Устройство молниезащиты и ее заземления

Внешняя, внутренняя молниезащита

Люди долгое время находились в активном поиске эффективных средств надежной защиты от негативного воздействия молнии. Современная эффективная защита сооружений и зданий состоит из несколько компонентов:

Внешняя молниезащита (перехватывает грозовые разряды, отводит их непосредственно в грунт).
Внутренняя защита от влияния молнии. Она необходима, в первую очередь, для того чтобы обеспечить полную защиту зданий и сооружений от повторного удара молнии, которого многие опасаются

В результате удара молнии может возникнуть перенапряжения, этого важно избежать. Это связано с тем, что каждый человек проявляет желание сохранить в идеальном состоянии все имеющиеся бытовые приборы и другое оборудование, которое находится в доме.
Уравнивание потенциалов металлоконструкций (единая система заземления объекта).

Важно заметить, что современная система обеспечения безопасности (защиты от молнии) справляется эффективно со своими главными задачами. Надежный молниеотвод способен своевременно улавливать грозовой разряд

Он практически мгновенно отводится в почву и быстро нейтрализуется.
Известные компании готовы в любое время обеспечить безопасность от негативного воздействия молнии. В первую очередь оборудование, которое применяется для защиты от молнии должно создаваться только из надежных, прочных и проверенных материалов. Организация обязана иметь все необходимые сертификаты, подтверждающие полное право на проведения монтажных работ. Вам не стоит самостоятельно заниматься установкой молниеотводов: вы можете не только некачественно совершить процесс монтажа конструкции, но и навредить себе и сооружению.
Профессионалы займутся в любое удобное для потенциального клиента время не только проектированием системы, но в короткий срок смогут установить ее в вашем здании. Именно на этапе проектирования кровли необходимо заняться проектированием молниезащиты. Как отмечают опытные специалисты, это поможет сэкономить приличную сумму денежных средств. Данным правилом вам ни в коем случае нельзя пренебрегать.
Так вы сможете совершенно незаметно и достаточно аккуратно установить систему молниеотводов. Два важных процесса (молниезащита и заземление) неразрывно связаны между собой, поэтому их обязательно нужно делать совместно, для того чтобы избежать каких-либо недоразумений или неожиданных погрешностей.
Внешняя защита сооружений от удара молнии зависит от прямого назначения здания, насколько оно огнестойко. Эти характеристики обязательно нужно учитывать в ходе проектирования установки молниеотводов. Только в том случае, если вы позаботитесь о безопасности своего объекта, вам будет гарантирована надежность и спокойное проживание.

Требования к сопротивлению заземлителя молниезащиты

Тема заземления молниезащиты не такая простая, как может показаться на первый взгляд. В нормативных документах встречаются лишь требования по сопротивлению заземлителя, но при этом нет требований по конфигурации заземлителей. Рассмотрим различные ТНПА по данной теме.

Не будем углубляться в проблемы заземления, пусть этим занимаются соответствующие специалисты.

Изначально я хотел посвятить тему только заземлению отдельно стоящего молниеприемника, но потом решил вспомнить все требования, предъявляемые к заземлителям молниезащиты. Ну… или почти все

ТНПА РБ:

ТКП 336-2011 (Молниезащита зданий и сооружений и инженерных коммуникаций).

7.2.3 При рассмотрении рассеивания высокочастотного тока молнии в земле и с целью минимизирования любых опасных перенапряжений, конфигурация и размеры системы заземления являются важными критериями. Как правило, рекомендуется низкое сопротивление заземления (не более 10 Ом, измеренное на низкой частоте).

ТКП 339-2011 (Вместо ПУЭ).

6.2.8.5 Защиту от прямых ударов молнии ОРУ следует, по возможности, выполнять отдельно стоящими молниеотводами, установленными по периметру подстанции. Молниеотводы необходимо предусматривать на максимальном удалении от зданий ОПУ, ГЩУ, РЩ. Отдельно стоящие молниеотводы должны иметь обособленные заземлители с сопротивлением не более 80 Ом при импульсном токе 60 кА.

ТКП 181-2009 (02230) (Правила технической эксплуатации электроустановок потребителей).

5.9.1 Электроустановки Потребителей должны иметь защиту от грозовых и внутренних перенапряжений, выполненную в соответствии с требованиями правил устройства электроустановок. Величина сопротивления заземлений молниеотводов, если вблизи них во время грозы могут находиться люди, не должна превышать 10 Ом.

Таблица Б.29.1 Наибольшие допустимые сопротивления заземляющих устройств:

Отдельно стоящий молниеотвод — 80 Ом.

