Схема подключения вольтметра

Схемы включения амперметра и вольтметра.

На рисунках 4.3 и 4.4 приведены схемы включения вольтметра и амперметра через измерительные трансформаторы напряжения (ТН) и тока (ТТ) соответственно.

Рис. 4.3. Измерительный трансформатор напряжения.

Схема включения вольтметра:

?/,, U2_ первичное и вторичное напряжения ТН; Wv W2 — первичная и вторичная обмотки ТН; V — вольтметр

Рис. 4.4. Измерительный трансформатор тока. Схема включения амперметра:

/р /2 — первичный и вторичный токи ТТ; Wv W2 — первичная и вторичная обмотки ТТ; А — амперметр

Для измерения тока в электрических цепях служат амперметры, миллиамперметры и микроамперметры различных систем. Их включают в цепь последовательно, и через них проходит весь ток, протекающий в цепи (рис. 4.4)

Важно, чтобы при различных электрических измерениях амперметр как можно меньше влиял на электрический режим цепи, в которую он включен. Поэтому амперметр должен иметь малое собственное сопротивление по сравнению с сопротивлением цепи

Присоединять амперметр к источнику тока (питания) без нагрузки нельзя, так как по его обмотке в этом случае пройдет большой ток, и она может перегореть. По той же причине нельзя включать амперметр параллельно нагрузке.

Каждый амперметр рассчитан на определенный максимальный ток, при превышении которого амперметр может перегореть. Если амперметром нужно измерить ток, превышающий допустимый для данного амперметра, то параллельно амперметру присоединяют шунт, т.е. расширяют пределы измерения амперметра.

Шунт представляет собой относительно малое, но точно известное сопротивление. Схема включения амперметра с шунтом показана на рис. 4.5, а.

Шунт должен иметь четыре зажима для устранения влияния на сопротивление шунта переходных сопротивлений контактов. Шунты изготовляют из манганина — сплава, у которого температурный коэффициент сопротивления практически равен нулю.

Рис. 4.5. Схема включения амперметра:

а — с шунтом; 6 — через трансформатор тока; для схемы а: 1 — шунт; 2 — нагрузка;

для схемы б: 1 — измерительный трансформатор тока; 2 — нагрузка

Рис. 4.6. Схема соединения трех амперметров через два трансформатора тока:

Л j и Л2 — начало и конец первичной обмотки трансформатора тока; И, и И2 — начало и конец вторичной обмотки трансформатора тока; Л — амперметры; iA, iB, ic токи в фазах

Рис. 4.7. Схема включения вольтметра:

R — сопротивление цепи; V— вольтметр

На рисунке 4.6 приведена схема соединения трех амперметров через два трансформатора тока.

Как видно из схемы, через первый амперметр проходит ток iA, через второй — iB, следовательно, ток в третьем амперметре, равный сумме двух линейных токов iA и iB, равен третьему линейному току: ic= iA + iB.

Для измерения напряжения на участке цепи применяют вольтметры. Вольтметр включают параллельно тем точкам цепи (М, N), напряжение между которыми надо измерить (рис. 4.7).

Вольтметр не должен изменять напряжение на измеряемом участке цепи, по этой причине ток, проходящий через вольтметр, должен быть много меньше, чем ток на измеряемом участке.

Для того чтобы вольтметр не вносил заметных искажений в измеряемое напряжение, его сопротивление должно быть большим по сравнению с сопротивлением участка цепи, на котором измеряется напряжение. Любой вольтметр рассчитан на определенное предельное напряжение, но с помощью подключения последовательно с вольтметром добавочного сопротивления /?доб можно измерять большие напряжения (рис. 4.8, б).

Рис. 4.8. Схемы включения амперметра и вольтметра в электрическую цепь:

а — без расширения пределов измерения; б — с расширением пределов измерения;

Яш — сопротивление шунта; /?доб — добавочное сопротивление

На рисунке 4.9 приведена схема включения ваттметра в однофазную цепь высокого напряжения через измерительные трансформаторы тока и напряжения.

