Варианты измерения
Индуктивность катушки в физике определяется путём выполнения вычислений. Однако эту величину можно не только рассчитать, но и измерить. Делается это при помощи прямого или косвенного метода.
Прямой метод
Для измерения индуктивности катушки этим методом необходимо использовать специальные мостовые или прямопоказывающие устройства. С их помощью можно получить максимально точные данные, которые помогут выбрать требуемую катушку для схемы.
Порядок проведения измерений включает в себя следующие этапы:
- К прямопоказывающему приспособлению подключают катушку.
- После этого постепенно изменяют диапазоны измерений. Это делается до тех пор, пока получаемый результат не будет находиться примерно в середине интервала.
- Полученный результат фиксируют и высчитывают с учётом цены деления прибора, а также коэффициента, соответствующего положению переключателя.
Измерение выполняют путём проведения таких действий:
- Включённый мостовой прибор подсоединяют к катушке, индуктивность которой необходимо определить.
- Аналогично прямопоказывающему устройству проводят переключение интервалов измерений.
- После каждого такого действия ручку регулятора балансировки моста поочерёдно перемещают в одно и другое предельное положение.
- Как только удалось определить диапазон, в котором мост будет сбалансирован, можно выполнять дальнейшие действия.
- На следующем этапе измерений выполняется постепенное перемещение стрелочного индикатора.
- После того как в динамике прибора исчезнет звук, необходимо зафиксировать показатели.
- Затем их рассчитывают в соответствии с ценой деления шкалы и предусмотренным коэффициентом.
Косвенное определение
Для того чтобы измерить коэффициент самоиндукции, необходимо провести несколько подготовительных мероприятий. В первую очередь нужно собрать измерительную цепь по стандартной схеме, а также подготовить все необходимые приспособления (генератор синусоидального напряжения, частотомер, а также миллиамперметр и вольтметр, рассчитанные на переменный ток).
Порядок определения параметра:
- К выходу генератора параллельно подключают вольтметр. Он должен быть переключён в режим, при котором верхнее предельное значение будет соответствовать напряжению в 3−5 вольт.
- Аналогично подсоединяют и частотомер.
- Отдельно собирают вторую цепь. В ней последовательно соединяют миллиамперметр и катушку, индуктивность которой нужно определить.
- Затем обе цепи подключают параллельно друг к другу.
- Подключённый генератор устанавливают в режим выработки синусоидального напряжения.
- Путём изменения частоты добиваются такой работы приборов, при которой вольтметр будет показывать примерно 2 вольта. При этом сила тока на миллиамперметре будет постепенно уменьшаться.
- После этого ручку частотомера перемещают в положение, соответствующее частоте измерений.
- Как только эти действия будут выполнены, можно фиксировать значения.
Полученные данные переводятся в СИ, а затем выполняются все необходимые расчёты. Первым делом определяется индуктивное сопротивление. Для этого значения приборов подставляются в следующую зависимость: X=U/I, где U — напряжение, а I — сила тока. Результат расчётов будет выражен в омах.
После этого вычисляется индуктивность по формуле L=X/2 πF. В ней используются такие условные обозначения:
- X — индуктивное сопротивление;
- π — математическая постоянная (примерно 3,14);
- F — частота в герцах, при которой проводились измерения.
Индуктивность — это важный физический параметр, позволяющий определить магнитные свойства электроцепи. При точном его измерении и правильном проведении предусмотренных расчётов можно получить достоверные данные, которые понадобятся при выборе катушки.
Примечания
Если контур многовитковый (катушка) или вообще сложной формы, поверхность, краем которой он будет являться, может иметь достаточно сложную форму. Это никак не сказывается на большей части общих утверждений, однако для упрощения конкретного понимания ситуации и количественных оценок в случае катушки обычно приближенно рассматривают эту поверхность как совокупность («стопку») отдельных листков, каждый из которых привязан к отдельному единичному витку, а общий поток через такую поверхность рассматривается приближенно как сумма потоков через все такие листки.
Касаткин А. С. Основы электротехники. М.:Высшая школа, 1986.
Бессонов Л. А. Теоретические основы электротехники. Электрические цепи. М.:Высшая школа, 1978.
↑ Индуктивность — статья из Большой советской энциклопедии.
Правда, этот случай в принципе выходит за рамки квазистационарного приближения, позволяющего рассматривать элементы схемы как независимые, то есть понятие индуктивности отдельного элемента цепи начинает терять четкий смысл; однако оно во всяком случае может быть использовано хотя бы для оценочного расчета.