ТНПА РФ:

ПУЭ 7 (Правила устройства электроустановок).

4.2.137. Защиту от прямых ударов молнии ОРУ, на конструкциях которых установка молниеотводов не допускается или нецелесообразна по конструктивным соображениям, следует выполнять отдельно стоящими молниеотводами, имеющими обособленные заземлители с сопротивлением не более 80 Ом при импульсном токе 60 кА.

РД 34.21.122-87 (Инструкция по устройству молниезащиты зданий и сооружений).

8 … До недавнего времени для заземлителей молниезащиты нормировалось импульсное сопротивление растеканию токов молнии: его максимально допустимое значение было принято равным 10 Ом для зданий и сооружений I и II категорий и 20 Ом для зданий и сооружений III категории. При этом допускалось увеличение импульсного сопротивления до 40 Ом в грунтах с удельным сопротивлением более 500 Ом×м при одновременном удалении молниеотводов от объектов I категории на расстояние, гарантирующее от пробоя по воздуху и в земле. Для наружных установок максимально допустимое импульсное сопротивление заземлителей было принято равным 50 Ом.

РД 34.45-51.300-97 (Объем и нормы испытаний электрооборудования).

Таблица 28.1 — Наибольшие допустимые сопротивления заземляющих устройств:

Отдельно стоящий молниеотвод — 80 Ом.

Вывод: в очередной раз можно убедиться, что нормативные документы в части проектирования электроустановок в РБ и РФ мало чем отличаются.

Советую почитать:

Расстояние от кабеля до водопровода в земле

Нормативные требования по проектированию электрощитовых

Нужно ли устанавливать УЗО на розетки?

#17 Нужно ли учитывать мощность резервных электроприемников?

Особенности монтажа

Монтаж молниезащиты на частном доме выполняется по заранее составленному проекту. В процессе проектирования следует:

  • выбрать конструкцию молниеприемника (обычно это стержневой или тросовый вариант);
  • определить высоту установки стержневого элемента, чтобы дом был полностью защищен либо выбрать, исходя из размера крыши, подходящее количество мачт для тросового элемента;
  • выбрать место установки заземляющего контура (расстояние до стен дома – не менее 1 метра, до входной группы и дорожек – не менее 5 метров, поблизости не должна располагаться детская игровая площадка, место для отдыха и т.д.);
  • рассчитать длину токопровода от молниеприемника до дальнего конца заземляющего контура;
  • подобрать материалы для сборки конструкции.

Для выполнения монтажных работ потребуется использовать лопату штыковую, сварочный аппарат, пластиковые крепления для токопровода, а также молоток и электродрель вместе с крепежом.

На первом этапе готовят траншею под заземление – она представляет собой прямую линию длиной в три метра или контур в виде треугольника. В первом случае электроды вбивают в землю по концам траншеи, соединяют их лентой, профилем или прутом из того же металла при помощи сварки. Во втором случае три электрода располагаются в вершинах треугольника, их также соединяют перемычками.

Контур заземления в виде треугольника

Заземляющий контур должен быть расположен на глубине от 0,8 метра

Важно установить его на таком уровне, где грунт всегда остается влажным. Если почва пересыхает на большую глубину, ее требуется постоянно увлажнять

Песчаный грунт пропитывают раствором соли, чтобы повысить электропроводность.

Ленту или провод токоотвода приваривают одним концом к молниеприемнику, другим – к заземлителю, причем токоотвод должен пролегать по всей длине перемычки между электродами и крепиться к ней сваркой в нескольких точках. Места сварки окрашивают антикоррозийной краской.

Токоотвод не должен касаться стен дома, его крепят при помощи специальных элементов из материала, не проводящего ток. Если стены и кровельное покрытие выполнены из материала, неустойчивого к возгоранию, промежуток между конструкциями и токоотводом должен составлять не менее 10 см.

Различия в технологии монтажа стержневой и тросовой установки касаются только обустройства молниеприемника.

Монтаж тросового молниеотвода

Молниеприемником служит металлический трос, натянутый горизонтально над коньком, где устанавливается две или четыре металлические мачты (в соответствии с размером крыши), закрепленные на деревянных брусьях, чтобы исключить контакт металла с кровлей. К этим мачтам крепят концы натянутого троса, он не должен провисать. К одному концу троса при помощи сварки или болтового соединения прикрепляют токоотвод.

Расположение тросового молниеотвода над коньком

Если на крыше имеется дымоходная труба, вокруг нее следует выполнить несколько витков троса и прикрепить его концы к уже смонтированному горизонтальному молниеприемнику.