Рис. 4.9. Схема включения ваттметра в однофазную цепь высокого напряжения через измерительные трансформаторы тока и напряжения: V— вольтметр; А — амперметр; W— ваттметр

На рисунке 4.10 приведена схема включения амперметров и вольтметров в трехфазную цепь. Как видно из схемы, амперметры включены через измерительные ТТ, а вольтметры —через измерительные ТН. Такие схемы включения измерительных приборов характерны для высоковольтных сетей напряжением 6 (10) кВ и выше.

Рис. 4.10. Включение амперметров и вольтметров в трехфазную цепь с помощью измерительных трансформаторов тока и напряжения

Измерение тока. Амперметр.

И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:

Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутствует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:

I = \frac{U}{R} = \frac{12}{100} = 0.12

Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи

Важным параметром этого прибора является его внутреннее сопротивление r_А

Почему это так важно? Смотрите сами – при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится сопротивление, и мы получим следующее значение:

I = \frac{U}{R_1+r_А}

Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.

При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:

R = \frac{r_А}{n\medspace-\medspace 1}

В этой формуле n – это коэффициент шунтирования – число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться.

Пусть максимальное значение, которое может измерить амперметр составляет 1 А. А схема, силу тока в которой нам нужно определить имеет следующий вид:

Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:

В данной задаче нам необходимо измерить ток I. Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и мы получим нужное нам значение. Для реализации нашей задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:

R = \frac{r_А}{n\medspace-\medspace 1}

В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково.

Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:

I_А\medspace r_А = I_R\medspace R

Выразим ток шунта через ток амперметра:

I_R = I_А\medspace \frac{r_А}{R}

Измеряемый ток равен:

I = I_R + I_А

Подставим в это уравнение предыдущее выражение для тока шунта:

I = I_А + I_А\medspace \frac{r_А}{R}

Но сопротивление шунта нам также известно (R = \frac{r_А}{n\medspace-\medspace 1}). В итоге мы получаем:

I = I_А\medspace (1 + \frac{r_А\medspace (n\medspace-\medspace 1)}{r_А}\enspace) = I_А\medspace n

Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нам и нужно измерить

С измерениями тока в цепи все понятно, давайте перейдем к следующему вопросу, а именно определению напряжения.

Отличия амперметров различных конструкций


Магнитоэлектрическая система

В отличие от предыдущего прибора амперметр переменного тока в своей основе имеет электромагнитную систему. Наиболее часто такие устройства используются в сетях на 50-60 Герц. Устройство амперметра предполагает наличие одного либо двух сердечников, соединенных с стрелочным механизмом. Преимуществом конструкции является универсальность, позволяющая помимо переменного измерять и постоянный ток. Сопротивление амперметра электромагнитного типа выше, чем у других моделей, что отражается в худшую сторону на точность результата. Шкала нелинейная, поэтому показания амперметра считать затруднительно. В некоторых случаях в первой половине шкалы ставится точка, говорящая о невозможности измерить ток в данном диапазоне, сохраняя в норме погрешность.


Электромагнитный измеритель

Для уменьшения воздействия влияния внешних магнитных полей используются амперметры ферродинамического типа. Устройство характеризуется высокой точностью измерений. Это позволяет отказаться от установки в приборе дополнительных защитных экранов. В основе конструкции лежит замкнутый ферримагнитный провод. Стрелки амперметра показывает измеряемую величину на нелинейной шкале. Показания амперметра можно снять с требуемой погрешностью не во всем диапазоне измерений, а лишь начиная со значения, обозначенного точкой.


Ферродинамический высокоточный прибор


Цифровой амперметр

Цифровой измеритель силы тока наиболее удобен в пользовании, так как сразу показывает требуемое значение без необходимости получения данных с помощью стрелок амперметра. Часто он входит в состав мультиметра или электронного вольтамперметра. Наиболее современные приборы имеют возможность автоматически выбирать предел измерений. Прибор не чувствителен к горизонтальному либо вертикальному положению. Точность измерений зависит от дискретизации и алгоритма, заложенного для осуществления снятия показаний.