Прежде всего использование таких устройств, не основанных на электромагнитной индукции, обусловлено такими причинами, как необходимость или желательность иметь меньший размер элемента, чем это возможно для катушки индуктивности; например — в микросхемах, а также для элементов очень большой индуктивности.
Генри (единица индуктивности) — статья из Большой советской энциклопедии.
Индуктивность // Казахстан. Национальная энциклопедия. — Алматы: Қазақ энциклопедиясы, 2005. — Т. II. — ISBN 9965-9746-3-2.
Glenn Elert. (1998–2008).
Michael W. Davidson. (1995–2008)
Генри Джозеф — статья из Большой советской энциклопедии.
Присутствие магнетика особенно важно для катушек с ферромагнитным сердечником и т. п.
Здесь имеется в виду настоящая индуктивность; в электронике можно создать искусственно элементы (не основанные на явлении самоиндукции), зависимость ЭДС в которых от производной тока будет такой же, как в катушке индуктивности, но с коэффициентом противоположного знака — такие элементы можно условно назвать (по их поведению в электрической цепи) элементами с отрицательной индуктивностью, однако они не имеют отношения к предмету данной статьи.
Если считать структуру токов (точно или приближенно) фиксированной, то есть если токи не перераспределяются по объёму проводника в процессе их возбуждения.
Потокосцепление — статья из Большой советской энциклопедии.
* Сивухин Д. В. Общий курс физики. — М.. — Т. III
Электричество.
Как и в других случаях, присутствие магнетика, особенно если это ферромагнетик, для какового всегда имеет место гистерезис, приводит к более или менее существенной нелинейности (особенно большой для магнитожестких материалов сердечника); поэтому формулу для индуктивности, подразумевающей именно линейное приближение, следует считать приближенной, а в общем случае в качестве магнитной проницаемости в формулу входит некоторая эффективная величина, зависящая от величины тока в катушке.
↑ Физическая энциклопедия, Главный редактор А. М. Прохоров. Индуктивность // Физический энциклопедический словарь. — Советская энциклопедия (рус.). — М., 1983.
Lorenz, L. Über die Fortpflanzung der Elektrizität // Annalen der Physik. — 1879. — Т. VII. — С. 161—193. (The expression given is the inductance of a cylinder with a current around its surface)..
Elliott, R. S. Electromagnetics. — New York: Institute of Electrical and Electronics Engineers, 1993. Замечание: Постоянная −3/2 неправильна.
Rosa, E.B. The Self and Mutual Inductances of Linear Conductors (англ.) // Bulletin of the Bureau of Standards : journal. — 1908. — Vol. 4, no. 2. — P. 301—344.
Одновитковой контур и катушка
Индуктивность контура, представляющего виток провода, зависит от величины протекающего тока и магнитного потока, пронизывающего контур. Для индуктивности контура формула определяет параметр, соответственно, через поток и силу тока:
L=Ф/I.
Ослабление магнитного потока из-за диамагнитных свойств окружающей среды снижает индуктивность.
Параметр для многовитковой катушки пропорционален квадрату количества витков, поскольку увеличивается не только магнитный поток от каждого витка, но и потокосцепление:
L=L1∙N2.
Для того чтобы рассчитать индуктивность катушки формула должна учитывать не только количество витков, но и тип намотки и геометрические размеры.
Катушка индуктивности в цепи переменного тока
В цепи переменного тока в катушке индуктивности происходит следующий процесс:
- ток возбуждает в катушке электромагнитное поле. Поскольку он переменный, то и параметры электромагнитного поля во времени меняются, то есть оно тоже переменное;
- переменное магнитное поле в соответствии с законом электромагнитной индукции возбуждает в самой катушке ЭДС. Ее так и называют — ЭДС самоиндукции. Она всегда идет против направления изменения силы тока. Следовательно, в первой половине полупериода, когда сила тока возрастает, катушка это нарастание сдерживает. При этом часть энергии электричества накапливается в формируемом катушкой магнитном поле;
- во второй половине полупериода, катушка, наоборот, противостоит снижению силы тока, возвращая в цепь накопленную в виде магнитного поля энергию.
Таким образом, катушка индукции оказывает сопротивление источнику переменного тока. Это сопротивление имеет иную природу, нежели активное, преобразующее электрическую энергию в тепло.