Монтаж стержневого молниеотвода

Стержневой молниеприемник представляет собой металлический штырь длиной 30-160 см. Вместо штыря допускается использовать трубу, но в этом случае ее верхний торец необходимо заварить, установив заглушку.

В качестве опоры для стержневого молниеприемника можно использовать:

  • установленную на земле высокую мачту;
  • телевизионную антенну;
  • дерево, высота которого сравнима или превышает высоту дома;
  • станину для кровли.

Антенна в качестве опоры для молниеприемника

К мачте штырь молниеприемника крепят болтами либо сваркой (если станина металлическая). Затем монтируется токоотвод.

По завершении работ проверяют сопротивление готового громоотвода. Необходимо удостовериться, что оно не превышает 10 Ом.

Естественные молниеотводы

Кроме этого имеется естественные молниеотводы. Наши предки вольно или невольно тоже имели хорошую молниезащиту. Традиция высаживать около дома березу спасла не одну жизнь и не один дом. Береза, несмотря на то что она не очень хорошо проводит электрический ток, является замечательным молниеотводом и одновременно обеспечивает заземление.

А все из-за мощной корневой системы, которая расползается почти на поверхности почвы. За счет этого энергия молнии при попадании в дерево растекается по большой площади и благополучно уходит в землю. Сосна и ель в качестве молниезащиты даже лучше, но не сравнятся с березой из-за хрупкости древесины.

Испытание и проверка

  1. Сварочные соединения на прочность. Проводится визуально или простукиванием молотком.
  2. Болтовые соединения и стяжки. Необходимо законтрогаить все соединения, особенно те, которые будут в земле или на крыше.
  3. Сопротивление заземлителя. Измеряется специальным прибором — измеритель сопротивления изоляции.
  4. Измеряются переходные сопротивления контактов и стыков измерителем сопротивления изоляции или омметром.
  5. Измерение сопротивления растекания тока измерителем сопротивления изоляции.
  6. Проверить на соответствие проектной документации.
  7. Надежность закрепления молниеприемника и промежуточных фиксаторов.

Рекомендуется перед весенне-летним периодом ежегодно проводить визуальную проверку системы на наличие повреждений и обрывов после зимних обледенений и ветров.

На защите от поражения электрическим током человека и безопасности жилья и электроприборов не стоит экономить средства. Лучший вариант — комплекс мер по предотвращению последствий и разрушений от попадания молний.

Опасность разряда молнии

Облака представляют собой водяной пар или мелкие кристаллы льда. Они постоянно движутся, трутся о теплые струи воздуха и электризуются. Когда разность зарядов между ними достигает критического значения, происходит разряд. Это и есть молния.

Когда между облаком и землей проводимость наименьшая, то молния ударяет в землю, весь накопленный заряд стекает в нее. Затем и нужно заземление, чтобы забрать на себя энергию разряда.

Молния ударяет в самую высокую точку сооружения, проходя минимальное расстояние от облака до объекта. По сути, получается короткое замыкание, протекают гигантские токи, выделяется огромная энергия.

Если молниезащита отсутствует, то вся энергия молнии воспринимается зданием и растекается по токопроводящим конструкциям. Последствия такого удара – пожары, поражения людей, выход из строя электротехники.

Что такое молниезащита зданий и сооружений

Коротко это комплекс действий и мероприятий, а также различные защитные приспособления для предотвращения аварий и возгораний в зданиях и сооружениях жилого и промышленного назначения при попадании в них молний.

Мероприятия по молниезащите подразделяются на внешние и внутренние. Внешняя защита состоит из устройств, которые перехватывают электрозаряд от молнии и направляют его в землю по специальным токоотводным каналам. Такие конструкции, смонтированные в соответствии с обязательными техническими правилами по молниезащите, надежно предохраняют строения и людей внутри них от поражения.

Внешние мероприятия по молниезащите зданий и сооружений делятся на активные и пассивные.

Пассивная защита представлена в следующих вариантах

молниеприемная сетка из стальных прутков или катанки, ее применение разрешают все нормативы по молниезащите, хотя при малых превышениях сетка не в состоянии защитить поверхность кровли достаточно надежно;

Пространственная сетка на крыше здания

  • металлические прутья (от одного до нескольких штук) для приема разрядов молний, специальный кабель связывает их и заземляющие контуры- молниеотводы;
  • молниепринимающие металлические тросы.

Все приспособления внешней молниезащиты имеют один стандарт и состоят из трех основных частей: перехватчика электроразряда из грозового облака – молниеприёмника; конструктивной части, проводящей электричество на заземлители, и заземляющего элемента, который выводит молниевый заряд в почву.

