Как работает защита минимального напряжения?
Защита минимального напряжения называется групповой или секционной. Групповой она является потому, что воздействует на отключение группы присоединений, в отличие от большинства других защит. Выполняются защитные меры на секциях 0,4 кВ, 6 кВ, а также 10 кВ. Далее мы постараемся разобрать, для чего нужна и как работает данная защита.
Устройство и принцип работы
Реагирующий орган системы — реле, контролирующее минимальное напряжение. Реле подключено к секционному трансформатору напряжения. В состав защиты входит также реле времени, указательное реле, сигнализирующее о срабатывании защиты, промежуточные реле.
Назначение, которое имеет защита, реагирующая на минимальное напряжение – отключение двигателей менее ответственных механизмов для обеспечения успешного самозапуска более важных.
Чтобы понять, что это значит и для чего нужна защита, рассмотрим ее принцип действия на тепловых электростанциях. Электродвигатели механизмов каждого котлоагрегата подключены к своей секции собственных нужд станции. Каждая секция имеет рабочий ввод питания от своего трансформатора собственных нужд. Кроме этого, секции связаны между собой секционным выключателем. Нормальной считается схема, когда секции питаются от вводов трансформаторов собственных нужд, секционный выключатель при этом отключен.
Представим ситуацию, когда исчезает напряжение на вводе питания секции (например, в результате повреждения трансформатора собственных нужд). Рабочий ввод отключается, срабатывает АВР (автоматика включения резерва), включающая секционный выключатель. После чего питание секции осуществляется от другого трансформатора собственных нужд, через секционный выключатель.
Минимальное время работы АВР складывается из задержки в системе, контролирующей напряжение рабочего ввода, времени срабатывания промежуточных реле, времени отключения и включения выключателей рабочего и резервного вводов. За это время происходит торможение электродвигателей, питающихся от секции.
После подачи питания начинается групповой самозапуск электродвигателей, присоединенных к секции. При этом, в зависимости от глубины произошедшего торможения имеет место посадка (снижение) напряжения в большей или меньшей степени.
Примечание. При запуске котлоагрегата в штатном режиме, включение механизмов происходит последовательно с большими промежутками времени. Поэтому, при одновременном запуске (пусть даже не до конца заторможенных) механизмов, суммарное значение пускового тока существенно превышает номинальный ток питающего ТСН. Это может вызвать глубокую посадку напряжения на секции.
Защита, реагирующая на минимальное напряжение, имеет две ступени. Срабатывание первой ступени происходит, если снижение достигает отметки 0,7*Uн с выдержкой времени 0,5 с. Вторая ступень имеет уставку 0,5*Uн и время срабатывания до 9 с. Если за время бестоковой паузы произошло минимальное торможение механизмов и напряжение не достигло 70% номинального, самозапуск всех электродвигателей секции проходит успешно, котел продолжает работать.
Если напряжение снижается до 70% и ниже, на время 0,5 секунд, защитная аппаратура запускает первую ступень. Отключаются наименее важные для работы котла механизмы. Это делается для предотвращения дальнейшего снижения напряжения, чтобы дать возможность запуститься ответственным механизмам.
Вывод. Принцип работы первой ступени защиты минимального напряжения служит с целью удержать котлоагрегат в работе путем отключения механизмов, имеющих второстепенное значение.
Вывод. Принцип работы второй ступени защиты преследует цель вывести котел в режим безопасного гашения и останова.
Заключение
Из сказанного следует, что принцип работы защиты, реагирующей на минимальное напряжение, тесно связан с функционированием технологического оборудования, к которому она привязана. Защитная аппаратура находится на подстанции, осуществляющей питание электроустановок технологического оборудования. Таким образом, окончательно разобраться, для чего нужна защита, можно только получив хотя бы минимальное представление о том, как работает весь технологический комплекс.
Напоследок рекомендуем просмотреть полезно видео, в котором предоставлен обзор защитных аппаратов, которые применяются на сегодняшний день:
Вот мы и рассмотрели назначение и принцип работы защиты минимального напряжения. Надеемся, предоставленная информация была для вас полезной и интересной!
Рекомендуем также прочитать:
Распространенные схемы подключения
Отличия существуют и в мощности потребителей, которые подключаются через РН. Одним достаточно для питания фазы и нуля. Другие требуют трехфазное питание. Для каждой категории мощности нагрузки необходима соответствующая схема подключения реле. Поэтому принято выделять 3 способа включения этих защитных устройств:
- однофазное РН;
- трехфазное;
- схема подключения через контактор.