Сопротивление катушки энергию не потребляет, а лишь аккумулирует ее и затем снова возвращает в цепь, меняя характер протекания в ней тока. Его называют индуктивным. В противоположность активному, оно, как и емкостное сопротивление конденсатора, является реактивным.
Эффект проявляется тем сильнее, чем выше частота переменного тока, то подтверждается формулой расчета индуктивного сопротивления: XL = w*L = 2 π * f * L, где:
- XL — индуктивное сопротивление, Ом;
- W — круговая частота переменного тока, рад/с;
- F — частота переменного тока, Гц;
- L — индуктивность катушки, Гн.
Индуктивное сопротивление, несмотря на иной принцип действия, измеряется в тех же единицах, что и активное — Омах. Таким образом, в цепях переменного тока катушка индуктивности выступает ограничителем силы тока и нагрузку, в отличие от цепи постоянного, вводить не требуется.
Зависимость индуктивного сопротивления катушки от частоты тока позволяет использовать данный элемент помимо прочего, для фильтрации высокочастотных помех или сигналов. Например, при установке его в схеме динамика, последний воспроизводит только низкие частоты, то есть играет роль сабвуфера.
На преодоление индуктивного сопротивления источник расходует часть мощности — это реактивная мощность (Wр). Остальное называют активной или полезной мощностью (Wа) — она производит полезную работу. Вместе реактивная и активная мощности образуют полную: Wр + Wа = Wпол.
График происходящих процессов в катушке индуктивности
Доля активной мощности характеризуется параметром cosϕ: cosϕ = Wа / W пол. Полную мощность принято измерять в вольт-амперах (ВА). Именно эти единицы указываются в характеристике источников бесперебойного питания (ИБП) и дизельных электрогенераторов. Активная мощность измеряется в привычных ваттах (Вт).
Все сказанное имеет отношение к потребителям с электродвигателями и трансформаторами, поскольку обмотки этих элементов по сути, являются катушками индуктивности. То есть если на шильдике импульсного блока питания компьютера указано, что его мощность составляет 400 Вт и cosϕ = 0,7, то от «бесперебойника» данное устройство потянет мощность Wпол = Wа / cosϕ = 400 0,7 = 571,4 ВА.
При большом количестве подобных потребителей, затраты на реактивную мощность существенно перегружают генераторы электростанций, ввиду чего в энергосетях применяют установки компенсации реактивной мощности (УКРМ).
При включении катушки индуктивности в цепь постоянного тока процесс, описанный в пунктах 1-3, также имеет место, только не все время, а в момент включения/отключения.
Если собрать простейшую цепь из последовательно установленных выключателя, катушки и лампы, можно видеть, что лампочка загорается при замыкании цепи с запаздыванием и также с запаздыванием гаснет после размыкания.
Объясняется это тем, что ток в момент включения меняется от нулевого значения до максимума, также в момент отключения его значение меняется, хоть и очень быстро, от максимума до нуля. В первом случае катушка накапливает в себе часть энергии в виде магнитного поля, во втором — отдает ее лампе, отчего та и горит после размыкания цепи.
Расчет катушки в броневом ферритовом сердечнике
Ферритовые сердечники для катушек индуктивности бывают самыми разнообразными. Ш-образные, П-образные, броневые разных модификаций. Кроме феррита для таких сердечников используют и порошковые материалы, карбонильное железо. Расчет катушек на таких сердечниках можно вести разными способами.
На Западе при расчете катушек с любым ферритовым сердечником принят способ расчета через специальный параметр AL и расчет ведется по таким же формулам как и для ферритовых колец. Основная формула расчета:
- L — индуктивность (нГн)
- AL — коэффициент индуктивности сердечника (нГн/виток в квадрате)
- N — число витков катушки
Параметр AL можно найти в спецификациях производителя, для каждого типоразмера сердечника свой, да и размерность коэффициента часто различается. Основное отличие бронированных сердечников от кольцевых заключается в том, что хотя практически весь магнитный поток также сосредоточен внутри сердечника, однако на пути магнитного потока есть зазор в месте прилегания чашек друг к другу. Этот зазор имеет высокое магнитное сопротивление и, в итоге, относительная магнитная проницаемость сердечника всегда меньше его начальной.
- μотн — относительная магнитная проницаемость сердечника;
- μн — начальная магнитная проницаемость;
- lз,lс — длина зазора и средняя длина магнитной силовой линии в сердечнике, соответственно.
