Общие сведения
Измерение емкости конденсатора номинальной емкостью 10 мкФ с помощью осциллографа-мультиметра
Электрическая емкость — это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:
C = Q/∆φ
Здесь Q — электрический заряд, измеряется в кулонах (Кл), — разность потенциалов, измеряется в вольтах (В).
В системе СИ электроемкость измеряется в фарадах (Ф). Данная единица измерения названа в честь английского физика Майкла Фарадея.
Фарад является очень большой емкостью для изолированного проводника. Так, металлический уединенный шар радиусом в 13 радиусов Солнца имел бы емкость равную 1 фарад. А емкость металлического шара размером с Землю была бы примерно 710 микрофарад (мкФ).
Так как 1 фарад — очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фарада; нанофарад (нФ), равный одной миллиардной; пикофарад (пФ), равный одной триллионной фарада.
В системе СГСЭ основной единицей емкости является сантиметр (см). 1 сантиметр емкости — это электрическая емкость шара с радиусом 1 сантиметр, помещенного в вакуум. СГСЭ — это расширенная система СГС для электродинамики, то есть, система единиц в которой сантиметр, грам, и секунда приняты за базовые единицы для вычисления длины, массы и времени соответственно. В расширенных СГС, включая СГСЭ, некоторые физические константы приняты за единицу, чтобы упростить формулы и облегчить вычисления.
Электроемкость
Электроемкость — это скалярная величина, характеризующая способность проводника накапливать электрический заряд.
Электроемкость:
- не зависит от q и U;
- зависит от геометрических размеров проводника, их формы, взаимного расположения, электрических свойств среды между проводниками.
Электрической емкостью проводника наз. отношение заряда проводника к его потенциалу:
единица измерения емкости в СИ: Ф (фарад)
Конденсатор обладает свойством накапливать и сохранять электрическую энергию. Конденсатор представляет собой систему из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Проводники наз. обкладками конденсатора. Если заряды пластин конденсатора одинаковы по модулю и противоположны по знаку, то под зарядом конденсатора понимают абсолютное значение заряда одной из его обкладок.
Электроемкостью конденсатора называют отношение заряда конденсатора к разности потенциалов между обкладками. Основные слагаемые электроемкости представлены на рисунке ниже:
Основные слагаемые электроемкости.
Обозначение на электрических схемах:
- Все электрическое поле сосредоточено внутри конденсатора.
- Заряд конденсатора — это абсолютное значение заряда одной из обкладок конденсатора.
Виды конденсаторов:
- по виду диэлектрика — воздушные, слюдяные, керамические, электролитические.
- по форме обкладок — плоские, сферические.
- по величине емкости — постоянные, переменные (подстроечные).
Электроемкость.
Электроемкость плоского конденсатора
где S — площадь пластины (обкладки) конденсатора
- d — расстояние между пластинами
- εо — электрическая постоянная
ε — диэлектрическая проницаемость диэлектрика
Конденсатор — это система заряженных тел обладает энергией.
Энергия любого конденсатора:
где С — емкость конденсатора, (Ф) W— энергия (Дж) q — заряд конденсатора, (Кл) U — напряжение на обкладках конденсатора, (В
Энергия равна работе, которую совершит электрическое поле при сближении пластин конденсатора вплотную, или работе по разделению положительных и отрицательных зарядов необходимой при зарядке конденсатора. Конденсаторы применяются для накопления электрической энергии и использования ее при быстром разряде (фотовспышка), для разделения цепей постоянного и переменного тока, в радиотехнике: колебательный контур, выпрямитель и других радиоэлектронных устройствах.
Электрический конденсатор
Устройство, предназначенное для накопления электрических зарядов, называется электрическим конденсатором.
