Определение и подключения узип

Как подключить УЗИП в частном доме?

Установка УЗИП производится в зависимости от показателя напряжения: 220В (одна фаза) и 380В (три фазы).

Схема подключения может быть направлена на бесперебойность или на безопасность, нужно определить приоритеты. В первом случае может временно отключиться молниезащиты для того, чтобы не допустить перебоя в снабжении потребителей. Во втором же случае недопустимо отключение молниезащиты, даже на несколько секунд, но возможно полное отключение снабжения.

Схема подключения в однофазной сети системы заземления TN-S

При использовании однофазной сети TN-S к УЗИП нужно подключить фазный, нулевой рабочий и нулевой защитный проводник. Фаза и ноль сначала подключаются к соответствующим клеммам, а затем шлейфом к линии оборудования. К защитному проводнику подключается заземляющий проводник. УЗИП устанавливается сразу после вводного автомата. Для облегчения процесса подключения все контакты на устройстве обозначены, поэтому сложностей не должно возникнуть.

Пояснение к схеме: А, В, С – фазы электрической сети, N – рабочий нулевой проводник, PE – защитный нулевой проводник.

Схема подключения в трехфазной сети системы заземления TN-S

Отличительной особенностью трехфазной сети TN-S от однофазной является то, что от источника питания исходит пять проводников, три фазы, рабочий нулевой и защитный нулевой проводники. К клеммам подключается три фазы и нулевой провод. Пятый защитный проводник подключается к корпусу электроприбора и земле, то есть служит некой перемычкой.

Схема подключения в трехфазной сети системы заземления TN-C

В системе подключения заземления TN-C рабочий и защитный проводник объединены в один провод (PEN), это и является главным отличием от заземления TN-S.

  Как подобрать стабилизатор напряжения для частного дома или квартиры?

Система TN-C является более простой и уже довольно устаревшей, и распространена в устаревшем жилом фонде. По современным нормам применяется система заземления TN-C-S, в которой находятся по отдельности нулевой рабочий и нулевой защитный проводники.

Переход на более новую систему необходим для того, чтобы избежать поражения электрическим током обслуживающего персонала, и ситуаций с возникновений пожара. Ну и конечно же в системе TN-C-S лучше защита от резких импульсных перенапряжений.

Во всех трех вариантах подключения при перенапряжении ток направляется на землю через кабель заземления или же через общий защитный провод, что не дает импульсу навредить всей линии и оборудованию.

Ограничители мощности ОМ-630-2

Скидка!

Цена:
3560,00
3381,00 грн.

Гарантия: 18 месяцев

Производитель: «F&F» (Польша)

Дополнительные изображения

Описание

Назначение: Ограничитель мощности Ом 630-2 производит контроль мощности, которая потребляется в трехфазной сети. При превышении установленного значения — произойдет отключение потребителя (работает с трансформатарами тока свыше 50 кВт.)

Принцип работы: Прибор Ом-630-2 непрервывно, пофазно производит измерение тока и напряжения, руководствуясь заданным алгоритмом работы. В том случае, когда показатели будут превышены, при помощи силового контактора ограничитель отключит нагрузку на определенное временной интервал.

Монтаж: крепиться ограничитель ОМ 630-2 на Дин-рейку в щит. Настройки устанавливаются регулятором на лицевой части прибора.

Примечание: В данном ограничителе мощности может быть задана функция реле напряжения: защита от превышения напряжения свыше 260 В, и его падение его чем 160 В (обсуждается при заказе). Кроме того, существует также подобная модель реле ОМ-630 (контроль до 50кВт).