Внутренний комплекс мероприятий по молниезащите направлен на предотвращение вреда, который может получить электрооборудование от резкого скачка напряжения в сети в результате удара молнии. Исполнение внутренней молниезащиты представлено двумя типами: 1 – противостояние прямому удару молнии, 2 – противостояние непрямому удару, прошедшему вблизи зданий/сооружений.

Со вторичным воздействием молниевого разряда в виде высоких потенциалов внутри строений борются с помощью грамотной организации заземления. Электромагнитную индукцию в длинных железных конструкциях снимают с помощью установки перемычек из металла. Занос высоких электропотенциалов через вводы для коммуникаций предотвращают вентильными разрядниками и специальными искровыми прерывателями, которые срабатывают при резком скачке напряжения.

Вентильный разрядник РВН 0,5

Также проблема решается запрещением ввода воздушных линий для некоторых категорий сооружений и заменой их подземными кабельными вводами.

Виды молниеприемников

Молниеприемники по конструкции и материалу бывают:

  • стержневые — отдельно расположенные и на крыше;
  • тросовые;
  • сетчатые — на крыше.

Наиболее распространенные и часто встречаемые — стержневые и тросовые, которые применяются на простых и сложных двускатных крышах. Если строение крыши многоуровневое, рекомендуется использовать комбинированную систему с использованием двух разных видов приемников.

Стержневые молниеприемники

Главная особенность — длинный вертикальный штырь, основная функция которого — принять удар молнии. Прибор должен отличаться высокой прочностью, устойчивостью к осадкам и агрессивной среде, но быть легким и простым в монтаже.

В зависимости от площади крыши можно устанавливать несколько таких мачт. Такие конструкции нужно устанавливать на самую высокую точку крыши или стену. Необходимо, чтобы штырь возвышался не менее чем на 1,5 м.

Можно устанавливать такую систему и отдельно от жилья. Во втором случае мачта может достигать нескольких десятков метров. Стержневая конструкция образует вокруг жилья воображаемый конус — зону защищенного пространства. Размер мачты можно определить из диаметра конуса и его высоты.

Тросовые молниеприемники

Система горизонтального монтажа представляет натянутый стальной трос по всей длине конька. Удар молнии принимает на себя трос. Можно на разных концах крыши установить штыри и натянуть между ними трос, в результате чего получается комбинированный тип защиты. Это подходит крышам, у которых длина во много раз превышает ширину. Диаметр троса должен быть не менее 12 мм. Толщина троса определяется длиной монтажного пролета.

В системе есть особые требования к прочности натяжного элемента, что связано с ветровыми нагрузками и обледенением. Чтобы избежать повреждений системы, рекомендуется по всей длине крыши установить натяжение нескольких промежуточных креплений.

Экономичный и простой вариант получается с использованием вместо троса стальной катанки, которая легка в монтаже (можно приваривать к конструкциям и между собой) и достаточно прочна. Для крепления проволоки можно применять специальные болтовые зажимы — клеммы.

Сетчатые молниеприемники

Система горизонтальная, монтируется на плоских крышах. Сетка изготавливается из проволоки-катанки диаметром 10 мм или стальной полосы любого диаметра. Такие приемники монтируются с помощью сварки и требуют большого расхода материала, поэтому система считается очень трудоемкой в монтаже.

Ее можно устанавливать и на скатных крышах. В таком случае сетку монтируют по периметру плоскости. Это основная причина, по которой на скатных крышах устанавливают более дешевые, простые и безопасные при выполнении работ системы. Такой тип защиты подходит для монтажа на крышах школ и детских садов, институтов и государственных учреждений. Считается самым надежным.

Особенности системы молниезащиты

Молниезащита объекта — комплекс мероприятий и устройств, которые способны защитить отдельно стоящие здания и сооружения от ударов молний.

Существует три основных фактора воздействия молнии:

  • непосредственное попадание молнии в крышу здания;
  • удар в близлежащие коммуникационные и технические объекты;
  • удар в землю вблизи дома либо в рядом расположенный объект с дальнейшим попаданием разряда в землю.

В первом случае прямой удар может привести к серьезным разрушениям — резкое нагнетание температуры и запекание материалов кровли, а в редких случаях — даже к возгоранию деревянных конструкций и перекрытий крыш. Главный разрушающий фактор скрыт в ударной волне, которую порождает молния.

При ударе в коммуникационные объекты или в линии электропередач создается ток грозового импульса, который попадает в жилье по электрическим проводам и трубам. Это может привести к поражению человека электрическим током, повреждению оболочек и жил кабелей, поломке оборудования и сбою в работе внутренних систем.