Кроме зазора между чашками, величина которого зависит от плотности их прилегания друг к другу, существует технологический зазор в центральном керне. Этот зазор призван стабилизировать параметры сердечника уменьшив зависимость относительной магнитной проницаемости от плотности прилегания чашек. У разных типов сердечников от разных производителей этот зазор отличается.
Величина коэффициента индуктивности AL зависит только от μотн и размеров сердечника.
- Sc — площадь сечения магнитной цепи (зависит только от размеров сердечника);
- lc — средняя длина силовой линии магнитного поля (зависит только от размеров сердечника);
- α — постоянный коэффициент не зависящий от размеров сердечника.
Зная размеры сердечника и его начальную магнитную проницаемость, мы можем определить фактор индуктивности катушки AL. Поскольку величина зазора между чашками много меньше средней длины магнитной линии и отношения между ними у разных типоразмеров чашек близки, — можно упростить расчет и оперировать начальной магнитной проницаемостью вместо относительной. β — коэффициент меньше единицы, учитывающий зазор в сердечнике.
В конечном итоге, объединив коэффициенты α и β в общий коэффициент k мы приходим к следующим эмпирическим формулам:
- L — индуктивность (мкГн)
- µ — начальная магнитная проницаемость сердечника
- N — число витков катушки
- k = 19.74 для ферритовых сердечниковk = 60 для карбонильных сердечников
- D1,D2,d1,d2,h1,h2 — геометрические размеры сердечника в мм.
Формулы справедливы для стандартных броневых сердечников типов «Б», «СБ». Есть возможность выбрать один из нескольких стандартных сердечников, что позволяет рассчитать катушку несколькими щелчками мыши. При этом программа рассчитывает число витков для катушки при полностью выведенном подстроечнике. Для расчета при полностью введенном подстроечнике можно принять D2 =0. Это касается конечно сердечников из карбонильного железа, т.к. ферритовые в основном идут без подстроечников. Среднее отношение зазора к длине силовой линии у ферритовых и карбонильных сердечников отличается, что и нашло свое выражение в различной величине коэффициента k.
Необходимо иметь ввиду, что упрощение расчета без учета реальной величины магнитного зазора (введение коэффициента β) существенно понижает точность расчета. Кроме того разброс µ для одного типоразмера довольно высок и зависит от температуры. Поэтому расчет катушек в броневом сердечнике по этой методике имеет существенную погрешность, достигающую ±30% и выше и он годится только для сердечников с неизвестным AL. Для более точных вычислений необходимо непосредственно пользоваться коэффициентом AL, если он есть в даташитах на броневой сердечник.
Исходные формулы из книги:
Назад…
Прочие способы измерения
Измеритель емкости конденсаторов своими руками собирают по схемам импульсных устройств. Последовательности RC цепей с переменными резисторами создают на выходе изделия серии сигналов со ступенчатым изменением частоты. Для наладки устройства используют мультиметр, с которым будет применяться приставка.
Набор проверенных конденсаторов поочередно подключают к конструкции и настраивают точность работы в каждом поддиапазоне.
Измеритель ёмкости полярных электролитических элементов своими руками схематически реализуется и настраивается, как часть приставки без колебательного контура. На выходе вместо импульсного — постоянное напряжение.
В цифровых измерителях ёмкости источник питания — высокостабильный. «Плавающие» параметры элементов, из которых собирается схема, дадут неприемлемую для точности измерений погрешность.
На логических элементах создаются источники переменного импульсного тока для замеров ESR.
Недорогие приборы для измерения емкости конденсатора, типа мостовых RLC устройств с дополнительной функцией проверки SMD сопротивлений, сетевой зарядкой и жидкокристаллическим дисплеем, сами размером с палец. Выполняют функции профессионального метрологического комплекса. Способны выступать в роли измерителя емкости электролитических конденсаторов, как полярных, так и переменных.
Варианты измерения
Индуктивность катушки в физике определяется путём выполнения вычислений. Однако эту величину можно не только рассчитать, но и измерить. Делается это при помощи прямого или косвенного метода.
Прямой метод
Для измерения индуктивности катушки этим методом необходимо использовать специальные мостовые или прямопоказывающие устройства. С их помощью можно получить максимально точные данные, которые помогут выбрать требуемую катушку для схемы.
Порядок проведения измерений включает в себя следующие этапы:
- К прямопоказывающему приспособлению подключают катушку.