Подключение однофазного РН
Схема применяется для подключения потребителей на 220 В. Она пригодна как для квартиры, так и для отдельного устройства.
Первоначально имеется однофазное РН, питающая и отходящая линии. Монтаж схемы производится по нижеизложенному плану:
- Подключается общий нулевой провод. Соответствующая клемма имеется на реле. Она обозначается буквой «N». В зависимости от модели прибора нулевых клемм может быть и две. В таком случае на один контакт подключается ноль от питающей линии, а на другой от отходящей.
- Затем подсоединяется фазный провод отходящей линии. На корпусе прибора эта клемма имеет маркировку «L2», «выход L» или «out L».
- Третий этап — подключение фазного провода питающей линии. Напряжение на нем присутствует всегда и независимо от того, сработало РН или нет. В стандартном электрощите этот проводник идет от выхода прибора учета или дифавтомата.
Схема для трехфазного реле контроля напряжения
Разные модели трехфазных реле контроля напряжения имеют отличающийся набор клемм для подключения проводов. В стандартной комплектации их 8. Клеммы напряжения сети (4 шт.) нужны для подачи в устройство трех контролируемых фаз и нуля. На корпусе прибора они обозначаются L1, L2, L3 и N. Выходные релейные клеммы (4 шт.) используются для подключения последующих устройств защиты и автоматики. Они имеют маркировку «NO» у нормально открытых контактов, и «NC» у нормально закрытых.
Схема подключения собирается в 2 этапа:
К клеммам РН подключаются фазные и нулевые провода питающей линии
Здесь необходимо обратить внимание на максимальный допустимый ток контактов. Как правило, если потребитель трехфазный, то он потребляет большие мощности
Реле должно быть рассчитано на эти значения.
К релейному выходу подключаются последующие устройства. Например, контактор, различные устройства сигнализации или индикаторные лампы «авария».
Обратите внимание! Дорогостоящие трехфазные РН способны контролировать не только напряжение, но и ряд других параметров сети. Например, критический перекос фаз и правильность их чередования
Эти функции важны для правильной работы асинхронных двигателей и тиристорных преобразователей.
Подключение нагрузок свыше 100 кВт с помощью контактора
Некоторые потребители электроэнергии берут от сети токи в сотни ампер. Никакое РН не способно справиться с такими мощностями. В этой ситуации используют отдельный контактор. Его необходимо соединить с выходным реле.
В этой схеме РН просто контролирует состояние сети и формирует слаботочный сигнал управления для контактора. Его втягивающая катушка подключается последовательно с выходом реле контроля напряжения. Основной ток нагрузки протекает непосредственно через контактор.
Важно! Не следует ставить РН рядом с мощными источниками радиопомех, например, трансформаторами или беспроводными телефонами. Испускаемые ими помехи способны повлиять на измерительную цепь реле и привести к ложным срабатываниям
Сигнализация об ОЗЗ по напряжению 3Uo
Обязательная и очень важная функция в сетях с изолированной и компенсированной нейтралью.
3Uo очень надежный и стабильный признак наличия ОЗЗ, в отличии от тока 3Io.
Емкостной ток сдвинут относительно напряжения до 90 гр. включительно, поэтому когда он максимальный, то напряжение имеет минимальное значение. Все это способствует появлению неустойчивых замыканий, которые токовая селективная защита от ОЗЗ не всегда может зафиксировать.
Напряжение 3Uо при ОЗЗ всегда появляется мгновенно, а при исчезновении тока замыкания, снижается медленно. Это свойство 3Uo позволяет легко фиксировать это напряжение и строить на базе данного эффекта надежную сигнализацию.
Недостатком сигнализации ОЗЗ по 3Uо является то, что напряжение повышается на всей секции, и при этом невозможно выявить поврежденный фидер.
Перечень средств защиты (согласно инструкции):
При работе в электроустановках используются:
— средства защиты от поражения электрическим током (электрозащитные средства);
— средства защиты от электрических полей повышенной напряженности коллективные и индивидуальные (в электроустановках напряжением 330 кВ и выше);
— средства индивидуальной защиты (СИЗ) в соответствии с государственным стандартом (средства защиты головы, глаз и лица, рук, органов дыхания, от падения с высоты, одежда специальная защитная).