Рисунок 1. Модель простейшего конденсатора
Конденсатор состоит из двух металлических пластин (обкладок), разделенных между собой слоем диэлектрика. Чтобы зарядить конденсатор, нужно его обкладки соединить с полюсами электрической машины. Разноименные заряды, скопившиеся на обкладках конденсатора, связаны между собой электрическим полем. Близко расположенные пластины конденсатора, влияя одна на другую, позволяют получить на обкладках большой электрический заряд при относительно невысокой разности потенциалов между обкладками. Электрическая емкость конденсатора есть отношение заряда конденсатора к разности потенциалов между его обкладками:
Как показывают измерения, емкость конденсатора увеличится, если увеличить поверхность обкладок или приблизить их одну к другой. На емкость конденсатора оказывает влияние также материал диэлектрика. Чем больше электрическая проницаемость диэлектрика, тем больше емкость конденсатора по сравнению с емкостью того же конденсатора, диэлектриком в котором служит пустота (воздух). Выбирая диэлектрик для конденсатора, нужно стремиться к тому, чтобы диэлектрик обладал большой электрической прочностью (хорошими изолирующими качествами). Плохой диэлектрик приводит к пробою его и разряду конденсатора. Несовершенный диэлектрик повлечет за собой утечку тока через него и постепенный разряд конденсатора.
Длинные линии передачи высокого напряжения можно рассматривать как своеобразные обкладки конденсатора. Емкость провода нужно рассматривать не только относительно другого провода, но также относительно земли, стен помещений и окружающих предметов. Значительной емкостью обладают подводные и подземные кабели ввиду близкого расположения токоведущих жил между собой.
История накопителей заряда
Самое раннее письменное свидетельство получения зарядов с помощью трения принадлежит учёному Фалесу из Милета (635—543 гг. до н. э.), который описал трибоэлектрический эффект от взаимодействия янтаря и сухой шерсти. Для приблизительно 2300 последующих лет любое получение электричества заключалось в трении двух различных материалов друг о друга.
Качественный рывок в знаниях о зарядах произошёл в эпоху Просвещения — период революционного развития научной мысли в образованных кругах. В это время электричество становится популярной темой, а энтузиастами было произведено немало опытов и экспериментов с генераторами на основе трения.
Открытие явления произошло во время опытов у обоих экспериментаторов, но с той разницей, что Мюссенбрук, во-первых, сделал немало усовершенствований первоначально созданного оборудования, а во-вторых, письменно сообщил коллегам о своих достижениях. Прошло совсем немного времени и учёные мира стали создавать накопители зарядов собственных конструкций. Это были первые шаги в эволюции конденсаторов, продолжающейся и в наши дни. Основные даты хронологии появления устройств для хранения зарядов:
- 1746 г. — изобретение лейденской банки в результате экспериментов по доработке устройства Клейста;
- 1750 г. — опыты Бенджамина Франклина с батареями конденсаторов;
- 1837 г. — публикация Майклом Фарадеем теории диэлектрической поляризации — научной основы работы накопителей;
- конец XIX в. — начало практического применения лейденских банок вместе с первыми устройствами постоянного тока;
- начало XX в. — изобретение слюдяных и керамических конденсаторов.
Формула ёмкости
Основная формула уже была описана выше. Ёмкость относят к величинам постоянного характера. Её определяют другие параметры, например — размер конденсатора, конструктивные особенности.
За единицу ёмкости принимают ёмкость конденсатора, которому хватает единичного заряда для получения разности потенциалов в 1 Вольт. Определять конечные цифры благодаря этому очень просто.
Горизонтальные
Плоского
Обычно между обкладками внутри плоского конденсатора создаётся так называемое однородное поле. Только около краёв подобное свойство может быть нарушено. Этими эффектами у краёв часто пренебрегают, когда организуют расчёты. Но такой подход допустим, только если расстояние между пластинами достаточно маленькое по сравнению с линейными размерами.
Плоский конденсатор отличается ёмкостью, которую считают по формуле:
C = (Ee0S)/d.
E0 — постоянная электрическая величина.
S — площадь каждой пластины. Часто учитывают детали конструкции с минимальной площадью.
D — обозначение расстояния между пластинами.