Мультиметр с функцией цифрового амперметра

Recommended Posts

После описанной переделки весь этот ток будет потребляться от внешнего источника питания, не нагружая измеряемую цепь. Многие, кто сталкивался с такими приборами жалуются на плохое качество калибровочных резисторов.

Без него прибор просто сгорит.

К зарядному устройству Любители самостоятельно конструировать зарядные устройства по достоинству оценят возможность наблюдать за вольтами и амперами сети, без помощи громоздких переносных приборов. При таком шунте прибор измеряет ток до 10А А для опроса, то есть, последовательного переключения, используются общие анодные выводы.

За большим количеством товаров, не всегда получается найти надежный и недорогой экземпляр. Резистором R4 устанавливают показания прибора на ноль, при отсутствии входного напряжения А резистором R5 выставляют предел измерения так, чтобы результат измерения соответствовал реальному, то есть, можно сказать, им калибруют прибор. Применение измерительных трансформаторов позволяет расширить пределы измерения приборов, то есть появляется возможность измерять большие напряжения и токи при помощи низковольтных и слаботочных приборов.

Схема цифрового вольтметра

По этому углу отклонения определяют величину тока амперметра. Тонкий красный соединяется с плюсом стороннего источника.

Микросхема САЕ Но существуют и другие микросхемы аналогичного действия. Амперметр обычно подключают в разрыв минусового провода после вольтметра. Красный соединяется с нагрузкой, а после с питанием. Измерительный трансформатор напряжения Чтобы измерить переменное напряжение применяют трансформатор напряжения.

Чтобы еще больше расширить пределы измерения вольтметров, применяют делители напряжения. Как уже сказано, выходную схему можно сделать на любом дешифраторе и соответствующих индикаторах. Единственным отличием становиться другая компоновка платы и цветовая маркировка проводов. Принципиальная схема вольтметра Теперь ближе к схеме. Останется умножить измеренное напряжение на коэффициент трансформации измерительного трансформатора напряжения.

На этом рисунке изображена схема подключения китайского вольтметра амперметра второй модели к регулируемому блоку питания. Это делается для того, чтобы при измерении на прибор приходилось напряжение, соответствующее номиналу прибора, то есть не превышало бы предел на его шкале.
Вольтметр 100V + амперметр 50А подключаем шунт digital voltmeter ammeter

Определение потерь электроэнергии в сетях напряжением 10(6) кВ

16.1.
Исходными данными для расчета потерь электрической энергии в сети напряжением
10(6) кВ являются:

общее
количество активной электроэнергии Wп(кВт-ч), поступившей в
распределительную сеть за расчетный период;

количество
активной WA(кВт-ч) и реактивной Wр(кВАр∙ч)
энергии, поступившей в каждую линию напряжением 10(6) кВ за расчетный период;

суточные
почасовые графики нагрузки I(t) (А) на шинах ЦП для рабочих суток зимнего максимума и
летнего минимума нагрузок, выбранные для контрольных замеров в расчетный
период;

сведения
о продолжительности отключения линий в течение расчетного периода, ч;

данные
о фактической величине расхода электрической энергии за расчетный период
(кВт∙ч, %) на передачу ее и распределение.

16.2.
Расчет потерь электрической сети 10(6) кВ по программам на ЭВМ выполняется для
каждого участка линии, отходящей от шин ЦП до абонента. До внедрения программ
расчетов потерь на ЭВМ уровень потерь электрической энергии в электрических
сетях может быть определен по нижеприведенным формулам.