Характеристики

Параметр Значение
Напряжение питания: 3х(150-380 В~) + N
Диапазон контролируемой мощности: 5 — 50 кВт
Дискретность установки мощности, грубо: 5 кВт
Дискретность установки мощности, точно: 0,5 кВт
Задержка отключения при перегрузке по мощности от 1 до 240 с
Задержка повторного включения нагрузки: от 2 до 3600 с
Задержка отключения при падении напряжения ниже 160 В: 5 с
Задержка отключения при росте напряжения выше 260 В: 0,1 с
Задержка отключения при перегрузке по току: 0,1 с
Максимальный ток нагрузки: 2х8 А
Погрешность измерения напряжения в диапазоне 50 — 300 В: не более 2%
Погрешность измерения тока в диапазоне 3 — 100 А: не более 3%
Диаметр сквозных отверстий измер. цепей: d=12,5 мм
Диапазон рабочих температур: от -25°С до +50°С
Гальваническая изоляция: 6 модулей типа S (105 мм)
Монтаж: на DIN-рейке 35 мм

Ограничитель мощности OM-630, OM-630-2

Параметр

OM-630

OM-630-2

Напряжение питания:

220В, 50Гц

3×150-450В, AC+N

Диапазон контролируемой мощности:

5-50 кВт

(0,3 -1,2) х К кВт, где К-коэф. трансформации трансформатора тока

Дискретность установки мощности, грубо:

5 кВт

0,1 кВт

Дискретность установки мощности, точно:

0,5 кВт

0,01 кВт

Задержка отключения при перегрузке по мощности (Toff):

от 1 до 240 сек

от 1 до 240 сек

Задержка повторного включения нагрузки (Ton):

от 2 до 3600 сек

от 2 до 3600 сек

Время отключения при:

падении напряжения ниже 160Вповыш. напряжения более 260Вперегрузке по току

5 сек0,1 сек0,1 сек

5 сек0,1 сектоковременная характеристика

Максимальный ток контактов реле:

2х8А АС1

2х8А АС1

Исполнительные контакты:

2х2Р (2 переключающих)

2х2Р (2 переключающих)

Погрешность измерения:

напряжения в диапазоне 50-300В*тока в диапазоне 3-100А

не более 2%не более 3%

не более 2%—

Диапазон рабочих температур:

-25°С- +50°С

-25°С- +50°С

Размеры:

6 модулей (105x90x65 мм)

6 модулей (105x90x65 мм)

Диаметр сквозных отверстий измерительных цепей:

D=12,5 mm

D=12,5 mm

Монтаж:

на DIN-рейке 35 мм

на DIN-рейке 35 мм

Защита от импульсного перенапряжения: частный дом с однофазным питанием

Монтаж электропроводки в частном доме, особенно выполненном из древесины и горючих материалов, требует тщательного соблюдения правил электрической безопасности.

Необходимо учесть, что здание может быть запитано по разным схемам заземления:

  • типовой старой TN-C;
  • либо современной, более безопасной TN-S или ее модификациям.

Разберем оба случая.

Схема подключения УЗИП: 2 варианта по системе заземления TN-S

На картинке ниже представлена развернутая схема с защитой комбинированного класса 1+2, которое используется для установки после вводного автоматического выключателя.

Варистор ограничителя перенапряжения встроен в корпус модуля, защищает электрическую схему от прямых или удаленных атмосферных разрядов молний.

Традиционный для всех УЗИП сигнальный флажок имеет два цвета:

  1. зеленое положение свидетельствует об исправности устройства и готовности к работе;
  2. красное — о необходимости замены в случае срабатывания или перегорания.

Такой модуль может применяться во всех системах заземления, а не только TN-S. Он имеет 3 клеммы подключения:

  1. сверху слева L — фазный провод;
  2. сверху справа PE — защитный проводник заземления;
  3. снизу N — нулевой провод.

УЗИП защищает электросчетчик и все цепи после него.

На очередной схеме показан вариант использования защиты с УЗО. После него создается дополнительная шинка рабочего нуля N1, от которой запитаны все потребители квартиры.

Схема вроде понятна, вопросов не должно возникнуть.

Для дополнительных систем заземления TN-C-S и ТТ предлагаю к изучению и анализу еще две схемы. У них УЗИП монтируется тоже во вводном устройстве.

Цепи подключения счетчика, реле контроля напряжения РКН и УЗО, а также потребители подробно не показываю. Но принцип понятен: используется защитная шина PE.

А вот в старой системе заземления ее нет, за счет чего снижается надежность и безопасность. Но все же она осуществляет защиту, поэтому и рассматривается.