Другое дело — когда конструкцию строят на нескольких слоях диэлектрика. Тогда их тоже включают в формулу, обычно добавляют к знаменателю. Без объёма в такой ситуации тоже не обойтись.
Особенности применения
Сферического
Сферический — это конденсатор, обкладки которого выполнены в виде двух сферических проводящих поверхностей. Диэлектрик заполняет пространство между указанными выше деталями. В таком случае формула в знаменателе содержит дополнительные обозначения R — радиус каждой из пластин.
Суперконденсаторы
Цилиндрического
В данном случае пластины выглядят как две соосные или коаксиальные цилиндрические поверхности с проводящим эффектом. При этом радиус у каждого элемента разный. И здесь пространство между разными частями заполнено диэлектриком. L — обозначение высоты цилиндра. И к формуле добавляют символ для диаметра. Его измеряют отдельно для обкладки внутри и снаружи.
Назначение
Принцип работы конденсатора
Конструкция
На схемах конденсатор обозначается в виде двух параллельных линий, не связанных между собой:
Это соответствует его простейшей конструкции — двум пластинам (обкладкам), разделенным диэлектриком. Фактическое исполнение этого изделия чаще всего представляет собой завернутые в рулон обкладки с прослойкой диэлектрика или иные причудливые формы, но суть остается той же самой.
Емкость конденсатора
Электрическая ёмкость – способность проводника накапливать электрические заряды. Чем больше заряд вмещает проводник при данной разности потенциалов, тем больше ёмкость. Зависимость между зарядом Q и потенциалом φ выражается формулой:
C=Q/φ
где Q заряд в кулонах (Кл), φ потенциал в вольтах (В).
Емкость измеряется в фарадах (Ф), что вы помните еще с уроков физики. На практике чаще встречаются более мелкие единицы: миллифарад (мФ), микрофарад (мкФ), нанофарад (нФ), пикофарад (пФ).
Накопительная способность зависит от геометрических параметров проводника, диэлектрической проницаемости среды, где он находится. Так, для сферы из проводящего материала она будет выражаться формулой:
C=4πεε0R
где ε0—8,854·10^−12 Ф/м, электрическая постоянная, а ε диэлектрическая проницаемость среды (табличная величина для каждого вещества).
В реальной жизни нам чаще приходится иметь дело не с одним проводником, а с системами таковых. Так, в обычном плоском конденсаторе емкость будет прямо пропорциональна площади пластин и обратно — расстоянию между ними:
C=εε0S/d
ε здесь — диэлектрическая проницаемость прокладки между пластинами.
Емкость параллельных и последовательных систем
Параллельное соединение емкостей представляет собой один большой конденсатор с тем же слоем диэлектрика и суммарной площадью пластин, поэтому общая емкость системы представляет собой сумму таковых у каждого из элементов. Напряжение при параллельном соединении будет одним и тем же, а заряд распределится между элементами схемы.
C=C1+C2+C3
Последовательное соединение конденсаторов характеризуется общим зарядом и распределенным напряжением между элементами. Поэтому суммируется не емкость, а обратная ей величина:
1/C=1/С1+1/С2+1/С3
Из формулы емкости одиночного конденсатора можно вывести, что при одинаковых элементах, соединенных последовательно, их можно представить в виде одного большого с той же площадью обкладки, но с суммарной толщиной диэлектрика.
Эксплуатационные характеристики
Помимо указанных выше емкости, собственной индуктивности и энергоемкости, реальные конденсаторы (а не идеальные) обладают еще рядом свойств, которые нужно учитывать при выборе этого элемента для цепи. К ним относятся:
- номинальное напряжение,
- полярность,
- ток утечки,
- сопротивление материала обкладок,
- диэлектрические потери,
- зависимость емкости от температуры.