16.3.
Потери электроэнергии в каждой линии сети определяются по следующей формуле:

()

где ΔWAпотери
активной энергии в активном сопротивлении линии (ф-2);

ΔW«A — потери активной энергии в активном сопротивлении линии при
передаче реактивной мощности

16.4.
Потери активной и реактивной электроэнергии в распределительной линии за
расчетный период времени t

(2)

(3)

где Kэ — коэффициент эквивалентности сопротивления распределительной
линии;

R,Xактивное
и реактивное сопротивления распределительной линии, Ом;

t
расчетный
период (за вычетом продолжительности отключения линии), ч;

Iмин, Iмакс
— соответственно минимальное и максимальное значение нагрузки на головном
участке линии, взятые из суточных графиков нагрузки, снятые в зимний максимум и
летний минимум, приходящихся на период контрольных замеров, А;

β
— коэффициент формы графика нагрузки.

16.5.
Коэффициент эквивалентности сопротивления позволяет для упрощения расчета
заменить разветвленную распределительную линию некоторым эквивалентным
сопротивлением, по которому протекает ток головного участка линии, при условии
сохранения неизменными потери мощности для определенного момента.

Коэффициент
эквивалентности Kэопределяется по графику в
зависимости от отношения Rг.уRи
места сосредоточения мощной нагрузки (номинальной мощности ТП) вдоль
распределительной линии (Rг.у — активное сопротивления
головного участка распределительной линии, Ом)

(4)

где ro — удельное расчетное активное
сопротивление 1 км кабеля (провода) головного участка, Ом/км;

Iг.у— длина кабеля (провода)
головного участка от ЦП до места присоединения суммарной нагрузки, км.

Для
определения места сосредоточения мощной нагрузки вдоль распределительной линии
поступают следующим образом. Количество нагрузок (ТП) распределительной линии
делят пополам. По обе стороны предполагаемого сечения определяют суммарную
установленную мощность трансформаторов ТП. В зависимости от того, по какую
сторону сечения (в начале или в конце линии) суммарная установленная мощности
больше, используются кривые 1 и 2 на графике . Если имеется ответвление, то
его условно заменяют сосредоточенной нагрузкой и суммарной установленной
мощностью в месте присоединения ответвления.

1 — мощная
нагрузка сосредоточена в начале линии;

2 — мощная
нагрузка сосредоточена в конце или середине линии.

Рис. 1.
Зависимость коэффициента эквивалентности сопротивления распределительной линии:

При выполнении расчетов на ЭВМ с использованием
программных средств замена разветвленных линий эквивалентной нагрузкой не
требуется, расчет потерь на ЭВМ выполняется для каждого участка сети 10(6) кВ.

16.6.
Активное и индуктивное сопротивления распределительной линии определяют:

(5)

где roi, хoi
условное активное и индуктивное сопротивления 1 км кабеля (провода) одного
сечения i-го участка, Ом∙км;

Ii
длина i-го участка, км;

k -число участков распределительной линии.

16.7.
Средний ток нагрузки для каждой линии за расчетный период (год) определяется:

(6)

где Ucp— среднее
напряжение на шинах ЦП за расчетный период.

При
наличии суточных графиков напряжения, снятых на шинах ЦП, можно определить
наиболее вероятное (мода распределения U(М))
значения напряжения ().

16.8.
Относительное значение среднего тока нагрузки для каждой линии определяют:

(7)

где Iмин, Iмакс
— минимальный и максимальный ток, взятый из суточных графиков замеров нагрузок
в период контрольных замеров в расчетный период.

16.9.
Из усредненного графика ΔIср = ƒ(β)
по значению ΔIср находится коэффициент формы
годового графика нагрузки β рис. 2 []

Рис. 2.
Зависимость коэффициента формы графика
ΔIср = ƒ(β)

16.10.
Для определения потерь электроэнергии для всей сети определяются потери
электроэнергии для каждой линии по
изатем суммируются:

(8)

гдеmчисло распределительных линий.