1.1.5. К электрозащитным средствам относятся:
— изолирующие штанги всех видов;
— изолирующие клещи;
— указатели напряжения;
— сигнализаторы наличия напряжения индивидуальные и стационарные;
— устройства и приспособления для обеспечения безопасности работ при измерениях и испытаниях в электроустановках (указатели напряжения для проверки совпадения фаз, клещи электроизмерительные, устройства для прокола кабеля);
— диэлектрические перчатки, галоши, боты;
— диэлектрические ковры и изолирующие подставки;
— защитные ограждения (щиты и ширмы);
— изолирующие накладки и колпаки;
— ручной изолирующий инструмент;
— переносные заземления;
— плакаты и знаки безопасности;
— специальные средства защиты, устройства и приспособления изолирующие для работ под напряжением в электроустановках напряжением 110 кВ и выше;
— гибкие изолирующие покрытия и накладки для работ под напряжением в электроустановках напряжением до 1000 В;
— лестницы приставные и стремянки изолирующие стеклопластиковые.
1.1.6. Изолирующие электрозащитные средства делятся на основные и дополнительные.
К основным изолирующим электрозащитным средствам для электроустановок напряжением выше 1000 В относятся:
— изолирующие штанги всех видов;
— изолирующие клещи;
— указатели напряжения;
— устройства и приспособления для обеспечения безопасности работ при измерениях и испытаниях в электроустановках (указатели напряжения для проверки совпадения фаз, клещи электроизмерительные, устройства для прокола кабеля и т.п.);
— специальные средства защиты, устройства и приспособления изолирующие для работ под напряжением в электроустановках напряжением 110 кВ и выше (кроме штанг для переноса и выравнивания потенциала).
К дополнительным изолирующим электрозащитным средствам для электроустановок напряжением выше 1000 В относятся:
— диэлектрические перчатки и боты;
— диэлектрические ковры и изолирующие подставки;
— изолирующие колпаки и накладки;
— штанги для переноса и выравнивания потенциала;
— лестницы приставные, стремянки изолирующие стеклопластиковые.
К основным изолирующим электрозащитным средствам для электроустановок напряжением до 1000 В относятся:
— изолирующие штанги всех видов;
— изолирующие клещи;
— указатели напряжения;
— электроизмерительные клещи;
— диэлектрические перчатки;
— ручной изолирующий инструмент.
К дополнительным изолирующим электрозащитным средствам для электроустановок напряжением до 1000 В относятся:
— диэлектрические галоши;
— диэлектрические ковры и изолирующие подставки;
— изолирующие колпаки, покрытия и накладки;
— лестницы приставные, стремянки изолирующие стеклопластиковые.
1.1.7. К средствам защиты от электрических полей повышенной напряженности относятся комплекты индивидуальные экранирующие для работ на потенциале провода воздушной линии электропередачи (ВЛ) и на потенциале земли в открытом распределительном устройстве (ОРУ) и на ВЛ, а также съемные и переносные экранирующие устройства и плакаты безопасности.
1.1.8. Кроме перечисленных средств защиты в электроустановках применяются следующие средства индивидуальной защиты:
— средства защиты головы (каски защитные);
— средства защиты глаз и лица (очки и щитки защитные);
— средства защиты органов дыхания (противогазы и респираторы);
— средства защиты рук (рукавицы);
— средства защиты от падения с высоты (пояса предохранительные и канаты страховочные);
— одежда специальная защитная (комплекты для защиты от электрической дуги).
СКАЧАТЬ — Средства защиты. Приказ Минэнерго РФ от 30.06.2003 №261
Причины появления
При рассмотрении вопроса, связанного с наводкой, важно понимать причины его появления. Для лучшего понимания рассмотрим несколько ситуаций — для квартиры, электрической проводки, электроустановок и ВЛ
В квартире
Наводка в обычной сети 220 В появляется при обрыве 0-го проводника на ВЛ или до входа в квартиру (дом). Если проверить напряжение с помощью индикатора, лампочка будет светиться в любом из отверстий.
На самом деле, U присутствует только на одном из проводов (фазном), а второй принимает наведенный потенциал. Появляется такое явление, как две фазы в розетке.
После восстановления линии или возврата нуля ситуация нормализуется.