Чтобы понять, откуда берутся потери, необходимо разъяснить, что представляют собой графики синусоидальных тока и напряжения в этом элементе. Когда конденсатор заряжен максимально, ток в его обкладках равен нулю. Соответственно, когда ток максимален, напряжение отсутствует. То есть напряжение и ток сдвинуты по фазе на угол 90 градусов. В идеале конденсатор обладает только реактивной мощностью:
Q=UIsin 90
В реальности же обкладки конденсатора обладают собственным сопротивлением, а часть энергии расходуется на нагрев диэлектрика, что обуславливает ее потери. Чаще всего они незначительны, но иногда ими пренебрегать нельзя. Основной характеристикой этого явления служит тангенс угла диэлектрических потерь, представляющий собой отношение активной мощности (даваемой малыми потерями в диэлектрике) и реактивной. Измерить эту величину можно теоретически, представив реальную емкость в виде эквивалентной схемы замещения — параллельной или последовательной.
Определение тангенса угла диэлектрических потерь
При параллельном соединении величина потерь определяется отношением токов:
tgδ = Ir/Ic = 1/(ωCR)
В случае последовательного соединения угол вычисляется соотношением напряжений:
tgδ = Ur/Uc = ωCR
В реальности для замеров tgδ пользуются прибором, собранным по мостовой схеме. Его применяют для диагностики потерь в изоляции у высоковольтного оборудования. С помощью измерительных мостов можно измерять и другие параметры сетей.
Номинальное напряжение
Этот параметр указывается на маркировке. Он показывает предельную величину напряжения, которое может быть подано на обкладки. Превышение номинала может привести к пробою конденсатора и выходу его из строя. Зависит этот параметр от свойств диэлектрика и его толщины.
Полярность
Некоторые конденсаторы имеют полярность, то есть в схему его необходимо подключать строго определенным образом. Связано это с тем, что в качестве одной из обкладок используется какой-либо электролит, а диэлектриком служит оксидная пленка на другом электроде. При изменении полярности электролит просто разрушает пленку и конденсатор перестает работать.
Температурный коэффициент емкости
Он выражается отношением ΔC/CΔT где ΔT изменение температуры окружающей среды. Чаще всего эта зависимость линейна и незначительна, но для конденсаторов, работающих в агрессивных условиях, ТКЕ указывается в виде графика.
Разрушение конденсатора
Выход конденсатора из строя обусловлен двумя основными причинами — пробоем и перегревом. И если в случае пробоя некоторые их виды способны к самовосстановлению, то перегрев со временем приводит к разрушению.
Перегрев обусловлен как внешними причинами (нагреванием соседних элементов схемы), так и внутренними, в частности, последовательным эквивалентным сопротивлением обкладок. В электролитических конденсаторах он приводит к испарению электролита, а в оксиднополупроводниковых — к пробою и химической реакции между танталом и оксидом марганца.
Опасность разрушения в том, что часто оно происходит с вероятностью взрыва корпуса.
Кратные и дольные единицы
Образуются с помощью стандартных приставок СИ.
Кратные | Дольные | ||||||
---|---|---|---|---|---|---|---|
величина | название | обозначение | величина | название | обозначение | ||
101 Ф | декафарад | даФ | daF | 10−1 Ф | децифарад | дФ | dF |
102 Ф | гектофарад | гФ | hF | 10−2 Ф | сантифарад | сФ | cF |
103 Ф | килофарад | кФ | kF | 10−3 Ф | миллифарад | мФ | mF |
106 Ф | мегафарад | МФ | MF | 10−6 Ф | микрофарад | мкФ | µF |
109 Ф | гигафарад | ГФ | GF | 10−9 Ф | нанофарад | нФ | nF |
1012 Ф | терафарад | ТФ | TF | 10−12 Ф | пикофарад | пФ | pF |
1015 Ф | петафарад | ПФ | PF | 10−15 Ф | фемтофарад | фФ | fF |
1018 Ф | эксафарад | ЭФ | EF | 10−18 Ф | аттофарад | аФ | aF |
1021 Ф | зеттафарад | ЗФ | ZF | 10−21 Ф | зептофарад | зФ | zF |
1024 Ф | иоттафарад | ИФ | YF | 10−24 Ф | иоктофарад | иФ | yF |
применять не применяются или редко применяются на практике |
- Дольную единицу пикофарад до 1967 года называли микромикрофарада (русское обозначение: мкмкф; международное: µµF).