Относительные
потери электроэнергии в сети 10(6) кВ за расчетный период:

(9)

Подсоединение цифрового вольтамперметра

Как правильно подключить электросчетчик к проводам

Существует интересный цифровой модуль для постоянного тока, совмещающий функции вольтметра и амперметра в одном устройстве. Вольтамперметрам под силу одновременно показывать и ток, и напряжение при правильном подсоединении.

Пример такого прибора – модель DSN—VS288, состоит из:

  • самого измерительного устройства;
  • 2-проводного кабеля (вход и выход амперметра);
  • 3-проводного кабеля (питание прибора и измерение напряжения).


Вольтамперметр DSN-VS288

Измеряемый диапазон ампервольтметра:

  • от 0 до 100 В по напряжению,
  • от 0 до 10 А по току.

Так как питающее напряжение прибора – 3,5-30 В, схема его включения различается:

  1. При необходимости подсоединить прибор в цепь, напряжение которой лежит в пределах между 3,5 и 30 В, общее питание одновременно используется и для прибора. Черный провод 2-проводного кабеля идет к «минусу», красный – к нагрузке и от другого вывода нагрузки к «плюсу». На 3-проводном кабеле: желтый и красный – соединяются вместе на «плюсе» источника, а черный – остается свободным;
  2. Если напряжение ИП больше или меньше диапазона питания прибора, то вольтамперметр надо подсоединить к индивидуальному ИП. Двухпроводный кабель подключается аналогично, у трехпроводного –красный и черный – идут на «плюс» и «минус» своего ИП, а желтый – на «плюс» основного ИП.


Схемы присоединения DSN-VS288

Каждый тип амперметра подключается по одному принципу, но с обязательным учетом количественного значения измеряемого тока и выбором для этого соответствующих приборов и приспособлений.

Определение величины скольжения электродвигателя

Предопределяющим моментом в прямой зависимости от скольжения является начальное значение того момента, когда электродвигатель остается еще в неподвижном состоянии. Максимальное значение скольжения называется критическим.

Конкретные расчеты производят специалисты завода-изготовителя, и они указаны в соответствующих технических характеристиках, прилагаемых к электродвигателю при покупке. При увеличении активного сопротивления только ротора увеличивается значение критического скольжения и уменьшается скорость вращения вала. Изменить данные параметры можно путем использования дополнительного сопротивления, которое вводится в цепь обмотки ротора.

Схема подключения блока

Почти все они малогабаритные и могут быть установлены в небольшие корпуса блоков питания. Здесь весьма часто протягивает руку помощи Алиэкспресс, оперативно поставляя китайские цифровые измерительные приборы.

Но новичкам ввод в эксплуатацию подключение в схему ампервольтметра может оказаться задачей проблематичной, т. Сегменты светятся прилично ярко, цветовая гамма подобрана очень удачно.

Измеряемое напряжение В; ток А.

А ток на выходе легко достигал практически одного ампера. Подключение При помощи вольтметра можно измерить текущее напряжение в сети электроснабжения.

За небольшую плату можно узнать, работает ли техника в подходящих условиях. Подав питание на схему, индикатор начнет светиться. Практически близнец прошлого вольтметра, отличается маркировкой проводов и сниженной ценой.

При неправильном подключении табло прибора будет показывать нулевые значения. Подав питание на схему, индикатор начнет светиться.

Чтобы он начал измерять напряжение менее 3 Вольт, нужно выпаять резистор-перемычку R1 и на ее правую по схеме контактную площадку подать напряжение В с внешнего источника выше можно, но нежелательно — стабилизатор DA1 сильно греется. Поскольку на странице продавца нет данной информации, то пришлось покопаться в сети и набросать пару схем. Толстые провода: черный минус амперметра, красный выход амперметра. Достаточно будет подключить зарядное, где установлен вольтамперметр к батареи, и мы увидим какое сейчас на ней напряжение. Иногда бывают амперметры без встроенного токоизмерительного шунта.