Схема подключения УЗИП по системе заземления TN-C

Отсутствие шины РЕ диктует необходимость подключения УЗИП только между потенциалами фазного провода и PEN. Других вариантов просто нет.

Слева показан способ монтажа защиты для однофазной проводки, а справа — трехфазной.

Импульс перенапряжения снимается по принципу создания искусственного короткого замыкания в питающей цепи.

Информация о компании

АСБЕРГ АС, ОООКомпания «АСберг АС» – это один из крупнейших дистрибьюторов ABB, Schneider Electric, Klemsan, ABL SURSUM, LSIS. Компания сотрудничает с такими значимыми игроками рынка электротехники и промышленной автоматизации, как Rittal, Legrand, Finder, DKC, ОВЕН, MOXA и многими другими, осуществляя прямые поставки их продукции. «АСберг АС» занимается дистрибуцией низковольтного электрооборудования, а также поставкой, проектированием, монтажом и сервисным обслуживанием низковольтных и средневольтных комплектных устройств, оборудования и трансформаторных подстанций.Контакты и адреса · Документы · Публикации · Видео

  • https://domikelectrica.ru/ustanovka-uzip-sxemy-podklyucheniya-pravila-montazha/
  • https://electrikblog.ru/uzip-dlya-chastnogo-doma-skhemy-podklyucheniya/
  • https://www.elec.ru/articles/kak-zashitit-dom-ot-impulsnyh-perenapryazhenij/

В чем причины перепадов напряжения в сети?

Система электроснабжения в нашем государстве далеко не совершенна. Из-за этого положенная величина напряжения 220В, с расчетом на которую изготавливают всю бытовую технику, выдерживается далеко не всегда. В зависимости от того, какая нагрузка в конкретный момент приходится на сеть, напряжение в ней может колебаться в значительных пределах.

Скачки напряжения в наших сетях не являются редкостью из-за того, что подавляющее большинство всех элементов энергоснабжающей системы разрабатывалось несколько десятилетий назад и не рассчитывалось на современную нагрузку. Ведь практически в любой современной квартире имеется множество домашних энергопотребителей. Конечно, это делает проживание более комфортным, но вместе с тем значительно увеличивает потребление электричества. Линия далеко не всегда может справиться с такими нагрузками, следствием чего становятся частые перепады напряжения.

Один из способов защиты от перенапряжения сети на видео:

Надеяться на то, что вскоре старая система будет полностью переделана с учетом современных требований, не стоит. Поэтому защита от скачков напряжения электролинии и подключенных к ней аппаратов – это та задача, при решении которой хозяевам приходится думать собственной головой и работать своими руками.

Теперь поговорим о причинах, из-за которых возникают скачки напряжения, более подробно. Обычно изменения разности потенциалов происходят без резких бросков, и современная техника, рассчитанная на работу в пределах от 198 до 242В, способна справиться с ними без ущерба для себя.

Речь пойдет о тех случаях, когда напряжение в течение долей секунды повышается в разы, а затем столь же быстро снижается. Это и есть то явление, которое называется – скачок напряжения. Вот каковы причины, по которым оно чаще всего происходит:

  • Одновременное включение (или, наоборот, отключение) нескольких приборов.
  • Обрыв нулевого проводника.
  • Удар молнии в линию электропередачи.
  • Разрыв жил внутри провода из-за падения на ЛЭП дерева
  • Неправильное подключение кабелей в общем электрощите.

Как видим, скачок напряжения может произойти по разным причинам. Предугадать, когда он произойдет, попросту нереально, а значит, подумать о защите от перепадов напряжения следует заблаговременно.

Пример монтажа реле напряжения на видео:

Экранирование кабеля и контур заземления

Какие еще не совсем очевидные факторы, помогают снизить наводки и последствия воздействия молнии? К примеру, экранирование коммуникаций.

То есть, элементарное применение металлорукава или защита кабеля стальной трубой, раз в 10 уменьшают эл.магнитные воздействия.