- На схемах электрических цепей и (часто) в маркировке ранних конденсаторов советского производства целое число (например, «47») означало ёмкость в пикофарадах, а десятичная дробь (например, «10,0» или «0,1») — в микрофарадах; никакие буквенные обозначения единиц измерения ёмкости на схемах не применялись… Позже и до сегодняшних дней: любое число без указания единицы измерения — ёмкость в пикофарадах; с буквой н — в нанофарадах; а с буквами мк — в микрофарадах. Использование других единиц ёмкости на схемах не стандартизовано (как и обозначение номинала на конденсаторах). На малогабаритных конденсаторах используют различного рода сокращения: например, после двух значащих цифр ёмкости в пикофарадах указывают число следующих за ними нулей (таким образом, конденсатор с обозначением «270» имеет номинальную ёмкость 27 пикофарад, а «271» — 270 пикофарад)[источник не указан 2616 дней].
- В текстах на языках, использующих латиницу, очень часто при обозначении микрофарад в тексте заменяют букву µ (мю) на латинскую u («uF» вместо «µF») из-за отсутствия в раскладке клавиатуры греческих букв.
Электролитические конденсаторы
В радиотехнике применяются также электролитические конденсаторы. Эти конденсаторы изготовляются двух типов: жидкостные и сухие. В обоих типах конденсаторов употребляется оксидированный алюминий. Путем специальной электрохимической обработки на поверхности алюминия получают тонкий (порядка нескольких десятков микрон) слой оксида алюминия Al2O3, представляющий так называемую оксидную изоляцию алюминия. Оксидная изоляция обладает электроизолирующими свойствами, а также является механически прочной, нагревостойкой, но гигроскопичной.
В жидкостных электролитических конденсаторах алюминиевую оксидированную пластину помещают внутрь металлического корпуса, который служит второй пластиной. В корпус заливают электролит, состоящий из раствора борной кислоты с некоторыми примесями.
Сухие электролитические конденсаторы изготовляют путем сворачивания трех лент. Одна лента представляет собой алюминиевую оксидированную фольгу (тонко раскатанный лист металла). Другой пластиной является лента из алюминиевой фольги. Между двумя металлическими лентами помещается бумажная или марлевая лента, пропитанная вязким электролитом. Плотно свернутые ленты помещаются в алюминиевый корпус и заливаются битумом. Тонкий оксидный изолирующий слой с высокой электрической проницаемостью (ε = 9) позволяет получить дешевые конденсаторы с большой удельной емкостью.
Видео об устройстве электролитического конденсатора:
https://youtube.com/watch?v=tuVEW69oXuw
Реактивное сопротивление конденсатора.
Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда –
накопления и отдачи энергии электрическим полем между его обкладками.
В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное.
Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю.
Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.
В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току,
обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.
Если приложить к конденсатору напряжение U, мгновенно начнётся ток от максимального значения, далее
уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума.
Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.
Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt).
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2).
Тогда для синусоидального напряжения u = Uampsin(ωt)
запишем выражение мгновенного значения тока следующим образом:
i = UampωCsin(ωt+π/2).
Отсюда выразим соотношение среднеквадратичных значений .
Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:
Реактивное сопротивление конденсатора в технической литературе часто называют ёмкостным. Может применяться, например, в организации ёмкостных делителей в цепях переменного тока.
Онлайн-калькулятор расчёта реактивного сопротивления
Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.
Реактивное сопротивление ёмкостиXC = 1 /(2πƒC) |
Реактивное сопротивление индуктивностиXL = 2πƒL |
Расчитать ёмкость или индуктивность для реактивного сопротивления:
Расчёт ёмкости: C = 1 /(2πƒXC) |
Расчёт индуктивности: L = XL /(2πƒ) |
Похожие страницы с расчётами:Расcчитать импеданс.Расcчитать частоту резонанса колебательного контура LC.Расcчитать реактивную мощность и компенсацию.