Простое и красивое техническое решение. Нижняя граница 0,1 В и 0,01 А. Поскольку на странице продавца нет данной информации, то пришлось покопаться в сети и набросать пару схем. Дело в том, что если подключить вольтметр амперметр к регулируемому выходу блока питания, то при понижении напряжения менее 4. Не каждый сразу поймет, какой провод, куда нужно подключать, а инструкции обычно только на китайском языке. Как подключить Вольтамперметра DC 100v 10a часть 2

Купил я для своей зарядки любопытный экземпляр китайского вольтметра амперметра, брал на рынке особо не разглядывал, но когда домой принес — три дня голову чухал, как подключить, ибо в инете особо ничего не нашел похожего.Нашел общее описание с кривым переводом на сайте avrobot.ru/product_info.php?products_ >

«Инструкция по подключению:— Красный тонкий провод (vcc): Напряжение питания прибора + 3.5-30 В (Примечание: если измеряемый сигнал меньше, чем 30 В и имеют общий минус питания, то измеряемый сигнал может быть использован также для питания прибора )— Черный тонкий провод (земля): Напряжение питания «-«, «-» измеряемого сигнал 3.5-30 В— Желтый тонкий провод (vin): Измеряемый сигнал «+» (0-100 В)— Красный толстый провод (i +): Вход тока «+» (в серии питания положительные)— Черный толстый провод (i -): C. Вход тока «-» (Провод отрицательного питания)Инструкция по калибровке:Вследствии влияния температуры и изменения параметров электрокомпонентов от времени, возможно появление ненулевых показаний прибора при измерении, что является нормальным явлением. Это не является ошибкой или неисправностью.Решение: Когда прибор отключен от питания, пожалуйста, замкните контакты А и B. Затем сделайте измерение электроэнергии, прибор автоматически откалибруется к нулю. После окончания автоматической калибровки, пожалуйста, отсоедините A и B. После этого используйте прибор в обычном режиме.»

На задней стенке присутствует микросхема MC74HC5950, идут два толстых провода и три тонких.Далее фото и комментарии.

Измерение переменного электричества

Любые бытовые приборы, питающиеся от сети, показывают нагрузку, с которой они потребляют ток переменного типа. При рассмотрении вопросов использования энергии стоит помнить про понятие мощности, за которую и производится окончательная оплата в киловаттах. В таком случае амперметр выступает устройством для выполнения косвенных замеров. Таким способом определяется сила тока через стандартную формулу по закону Ома:

P=I*U, где:

  • U является напряжением;
  • I представляет силу тока;
  • Р указывает на рассчитанную мощность.

Бывают случаи, когда утрачивается информация, фиксируемая электрощитком. Для восстановления необходимых параметров и понадобится амперметр. Иногда при обслуживании масштабного здания отсутствует возможность контроля всех приборов, фиксирующих электричество. Проблема решается путем подсоединения усиленного амперметра на выход от щитка, снятия интересуемых замеров. Такие задачи разрешено выполнять только специально обученным людям.

Устройство и принцип действия

Если говорить о принципе действия, то все устройства такого типа, что позволяют осуществлять различные замеры в электрических сетях, бывают 2 видов:

  • электромеханического типа;
  • электронные.

Первая категория представляет собой стрелочные устройства. В них стрелка крепится к специальной раме, куда намотан кабель. Такая катушка будет располагаться рядом с магнитом в тех устройствах, что обычно применяются для сетей с постоянным током. Или рядом с другой катушкой – если прибор предназначается для тока переменного типа.

Но если для подключения использовать диодный мост, то осуществить необходимые измерения в сети переменного тока он сможет, но с небольшой потерей точности.

Когда электрический ток проходит через обмотку, то в ней появляется электромагнитное поле, которое осуществляет взаимодействие с магнитом либо иной обмоткой, и происходит поворот рамки. Вращаться катушке, где расположена стрелка, не дает пружина. По этой причине угол поворота рамки будет соответствовать току, который через нее идет, и потенциалу на клеммах.