Одной из ошибок при защите своего оборудования от последствий грозы является манипуляции с заземлением. Кто-то наивно полагает, что многократно снизив сопротивление заземления на своем объекте, он тем самым добьется 100% защиты (иногда даже без УЗИП).

Якобы, улучшив сопротивление в разы от нормы, при попадании молнии в молниеотвод весь заряд моментально уйдет в землю, а оборудованию ничего не достанется.

Такие люди делают супер-пупер заземляющий контур, вбухивают в это дело кучу бабла, а желаемого эффекта так и не получают.

Запомните раз и навсегда – для эл.цепей 380/220в опасен практически любой ток молнии в заземлителе.

Допустим, вы добились сопротивления в 1 Ом и при очередной грозе ударила самая слабая молния. Кривая распределения молний, которую рисуют все нормативные документы, начинается, как правило с 3кА.

Ориентируясь на эти данные, при такой грозе мы будем иметь у себя на объекте потенциал равный 3кВ. При этом электрическая прочность сети 220В составляет около 2,5кВ.

Вот и получается, что вы никакими обстоятельствами и затратами не сможете убрать наводки до безопасного уровня. Без УЗИП все равно не обойтись.

Поэтому просто делайте контур согласно действующих норм и не тратьте лишние деньги.

https://youtube.com/watch?v=4OKsRYQYCBY%3F

Классы устройств защиты от ИП

В первую очередь должен отметить специфические особенности, предъявляемые к выполнению электромонтажных работ со стороны представителей городских электросетей. Для примера с точки зрения учёта потребляемой электроэнергии достаточно поверить и опечатать счётчик электроэнергии. Но поскольку в каждом из нас они видят «потенциальных расхитителей электроэнергии», то всё, что касается монтажа оборудования, присоединений на участке от городской опоры и до счётчика включительно, должно быть «недоступным для потребителя», закрытым (в боксы, шкафы) и опломбированным.

Для защиты электрооборудования, установленного в доме, я использовал следующие приборы и аппараты.

1. В качестве УЗИП (устройства защиты от импульсных перенапряжений) — I уровня мной были использованы ограничители перенапряжений нелинейные (ОПН), российского производства (Санкт-Петербург), в количестве трёх штук (по одному, на каждый фазный проводник). Заводское обозначение данных приборов — ОПНд-0,38. Установлены они в опечатанном пластиковом боксе в стальном шкафу на фасаде дома.

Данные приборы защищают только от импульсных (кратковременных) перенапряжений, возникающих при грозах, а также от кратковременных коммутационных перенапряжений, причём в обе стороны. При длительных перенапряжениях, вызванных авариями и неполадками в городской электросети, данные приборы защиту дома не обеспечат.
В техническом плане ОПН представляет собой варистор (нелинейный резистор). Прибор подключается параллельно нагрузке между фазным и нулевым проводом. При появлении бросков (импульсов) напряжения, внутреннее сопротивление прибора моментально снижается, при этом ток через прибор резко и многократно возрастает, уходя в землю. Таким образом, происходит сглаживание (снижение) амплитуды импульсного напряжения

В связи с вышесказанным, при монтаже данных приборов нужно обратить особое внимание на устройство контура заземления и надёжного подключения ОПН к нему.
В зависимости от схемы электроснабжения дома, количество используемых ОПН может варьироваться. Например, для однофазного воздушного ввода достаточно установить один такой прибор, при питании от городской сети по двухпроводной линии

Для трёхфазного воздушного ввода в большинстве случаев достаточно установить три прибора (по числу фаз). Если ввод в дом осуществляется по трёхфазной, но пяти проводной схеме, или приборы ставится на участке после разделения общего проводника на нулевой рабочий (N) проводник и защитный проводник (PE), то потребуется установка дополнительного прибора между нулевым и защитным проводником.

2. В качестве УЗИП — II уровня я использовал аппараты УЗМ-50 М (устройство защитное многофункциональное) российского производства.