- После этого постепенно изменяют диапазоны измерений. Это делается до тех пор, пока получаемый результат не будет находиться примерно в середине интервала.
- Полученный результат фиксируют и высчитывают с учётом цены деления прибора, а также коэффициента, соответствующего положению переключателя.
Измерение выполняют путём проведения таких действий:
- Включённый мостовой прибор подсоединяют к катушке, индуктивность которой необходимо определить.
- Аналогично прямопоказывающему устройству проводят переключение интервалов измерений.
- После каждого такого действия ручку регулятора балансировки моста поочерёдно перемещают в одно и другое предельное положение.
- Как только удалось определить диапазон, в котором мост будет сбалансирован, можно выполнять дальнейшие действия.
- На следующем этапе измерений выполняется постепенное перемещение стрелочного индикатора.
- После того как в динамике прибора исчезнет звук, необходимо зафиксировать показатели.
- Затем их рассчитывают в соответствии с ценой деления шкалы и предусмотренным коэффициентом.
Косвенное определение
Для того чтобы измерить коэффициент самоиндукции, необходимо провести несколько подготовительных мероприятий. В первую очередь нужно собрать измерительную цепь по стандартной схеме, а также подготовить все необходимые приспособления (генератор синусоидального напряжения, частотомер, а также миллиамперметр и вольтметр, рассчитанные на переменный ток).
Порядок определения параметра:
- К выходу генератора параллельно подключают вольтметр. Он должен быть переключён в режим, при котором верхнее предельное значение будет соответствовать напряжению в 3−5 вольт.
- Аналогично подсоединяют и частотомер.
- Отдельно собирают вторую цепь. В ней последовательно соединяют миллиамперметр и катушку, индуктивность которой нужно определить.
- Затем обе цепи подключают параллельно друг к другу.
- Подключённый генератор устанавливают в режим выработки синусоидального напряжения.
- Путём изменения частоты добиваются такой работы приборов, при которой вольтметр будет показывать примерно 2 вольта. При этом сила тока на миллиамперметре будет постепенно уменьшаться.
- После этого ручку частотомера перемещают в положение, соответствующее частоте измерений.
- Как только эти действия будут выполнены, можно фиксировать значения.
Полученные данные переводятся в СИ, а затем выполняются все необходимые расчёты. Первым делом определяется индуктивное сопротивление. Для этого значения приборов подставляются в следующую зависимость: X=U/I, где U — напряжение, а I — сила тока. Результат расчётов будет выражен в омах.
После этого вычисляется индуктивность по формуле L=X/2 πF. В ней используются такие условные обозначения:
- X — индуктивное сопротивление;
- π — математическая постоянная (примерно 3,14);
- F — частота в герцах, при которой проводились измерения.
Индуктивность — это важный физический параметр, позволяющий определить магнитные свойства электроцепи. При точном его измерении и правильном проведении предусмотренных расчётов можно получить достоверные данные, которые понадобятся при выборе катушки.
Самоиндукция. Энергия магнитного поля
Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре.
Собственный Φ, пронизывающий контур или катушку с током, пропорционален силе тока I
Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукциииндуктивностью катушки. Единица индуктивности в СИ называется генри (Гн). Индуктивность контура или катушки равна или 1 Гн, если при силе постоянного тока 1 А собственный поток равен 1 Вб
В качестве примера рассчитаем индуктивность длинного соленоида, имеющего N витков, площадь сечения S и длину l. Магнитное поле соленоида определяется формулой (см. § 1.17)
где I – ток в соленоиде, n = N / e – число витков на единицу длины соленоида.
Магнитный поток, пронизывающий все N витков соленоида, равен
Следовательно, индуктивность соленоида равна
где V = Sl – объем соленоида, в котором сосредоточено магнитное поле. Полученный результат не учитывает краевых эффектов, поэтому он приближенно справедлив только для достаточно длинных катушек. Если соленоид заполнен веществом с μ, то при заданном токе I индукция магнитного поля возрастает по модулю в μ раз (см. § 1.17); поэтому индуктивность катушки с сердечником также увеличивается в μ раз:
ЭДС самоиндукции, возникающая в катушке с постоянным значением индуктивности, согласно формуле Фарадея равна
ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.
Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы (рис. 1.21.1). Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.
Рисунок 1.21.1. Магнитная энергия катушки. При размыкании ключа K лампа ярко вспыхивает. |
Из закона сохранения энергии следует, что вся энергия, запасенная в катушке, выделится в виде джоулева тепла. Если обозначить через R полное сопротивление цепи, то за время Δt выделится количество теплоты ΔQ = I2RΔt.