При выполнении ремонтных работ в квартире необходимо отключить входной автомат или достать предохранители, чтобы исключить попадание под напряжение.
В электропроводке
Одним из признаков наведенного напряжения является свечение экономки при отключенном свете. При этом напряжение может достигать 40-60 В.
Такая ситуация возникает при параллельной прокладке линий, питающих розетки и осветительные устройства в квартире.
Для устранения проблемы необходимо пересмотреть маршруты проводки и убедиться в правильности выполнения заземления или зануления.
Но существует еще одна причина. При создании проводки используются 2-х или 3-х жильные провода. Как правило, кабельная продукция укладывается в короба, откуда проводники направляются к своим потребителям.
Если выключатель разделяет не фазный, а нулевой провод, появляется наведенное U. Оно имеет небольшую величину, как отмечалось выше, но ее достаточно для зажигания диодного освещения.
Для решения проблемы необходимо поменять фазу и ноль местами. Сделать это не всегда удается, ведь один из проводов с коробки идет напрямую к источнику света и не проходит через выключатель.
ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ: Как правильно выбирать проточные водонагреватели
В электроустановках
Выключатели, силовые трансформаторы, трансформаторы тока и напряжения, а также другие электроустановки неизбежно связаны с линией электропередач. Вот почему они часто попадают под наведенное напряжение и чаще всего это происходит при обрыве 0-го проводника.
Во многих электроустановках применяются изолированные кабели, внутри которых находятся плотно уложенные проводники.
Несмотря на небольшую длину участков, может появляться сильная наводка с большими рисками для персонала
Вот почему при выполнении таких работ важно принимать защитные меры, использовать СИЗ и следовать требованиям ПУЭ
На линии электропередач
Выше мы отмечали, что электростатическая составляющая наводки имеет идентичный потенциал по всей длине проводника. Для расчета нужного значения коэффициент емкостной связи умножается на рабочее влияющее напряжение.
Для обеспечения защиты работников достаточно одного заземления в любой точке.
Отметим, что статическое U может возникнуть не только при наличии рядом ЭМ полей, но и других факторов — молнии или полярного сияния.
В случае с электромагнитной составляющей, ситуация обстоит по-иному. Этот параметр зависит от расстояния до ВЛ под напряжением, величины рабочего тока, длины линии и сопротивления заземления.
Для расчета наведенного U необходимо перемножить три элемента:
- коэффициент индуктивной связи;
- длина участка параллельно расположенной линии;
- сила тока ВЛ под напряжением.
В отличие от электростатической составляющей, заземления в одной точке недостаточно. Это связано с тем, что потенциал в заземленной точке будет нулевым, но при удалении от этого участка он увеличивается. Чем дальше провод от места заземления, тем выше наводка.
Вот почему при одновременной работе в разных местах персонал может оказаться под действием опасного U. Чтобы избежать проблем, необходимо установить заземление непосредственно в месте работы.
Основные параметры электромагнитных реле.
Основными параметрами, определяющими нормальную работоспособность реле и характеризующие эксплуатационные возможности, являются: 1. Чувствительность. 2. Ток (напряжение) срабатывания. 3. Ток (напряжение) отпускания. 4. Ток (напряжение) удержания. 5. Коэффициент запаса. 6. Рабочий ток (напряжение). 7. Сопротивление обмотки. 8. Коммутационная способность. 9. Износостойкость и количество коммутаций. 10. Количество контактных групп. 11. Временны́е параметры: время срабатывания, время отпускания, время дребезга контактов. 12. Вид нагрузки. 13. Частота коммутаций. 14. Электрическая изоляция.
Все эти параметры подробно приводятся в технических условиях (ТУ), справочниках или в руководствах по применению реле. Однако мы рассмотрим лишь некоторые из них, которыми, как правило, пользуются при повторении радиолюбительских конструкций.
1. Чувствительность реле определяется минимальной мощностью тока, подаваемой в обмотку реле и достаточной для приведения в движение якоря и переключения контактов. Чувствительность различных реле неодинаковая и зависит от конструкции реле и намоточных данных катушки. Чем меньше электрическая мощность тока, необходимая для срабатывания реле, тем реле чувствительнее. Как правило, обмотка более чувствительного реле содержит бо́льшее число витков и имеет бо́льшее сопротивление.