Он может быть поршневым, выполненным из цилиндра и поршня, или сделанным из алюминиевой пластины. Чтобы увеличить точность показаний, стрелка имеет специальные противовесы, что сводят к нулю влияние силы тяжести. Да и сама система делается из такого типа стали, как легированная, чтобы уменьшает ее износ.

Чувствительный элемент в электронных аналогах – электронная плата, что осуществляет трансформацию входящего сигнала в приборные показания. Работать это устройство может либо от напряжения, которое измеряется, либо от батареек или внешнего питания. Сами по себе электронные вольтметры делятся на 2 категории:

  • аналоговые;
  • цифровые.

В устройствах, относящихся к первой категории, присутствует преобразователь входящего сигнала в угол стрелочного поворота, который показывает величину исследуемого напряжения, что отображается на шкале. Минусом таких устройств будет необходимость пересчета показаний шкалы в случае смены измерительного предела.

Цифровой вольтметр оснащен соответствующим дисплеем, а также преобразователем, благодаря которым сигнал приобретает цифровой вид. Если устройство подключается в сеть, где присутствует постоянный ток, на табло можно увидеть полярность подключения. Отличительными чертами такого прибора будет компактность, а также точность. Правда, последний момент будет зависеть от модели встроенного контроллера.

Шунт своими руками

Спирально сматывать проволоку (или эмальпровод) не рекомендуется – индуктивность получившейся катушки уменьшит точность амперметра. Катушечное шунтирование имеет недостаток – гашение скачков тока, особенно в случае дросселированной (с сердечником) катушки. Если отрезок проволоки слишком длинный, расположите его в виде волнистой «змейки».

В качестве диэлектрика подойдёт любой изолятор – от керамического до текстолитового. К тому же скрученный в виде катушки провод может перегреть диэлектрик, не выдерживающий повышенной – более 150 градусов – температуры. А к перегреву устойчивы лишь керамика и закалённое стекло.

  • Сначала вырезается диэлектрическая пластина, в которой сверлятся отверстия под болты с шайбами и гайками. Материал – текстолит, гетинакс, дерево или композитные материалы.
  • Для существенной изоляции тепла проволоки от несущей пластины на болты устанавливаются керамические колечки. После них ставятся шайбы, зажимающие проволоку.
  • Для предотвращения самопроизвольного раскручивания и выпадения проволоки и проводов перед гайками проставляются гроверные шайбы.
  • Наконец, вставляются провода и концы проволоки между шайбами, а гайки затягиваются.

Как подключить к блоку питания цифровой вольтметр, амперметр (Китайский модуль) своими руками.

Тема: как поставить измеритель тока и напряжения на источник питания.

Достаточно удобно, когда на блоке питания установлен индикатор, показывающий постоянное напряжение и ток. При питании нагрузки всегда можно видеть падение напряжения, величину потребляемого тока. Но не все источники питания оснащены амперметрами и вольтметрами. У покупных, более дорогостоящих блоков питания они имеются, а вот у дешевых моделях их нет. Да и в самодельных БП их не всегда ставят. Сегодня имеется возможность приобрести за небольшие деньги цифровой модуль измеритель индикатор постоянного тока и напряжения (Китайский вольтметр амперметр). Стоит этот модуль в пределах 3х баксов. Купить его можно посылкой из Китая, на ближайшем радиорынке, магазине электронных компонентов.

Сам этот Китайский цифровой модуль вольтметра, амперметра измеряет постоянный ток (до 10, 20 ампер, в зависимости от модели) и напряжение (до 100, 200 вольт). Он имеет небольшие, компактные размеры. Легко может монтироваться в любые подходящие корпуса (нужно вырезать соответствующее отверстие и просто его туда вставить). На задней части, на плате имеются два подстроечных резистора, которыми можно производить коррекцию показаний измеряемых величин тока и напряжения. Точность у этого цифрового Китайского модуля вольтметра и амперметра достаточно высока — 99%. Экран имеет трехсимвольное табло красного (для напряжения) и синего (для тока) цвета. Этот блок питается от постоянного напряжения от 4 до 28 вольт. Потребляет мало тока.