Ток в цепи равен
Выражение для ΔQ можно записать в виде
В этом выражении ΔI < 0; ток в цепи постепенно убывает от первоначального значения I до нуля. Полное количество теплоты, выделившейся в цепи, можно получить, выполнив операцию интегрирования в пределах от I до 0. Это дает
Эту формулу можно получить графическим методом, изобразив на графике зависимость магнитного потока Φ(I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, равное первоначальному запасу энергии магнитного поля, определяется площадью изображенного на рис. 1.21.2 треугольника.
Рисунок 1.21.2. Вычисление энергии магнитного поля. |
Таким образом, энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна
Применим полученное выражение для энергии катушки к длинному соленоиду с магнитным сердечником. Используя приведенные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, можно получить:
где V – объем соленоида. Это выражение показывает, что магнитная энергия локализована не в витках катушки, по которым протекает ток, а рассредоточена по всему объему, в котором создано магнитное поле. Физическая величина
равная энергии магнитного поля в единице объема, называется объемной плотностью магнитной энергии. Дж. Максвелл показал, что выражение для объемной плотности магнитной энергии, выведенное здесь для случая длинного соленоида, справедливо для любых магнитных полей.
Что такое индуктивность
Индуктивностью называется идеализированный элемент электрической цепи, в котором происходит запасание энергии магнитного поля. Запасания энергии электрического поля или преобразования электрической энергии в другие виды энергии в ней не происходит.
Наиболее близким к идеализированному элементу — индуктивности — является реальный элемент электрической цепи — индуктивная катушка.
В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электрического поля и преобразование электрической энергии в другие виды энергии, в частности в тепловую.
Количественно способность реального и идеализированного элементов электрической цепи запасать энергию магнитного поля характеризуется параметром, называемым индуктивностью.
Таким образом термин «индуктивность» применяется как название идеализированного элемента электрической цепи, как название параметра, количественно характеризующего свойства этого элемента, и как название основного параметра индуктивной катушки.
Рис. 1. Условное графическое обозначение индуктивности
Связь между напряжением и током в индуктивной катушке определяется законом электромагнитной индукции, из которого следует, что при изменении магнитного потока, пронизывающего индуктивную катушку, в ней наводится электродвижущая сила е, пропорциональная скорости изменения потокосцепления катушки ψ и направленная таким образом, чтобы вызываемый ею ток стремился воспрепятствовать изменению магнитного потока:
Потокосцепление катушки равно алгебраической сумме магнитных потоков пронизывающих ее отдельные витки:
где N — число витков катушки.
В системе единиц СИ магнитный поток и потокосцепление выражают в веберах (Вб).
Магнитный поток Ф, пронизывающий каждый из витков катушки, в общем случае может содержать две составляющие: магнитный поток самоиндукции Фси и магнитный поток внешних полей Фвп: Ф — Фси + Фвп.
Первая составляющая представляет собой магнитный поток, вызванный протекающим по катушке током, вторая — определяется магнитными полями, существование которых не связано с током катушки — магнитным полем Земли, магнитными полями других катушек и постоянных магнитов. Если вторая составляющая магнитного потока вызвана магнитным полем другой катушки, то ее называют магнитным потоком взаимоиндукции.
Потокосцепление катушки ψ , так же как и магнитный поток Ф, может быть представлено в виде суммы двух составляющих: потокосцепления самоиндукции ψси , и потокосцепления внешних полей ψ вп
Наведенная в индуктивной катушке ЭДС е, в свою очередь, может быть представлена в виде суммы ЭДС самоиндукции, которая вызвана изменением магнитного потока самоиндукции, и ЭДС, вызванной изменением магнитного потока внешних по отношению к катушке полей:
здесь еси — ЭДС самоиндукции, евп — ЭДС внешних полей.
Если магнитные потоки внешних по отношению к индуктивной катушке полей равны нулю и катушку пронизывает только поток самоиндукции, то в катушке наводится только ЭДС самоиндукции.
Потокосцепление самоиндукции зависит от протекающего по катушке тока. Эта зависимость, называемая вебер — амперной характеристикой индуктивной катушки, в общем случае имеет нелинейный характер (рис. 2, кривая 1 ).