  • В отличие от ОПН, данные аппараты обеспечивают защиту не только от импульсных перенапряжений, но и защиту от длительных (аварийных) перенапряжений и просадок (недопустимого падения напряжения).
  • В конструктивном отношении представляют собой реле контроля напряжения, дополненное мощным реле и варистором, заключенным в один корпус.
  • Для однофазной сети необходимо установить один аппарат, для трёхфазной сети потребуется три аппарата, не зависимо от числа проводников питающей линии.

3. Третий немаловажный момент, касающийся правильного монтажа и работы УЗИП при их последовательном включении (показаны на фото красными прямоугольниками УЗИП-1 и УЗИП-2) заключается в том, что расстояние между ними (по длине кабеля) должно быть не менее 10 метров. В моём случае оно равно 20 метрам.

Примечание: приобрести указанное оборудование (ОПН и УЗМ) в моём городе оказалось невозможным, ввиду его отсутствия в продаже, заказывал через интернет. Такой расклад навеял мысль о том, что вопросу защиты электрооборудования, по крайней мере, в нашем городе, внимания практически никто не уделяет.

Устройства I класса устанавливаются в распределительном щите или вводном шкафу и позволяют обеспечить защиту сети от импульсного перенапряжения, когда электрический разряд во время грозы попадает в ЛЭП или молниезащиту.

Приборы II класса обеспечивают дополнительную защиту электрической линии от повреждений в результате удара молнии. Устанавливают их и в том случае, когда необходимо защитить сеть от импульсных скачков напряжения, вызванных коммутацией. Их монтируют после устройств I класса.

Предохранитель или выключатель?

Плавкая вставка имеет мизерную индуктивность. На ней не наблюдается никакого падения напряжения, а значит поврежденный УЗИП в случае чего отключится как положено.

Вроде бы все правильно, в чем же здесь подвох? Представим, что при попадании молнии и импульсном перенапряжении дугогасительная камера УЗИП не справилась с сопровождающим током и устройство просто сгорело, создав короткое замыкание.

Естественно, в этот момент должна сработать плавкая вставка. О каких величинах токовых нагрузок здесь идет речь?

При выборе такого предохранителя говорится, что он должен беспрепятственно пропустить через себя импульсный ток молнии и сопровождающий его ток, до момента его гашения в УЗИП. И только потом происходит сработка, если УЗИП развалилось и не справилось со своей задачей.

Вот один из графиков номинальных токов плавкой вставки и импульсного тока молнии в кА. На нем показана величина сгорания и взрыва предохранителя при тех или иных значениях.

Что нам предлагают производители? Они говорят, самостоятельно рассчитайте ток, который пройдет через ваш УЗИП и подберите соответствующий предохранитель, чтобы он при этом сгорел.

Если в ваших условиях максимальный ток 10кА, то вам можно взять предохранитель номиналом 100А. При таком токе (10кА) или меньше, он спокойно пропустит эту величину, чтобы УЗИП воспринял весь удар на себя.

Если же УЗИП не сработает и замкнет, то плавкая вставка при этом сгорит. И вот тут-то и появляется основная проблема. За какое время она сгорит?

Устройство защиты от импульсных перенапряжений: как правильно выбрать и установить модуль

Представьте картинку, когда накопленная энергия статического электричества между движущимися на больших расстояниях облаками разряжается молниеносным ударом по зданию или питающей его ЛЭП.

Усредненная форма импульса тока приведена ниже. Она вначале круто возрастает примерно за 10 миллисекунд, а затем, достигнув своего апогея, начинает плавно снижаться. Причем спад до середины максимального значения тока происходит через 350 мс и продолжается дальше до нуля.

Этот импульс грозового разряда создает перенапряжение в сети, которое примерно повторяет форму тока, но может отличаться за счет работы ограничителей перенапряжения, установленных на воздушной ЛЭП.

Форма такого импульса, обработанного разрядниками, показана чуть правее, а обычная синусоида частотой 50 герц для сравнения ниже.

Ограничители перенапряжения ЛЭП работают за счет пробивания калиброванного воздушного зазора повышенным импульсом разряда. В обычном состоянии его сопротивление исключает протекание токов от напряжения нормальной величины.

У высоковольтных линий электропередач ограничители имеют довольно внушительные размеры.