Однако в технической документации параметр чувствительность не указывается, а определяется как мощность срабатывания (Рср) и вычисляется из сопротивления обмотки и тока (напряжения) срабатывания:
2. Ток (напряжение) срабатывания определяет чувствительность реле при питании обмотки минимальным током или напряжением, при котором реле должно четко сработать и переключить контакты. А для их удержания в сработанном положении на обмотку подаются рабочие значения тока или напряжения.
Ток или напряжение срабатывания указывается в технической документации для нормальных условий и является контрольным параметром для проверки реле при их изготовлении и не является рабочим параметром.
3. Ток (напряжение) отпускания приводится в технической документации для нормальных условий и не является рабочим параметром. Отпускание реле (возвращение контактов в исходное состояние) происходит при снижении тока или напряжения в обмотке до значения, при котором якорь и контакты возвращаются в исходное положение.
4. Рабочий ток (напряжение) обмотки указывается в виде номинального значения с двухсторонними допусками, в пределах которых гарантируется работоспособность реле.
Верхнее значение рабочего тока или напряжения ограничивается в основном температурой нагрева провода обмотки, а нижнее значение определяется надежностью работы реле при снижении напряжения источника питания. При подаче на обмотку реле тока или напряжения в указанных пределах реле должно четко срабатывать.
5. Коммутационная способность контактов реле характеризуется величиной мощности, коммутируемой контактами. В технической документации коммутируемая мощность указывается верхним и нижним диапазоном коммутируемых токов и напряжений, в пределах которых гарантируется определенное число коммутаций (срабатываний).
Нижний предел токов и напряжений, коммутируемых контактами, ограничивается величиной переходного сопротивления материала, из которого выполнены контакты. Для большинства промежуточных электромагнитных реле нижним пределом является нагрузка контактов током 10 – 50 мкА при напряжении на контактах 10 – 50 мВ.
Верхним пределом токов и напряжений является нагрузка контактов максимальным коммутирующим током, предусмотренным в технической документации. Верхний предел ограничивается температурой нагрева контактов, при которой снижается механическая прочность контактных материалов, что может привести к нарушению рабочей поверхности.
Как подключить УЗИП в частном доме?
Установка УЗИП производится в зависимости от показателя напряжения: 220В (одна фаза) и 380В (три фазы).
Схема подключения может быть направлена на бесперебойность или на безопасность, нужно определить приоритеты. В первом случае может временно отключиться молниезащиты для того, чтобы не допустить перебоя в снабжении потребителей. Во втором же случае недопустимо отключение молниезащиты, даже на несколько секунд, но возможно полное отключение снабжения.
Схема подключения в однофазной сети системы заземления TN-S
При использовании однофазной сети TN-S к УЗИП нужно подключить фазный, нулевой рабочий и нулевой защитный проводник. Фаза и ноль сначала подключаются к соответствующим клеммам, а затем шлейфом к линии оборудования. К защитному проводнику подключается заземляющий проводник. УЗИП устанавливается сразу после вводного автомата. Для облегчения процесса подключения все контакты на устройстве обозначены, поэтому сложностей не должно возникнуть.
Пояснение к схеме: А, В, С – фазы электрической сети, N – рабочий нулевой проводник, PE – защитный нулевой проводник.
Схема подключения в трехфазной сети системы заземления TN-S
Отличительной особенностью трехфазной сети TN-S от однофазной является то, что от источника питания исходит пять проводников, три фазы, рабочий нулевой и защитный нулевой проводники. К клеммам подключается три фазы и нулевой провод. Пятый защитный проводник подключается к корпусу электроприбора и земле, то есть служит некой перемычкой.
Схема подключения в трехфазной сети системы заземления TN-C
В системе подключения заземления TN-C рабочий и защитный проводник объединены в один провод (PEN), это и является главным отличием от заземления TN-S.
Система TN-C является более простой и уже довольно устаревшей, и распространена в устаревшем жилом фонде. По современным нормам применяется система заземления TN-C-S, в которой находятся по отдельности нулевой рабочий и нулевой защитный проводники.
Переход на более новую систему необходим для того, чтобы избежать поражения электрическим током обслуживающего персонала, и ситуаций с возникновений пожара. Ну и конечно же в системе TN-C-S лучше защита от резких импульсных перенапряжений.
Во всех трех вариантах подключения при перенапряжении ток направляется на землю через кабель заземления или же через общий защитный провод, что не дает импульсу навредить всей линии и оборудованию.