскладывать на равном расстоянии друг от друга. Пересечение проводов не допускается, а минимальное расстояние между двумя греющими контурами составляет 40 мм.

Фото закрепленного проводника

После раскладки закрепляем проводники на арматуре. Для этого используем обычную проволоку, завязывая ее без излишних усилий и деформации изоляции. Также можно применять пластиковые хомуты.

Затем заливаем опалубку бетоном, стараясь не нарушить размещение термоэлементов. Кабели ВЕТ и КДБС допускают вибрационное воздействие, потому бетон вполне можно уплотнять.

Все уложенные элементы соединяем контактными проводами в систему, а затем  — подключаем к источнику питания.

Электроды

Чаще всего используют для того, чтобы греть колонны и стены из бетона. После заливки элементов каркаса в опалубке, вставляют арматуру в раствор, располагая и распределяя их группами, подключив к трансформатору или сварочнику, как показано на схеме ниже:

Возможно и заблаговременное размещение струнных электродов вдоль каркаса. На фото наглядно показывается принцип установки электродов в бетон:

Вода в растворе играет роль проводника и постепенно по мере затвердения ток через электроды падает. Катанка после застывания смеси остается частью конструкции. К недостаткам данного способа прогрева можно отнести колоссальные энергозатраты и дополнительные расходы на материал электродов.

Оптимальные характеристики кабеля

Проверенные схемы прогрева бетона допускают использование кабеля со стальной жилой достаточной толщины — не менее 0,6 мм². Диаметр провода должен находиться в пределах 1,2−3 мм. Если в растворе содержатся агрессивные компоненты, лучше отдать предпочтение оцинкованному нагревательному элементу. Изоляция — ПВХ или полиэстер, что гарантирует высокое удельное сопротивление, обладает прочностью, устойчивостью к истиранию, не повреждается при сгибании. Технические свойства ПНСВ провода:

  1. Удельное сопротивление — 0,15 Ом/м.
  2. Рабочий температурный режим в пределах от -60°C до 50 °C.
  3. Расход — не более 60 м кабеля на кубометр раствора.
  4. Безопасный монтаж при -15°C.

Особенности монтажа

Кабель ПНСВ укладывается «змейкой» (схема сходна с системами «тёплый пол») после монтажа опалубки и арматуры. Интервал зависит от погодных условий и может составлять 8−20 см. В проводе не допускаются натяжения, изделие крепится к арматуре посредством зажимов

Важно, чтобы токоведущие жилы не соприкасались, а радиус изгиба не был меньше 25 см. Такой подход обеспечит качественный обогрев бетона нагревательными проводами

Схема позволяет расходовать кабель экономно.

Подсчет длины провода

При расчёте прогрева бетона проводом ПНСВ важно учесть показатели влажности, температуры воздуха, формы будущей конструкции, её объёма, теплоизоляции. От этих нюансов зависит количество тепла, необходимое для корректного застывания бетона

Расстояние между жилами при укладке, а значит и длина нужного кабеля, изменяется исходя из температурного режима. Шаг равен 20 см, если на улице -5°C. Дальнейшее понижение температуры на 5 градусов приводит к уменьшению шага на 4 см.

Потребляемая мощность также важна в подсчётах. Произведение удельного сопротивления на силу тока, возведённую в квадрат, позволит узнать этот показатель для 1 метра кабеля. Сила тока в системе не должна превышать 16 А, а удельное сопротивление для провода ПНСВ 1,2 мм составляет 0,15 Ом/м.

Альтернативные системы

Кабели ВЕТ и КДБС также позволяют добиться хороших результатов. Их преимущество — простое подключение к сети 220 В через розетку или щит. Перегрузки исключены, ведь провода разделены на секции. Но цена изделий выше, финансовые потери на строительстве крупных объектов будут ощутимыми.

Технология опалубки с ТЕН и электродами заслуживает внимания. Посредством сварочного аппарата арматура в растворе подключается к сети. Подойдут понижающие трансформаторы прочих типов. Схема работает без провода, но расход электроэнергии возрастает. Вода — отличный проводник, а сопротивление раствора растёт во время процесса застывания.

Параллельно применяют теплоизоляцию, что ускорит процесс нагревания раствора, а снижение температуры сделает равномерным.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.