В частном случае, например для катушки без магнитного сердечника, эта зависимость может быть линейной (рис. 2, кривая 2).
Рис. 2. Вебер-амперные характеристики индуктивной катушки: 1 — нелинейная, 2 — линейная.
В системе единиц СИ индуктивность выражают в генри (Гн).
При анализе цепей обычно рассматривают не значение ЭДС, наведенной в катушке, а напряжением на ее зажимах, положительное направление которого выбирают совпадающим с положительным направлением тока:
Идеализированный элемент электрической цепи — индуктивность, можно рассматривать как упрощенную модель индуктивной катушки, отражающую способность катушки запасать энергию магнитного поля .
Для линейной индуктивности напряжение на ее зажимах пропорционально скорости изменения тока. При протекании через индуктивность постоянного тока напряжение на ее зажимах равно нулю, следовательно, сопротивление индуктивности постоянному току равно нулю.
Что такое катушка индуктивности
Данный элемент ещё называют дросселем. Это свёрнутый в спираль изолированный провод. Для такой спирали характерны большие индуктивные и маленькие ёмкостные параметры.
Важно! Дроссель препятствует протеканию переменного тока, потому что обладает существенной инерционностью. Она препятствует любому изменению проходящего через витки тока
При этом нет разницы, увеличивается он или уменьшается.
В связи с этим данные элементы применяют в электротехнике для осуществления:
- токоограничения;
- ослабления биений;
- помехоподавления;
- формирования магнитного поля;
- изготовления датчиков движения.
Дроссель входит в систему колебательного контура в цепях резонанса и применяется в линиях задержки.
Применение L в колебательном контуре
Способы расчёта
Существует несколько основных способов определить индуктивность катушки. Все формулы, которые будут использоваться в расчётах, легко можно найти в справочной литературе или интернете. Весь процесс вычисления довольно простой и не составит труда для людей, имеющих элементарные математические и физические знания.
Через силу тока
Этот расчёт считается самым простым способом определения индуктивности катушки. Формула через силу тока вытекает из самого термина. Какова индуктивность катушки — можно определить по формуле: L=Ф/I, где:
- L — индуктивность контура (в генри);
- Ф — величина магнитного потока, измеряемого в веберах;
- I — сила тока в катушке (в амперах).
Соленоид конечной длины
Соленоид представляет собой тонкую длинную катушку, где толщина обмотки значительно меньше диаметра. В этом случае расчёты ведутся по той же формуле, что и через силу тока, только величина магнитного потока будет определяться следующим образом: Ф=µ0NS/l, где:
- µ0 — магнитная проницаемость среды, определяющаяся по справочным таблицам (для воздуха, который принимается по умолчанию в большинстве расчётов, она равна 0,00000126 генри/метр);
- N — количество витков в катушке;
- S — площадь поперечного сечения витка, измеряемая в квадратных метрах;
- l — длина соленоида в метрах.
Коэффициент самоиндукции соленоида можно рассчитать и исходя из способа определения энергии магнитного потока поля. Это более простой вариант, но он требует наличия некоторых величин. Формула для нахождения индуктивности — L=2W/I 2 , где:
- W — энергия магнитного потока, измеряемая в джоулях;
- I — сила тока в амперах.
Катушка с тороидальным сердечником
В большинстве случаев тороидальная катушка наматывается на сердечник, изготовленный из материала, обладающего большой магнитной проницаемостью. В этом случае для расчётов индуктивности можно использовать формулу для прямого соленоида бесконечной длины. Она имеет такой вид: L=N µ0 µS/2 πr, где:
- N — число витков катушки;
- µ — относительная магнитная проницаемость;
- µ0 — магнитная постоянная;
- S — площадь сечения сердечника;
- π — математическая постоянная, равная 3,14;
- r — средний радиус тора.
Длинный проводник
Большинство таких квазилинейных проводников имеет круглое сечение. В этом случае величина коэффициента самоиндукции будет определяться по стандартной формуле для приближённых расчётов: L= µ0l (µelnl/r+ µi/4)/2 π. Здесь используются следующие обозначения:
- l — длина проводника в метрах;
- r — радиус сечения провода, измеряемый в метрах;
- µ0 — магнитная постоянная;
- µi — относительная магнитная проницаемость, характерная для материала, из которого изготовлен проводник;
- µe — относительная магнитная проницаемость внешней среды (чаще всего принимается значение для вакуума, которое равняется 1);
- π — число Пи;
- ln — обозначение логарифма.