В третьем варианте разряд попадает в землю. При большом сопротивлении земли либо из-за других факторов напряжение может пойти через заземлитель в нулевой провод обратно в дом. В частных домах ноль заземляется в поселковых трансформаторных подстанциях. Может возникнуть случай, когда напряжение будет и на фазе, и на ноле, что также приведет к поломке приборов и техники. Но это редкий случай: как правило, ток, попадая в землю, равномерно растекается.

Важно! Самые страшные последствия — разрушение или возгорание кровли в результате прямых ударов молнии

Сайт для электриков

Молниезащита электроустановок систем электроснабжения: учебное пособие/А.В. Кабышев. -Томск: Изл-во ТПУ,2006. — 124 с.

Пособие подготовлено на кафедре электроснабжения промышленных предприятий ТПУ и ориентировано на студентов электроэнергетических специальностей.

ПРЕДИСЛОВИЕ ВВЕДЕНИЕ 1. ЗАЩИТА ОБЪЕКТОВ ЭЛЕКТРОЭНЕРГЕТИКИ ОТ ПРЯМЫХ УДАРОВ МОЛНИИ 1.1. Основные характеристики разряда молнии 1.2. Мероприятия по грозозащите воздушных линий электропередачи 1.3. Защита подстанций от прямых ударов молнии 1.3.1. Общие положения 1.3.2. Конструктивное выполнение молниеотводов 1.3.3. Концепции определения защитного действия молниеотводов 1.3.4. Зоны защиты молниеотводов 1.3.5. Определение надежности защиты подстанций от прямых ударов молнии 1.3.6. Расчет молниезащиты 1.3.7. Заземление молниеотводов 1.3.8. Расчет заземляющих устройств 1.4. Схемы молниезащиты подстанций промышленных предприятий 1.5. Молниезащита подходов воздушных линий электропередачи к подстанции 1.6. Схемы молниезащиты подстанций на ответвлениях 1.7. Молниезащита электрических машин 1.8. Наибольшие допустимые расстояния от вентильных разрядников до защищаемого оборудования 2. УСТРОЙСТВА И АППАРАТЫ ЗАЩИТЫ 2.1. Защитные промежутки 2.2. Трубчатые разрядники 2.3. Вентильные разрядники 2.4. Нелинейные ограничители перенапряжений 24.1. Основные требования к ОПН 2.4.2. Классификация электрических сетей для выбора ОПН 2.4.3. Условия эксплуатации ОПН в сетях с глухим заземлением нейтрали 24.4. Условия эксплуатации ОПН в распределительных сетях 6-35 кВ 2.4.5. Эксплуатация ОПН в сетях собственных нужд 2.4.6. Основные технические характеристики ОПН 3. ВНУТРЕННЯЯ СИСТЕМА МОЛНИЕЗАЩИТЫ 3.1. Режимы заземления нейтрали в сетях 0,4 кВ 3.1.1. Сеть TN-C 3.1.2. Сеть TN-S 3.1.3. Сеть TN-C-S 3.1.4. Сеть TT 3.1.5. Сеть IT 3.1.6. Краткие рекомендации по выбору сетей 3.2. Система уравнивания потенциалов на вводе в здания 3.3. Зоновая концепция молниезащиты 3.3.1. Зоны молниезащиты 3.3.2. Требования стандартов МЭК к устройствам защиты от импульсных перенапряжений 3.3.3. Требования ГОСТ к устройствам защиты от импульсных перенапряжений 3.3.4. Схемы включения устройств защиты от импульсных перенапряжений 3.3.5. Очередность срабатывания устройств защиты от импульсных перенапряжений 3.3.6. Монтаж устройств защиты от импульсных перенапряжений 3.3.7. Дополнительная защита от токов короткого замыкания 3.3.8. Методика выбора типа защитных устройств 3.3.9. Методика выбора УЗИП при воздушном вводе 3.3.10. Выбор защитных устройств: резюме 3.3.11. Особенности подключения УЗИП 4. ДИАГНОСТИКА СОСТОЯНИЯ ЗАЗЕМЛЯЮЩИХ УСТРОЙСТВ И МОЛНИЕЗАЩИТЫ 4.1. Измерение удельного сопротивления фунта 4.1.1. Грунт как проводник 4.1.2. Метод пробного электрода 4.1.3. Метод вертикального электрического зондирования 4.1.4. Реализация метода вертикального электрического зондирования 4.2. Эксплуатационный контроль сопротивления заземляющего устройства электроустановок 4.3. Измерение сопротивления связи между элементами заземляющего устройства 4.4. Осмотр устройств защиты от прямых ударов молнии БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.