Сама установка, электрическое подключение к схеме блока питания достаточно проста. На измерительном модуле тока и напряжения имеются такие провода: три тонких провода (черный минус и красный плюс питания модуля, жёлтый для измерения постоянного напряжения относительно любого черного), два толстых провода (черный минус и красный плюс для измерения силы постоянного тока).

Этот Китайский модуль амперметра, вольтметра можно питать как от самого источника, на котором измеряем электрические величины, так и независимым блоком питания. Итак, после монтажа в корпус измерителя мы спаиваем вместе два чёрных провода (тонкий и толстый), это будет общий минус, который мы и припаиваем к минусу блока питания. Спаиваем вместе тонкие провода красного и желтого цвета, подсоединяем их к выходу (плюса) источника питания. К толстому красному проводу, относительно спаянных чёрных проводов, подключаем саму электрическую нагрузку (это будут провода выхода блока питания).

Важно заметить, что для правильного измерения постоянного тока важна полярность токовых проводов. То есть, именно толстый красный провод должен быть выходом блока питания

В противном случае данный цифровой амперметр будет показывать нули на своем табло. На обычном блоке питания (без функции регулирования напряжения) на индикаторе можно отслеживать только падение напряжения. А вот на регулируемом источнике питания будет хорошо видно, какое напряжение вы сейчас имеете при его выставлении.

Видео по этой теме:

P.S. В целом подключение этого цифрового Китайского модуля вольтметра, амперметра на должно составить труда. При последующем использовании вы оцените его работу, вам она понравится. Наиболее популярным считается трёхсимвольный измерительный блок, хотя немного подороже будет стоит четырехсимвольный, у которого точность измерения уже не 99%, а 99,9%. Данные цифровые модули, измеряющие постоянный ток и напряжение, бывают и отдельного типа, то есть один такой блок является либо амперметром или вольтметром. Экран у них побольше.

Процесс измерения электрического напряжения

При работе с электроприборами, необходимо соблюдать особую аккуратность. Любое резкое движение может привести к короткому замыканию. Что учитывать в ходе рабочего процесса? Техника безопасности включается в себя несколько простых правил:

Правильная фиксация щупов. В момент изучения напряжения, необходимо безопасно держать измерительные части. Не стоит соприкасать их между собой. Не рекомендуется прикасаться к щупам при подключении вольтметра к электронной схеме.Это может спровоцировать короткое замыкание.

Черный щуп устанавливают к одной из частей проводника постоянного тока. Правильно измерить перепады напряжения можно в параллельном положении измерителей.

Красным щупом производят касательное движение. Если в устройстве присутствует максимальное напряжение, то на приборе появятся его точные значения.

На приборе устанавливают максимальный измерительный диапазон. Если на электросхеме имеются какие-либо неполадки, то отмечают активное движение стрелки в сторону высокой отметки.

Когда исследование подошло к концу, переходят к его расшифровке.

Что такое амперметр, его виды

Амперметром можно измерить ток в любой электрической цепи. Этот прибор несложно узнать, он обозначается латинской буквой А. Так как ток бывает разной величины, начиная от миллиампер и выше, существуют разные по мощности приборы или универсальные, в которых изменяется предел измерения. Причем для постоянного и переменного тока нужны разные типы амперметров.

По принципу устройства приборы бывают:

  • Электромагнитного исполнения.
  • Магнитоэлектрические.
  • Тепловые.
  • Детекторного типа.
  • Индукционные.
  • Электродинамической системы.
  • Фотоэлектрические.
  • Термоэлектрические.

Магнитоэлектрическим устройством можно определить силу тока в цепях, подключенных к постоянному напряжению. Детекторного и индукционного типа – измерять переменные токи. Все остальные виды могут быть универсальными.

Высокой чувствительностью и точностью показаний обладают амперметры электродинамического и магнитоэлектрического исполнения.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.