На воздушных ЛЭП 0,4 кВ их габариты значительно меньше. Они располагаются на опоре рядом с изоляторами.

Ограничители перенапряжения ВЛ способны погасить очень высокое напряжение разряда молнии только до 6 киловольт. Такой импульс имеет измененную форму нарастания и спада напряжения с характеристикой 8/20 мкс. Он поступает на вводные устройства вашего дома.

Защита перенапряжения ЛЭП его сильно урезала и преобразовала. Но этого явно недостаточно для обеспечения безопасности оборудования и жильцов.

Бытовая проводка 220/380 вольт выпускается с изоляцией, способной противостоять импульсам 1,5÷2,5 кВ. Все, что больше, ее пробивает. Поэтому требуется использовать дополнительное устройство защиты от импульсных перенапряжений для частного дома.

Ассортимент таких конструкций обширен. Их необходимо уметь правильно выбирать и монтировать.

УЗИП для сети 0,4 кВ выпускаются на 2 режима возможной аварии для гашения:

  1. тока разряда с формой 10/350мкс, который не претерпел изменений от ОПН воздушной ЛЭП;
  2. импульса перенапряжения с характеристикой 8/20мкс.

По этим факторам удобно при выборе УЗИП пользоваться алгоритмом, который я показал картинкой ниже.

Однако следует представлять, что практически нет устройств, способных разово погасить импульс 6 киловольт до безопасной для бытовой проводки величины в 1,5 кВ.

Этот процесс происходит в три этапа. Под каждый из них используется свой класс УЗИП, хотя есть небольшие исключения из этого правила.

Модули класса 1 способны снизить импульс перенапряжения с 6 до 4 кВ, который проникает:

  • после ограничителей ЛЭП;
  • или наводится от тока разряда молнии, стекающего по молниеотводу;
  • либо ее удара в близко расположенные строения, деревья, почву.

УЗИП класса 1 устанавливают во вводном щиту здания внутри отдельной герметичной пожаробезопасной ячейки. Пренебрегать этим правилом опасно.

При монтаже следует правильно прокладывать защищаемые кабели. Они не должны пересекаться с отводом аварийных токов на контур земли и приходящими, не подвергнутыми защите магистралями.

От сверхтоков модули спасают силовыми предохранителями с плавкими вставками.

Автоматические выключатели для этих целей не приспособлены. Их контакты не выдерживают создаваемые импульсные перегрузки. Они привариваются, а повреждение продолжает развиваться.

Следующий класс УЗИП №2 снижает импульс перенапряжения с четырех до 2,5 кВ. Его ставят в следующем по иерархии распределительном щите, например, квартирном. Он дополняет работу предшествующего модуля, но может использоваться и автономно.

Класс №3 устройства защиты от импульсных перенапряжений может выполняться модулями, устанавливаемыми на DIN-рейку или комплектами, встраиваемыми в бытовые приборы, удлинители, сетевые фильтры.

УЗИП класса 3 способен обеспечивать безопасность только после срабатывания защиты класса №2. Он ставится последовательно за ней потому, что от 4-х киловольт сгорает.

Производители побеспокоились о сложности выбора правильной конструкции УЗИП и предлагают комплексное решение этого вопроса общим модулем, называемым 1+2+3.

Он ставится в отдельном боксе. Однако, цена такой разработки не всем по карману.

Расшифровка аббревиатуры и базовый принцип работы

Расшифровывается ОПС-1 в электрике как ограничитель перенапряжений системы. Работает устройство просто. Выступает часто как пожарная сигнализация.

Аббревиатурная расшифровка

Главный элемент агрегата — это варистор, являющийся специальным проводником в электрике. Пропускает электрический ток через себя, который многократно возрос, по сравнению с номинальным напряжением. В итоге нагрузка шунтируется, преобразовывается и рассеивается. Создается тепловая энергия или нагревание корпуса. В большинстве случаев есть окно, благодаря которому можно осуществить визуальное определение работоспособности варистора. Также это устройство имеет предохранитель, нацеленный на защиту оборудования от действия сверхтоков.

Базовый принцип работы

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.

Adblock
detector