Индекс цветопередачи CRI
Один из неочевидных параметров в кодировке – значение CRI, определяющее, насколько естественным выглядит свечение. Средний параметр равен 100 – это солнечный свет; меньшее значение применимо к источникам искусственного света. Соответственно, чем выше CRI, тем лучше.
Помимо определения нужного типа прибора в магазине, цветовую маркировку можно использовать в практических целях. Например, зная расположение и цвет элементов, можно рассчитать сопротивление резистора. Для этого достаточно занести данные в форму онлайн калькулятора. Понимание систем маркировки облегчает правильное использованию диодов и решает множество проблем, связанных с выбором нужного типа устройства.
Вольт-амперная характеристика — диод
Вольт-амперная характеристика диода существенно зависит от температуры окружающей среды, с повышением которой прямой ток диода при одном и том же напряжении может увеличиться в несколько раз. При заданном прямом токе с увеличением температуры снижается прямое напряжение между электродами диода.
Вольт-амперная характеристика диода ( рис. 38 — 6) показывает зависимость тока через диод от приложенного к нему напряжения.
Вольт-амперные характеристики диода — двухэлектрод-ной электронной лампы и полупроводникового диода были показаны на рис. 3.3 и 3.17, в. Диод, у которого можно пренебречь обратным током и падением напряжения в прямом направлении, следует считать идеальным вентилем. Сопротивление идеального вентиля в прямом направлении ( гъ) равно нулю, а в обратном ( / чбр) — бесконечно велико. Вольт-амперная характеристика идеального вентиля, показанная на рис. 15.1, представляет собой отрезок ( Оа) положительной полуоси тока и отрезок ( Об) отрицательной полуоси напряжения. Заменой реальной характеристики вентиля отрезками прямых ( кусочно-линейная аппроксимация), в частности характеристикой идеального вентиля, шиши роко пользуются, чтобы упростить расчет режима цепи с вентилями.
Вольт-амперная характеристи. |
Вольт-амперная характеристика диода условно разделяется на три области: область насыщения и две области пробоя. В области насыщения ток насыщения, проходящий через диод, очень мал и практически не зависит от приложенного напряжения.
Условные изображения диодов.| Вольтамперные характеристики диодов. |
Вольт-амперная характеристика диода нелинейна, и значение R зависит от величины напряжения U а. На рабочем участке характеристики величина R может иметь значения от нескольких десятков до нескольких тысяч ом.
Селеновый ( а и меднозакисный ( б диоды.| Вольтамперные характеристики селеновой и меднозакисной шайб. |
Вольт-амперные характеристики диодов сильно зависят от температуры.
Вольт-амперная характеристика диода зависит от температуры. С повышением температуры прямое и обратное сопротивления уменьшаются. Наиболее сильно с изменением температуры меняются обратный ток и.
Вольт-амперная характеристика диода в режиме теплового пробоя соответствует кривой б на рис. 3.4. Она имеет падающий характер, так как вследствие повышения температуры перехода концентрация носителей заряда в нем резко увеличивается и электрическое сопротивление перехода уменьшается относительно быстрее, чем растет ток перехода.
Устройство диода Шоттки. — — — — — — — — / L. |
Вольт-амперная характеристика диодов Шоттки почти идеально описывается экспоненциальной зависимостью ( 10 — 52) для идеализированного диода. Это обстоятельство позволяет с успехом использовать диоды Шоттки в качестве логарифмирующих элементов.
Диодные ограничители. |
Излом вольт-амперной характеристики диодов позволяет пропускать практически без искажений малые мгновенные значения напряжений и резко ослаблять вершины полуволн.
Принцип действия выпрямительного диода
Полупроводники по своим электрическим свойствам являются чем-то средним между проводниками и диэлектриками.
Как ведет себя диод при прямом и обратном включении
Прямое направление — направление постоянного тока, в котором диод имеет наименьшее сопротивление.
Обратное направление — направление постоянного тока, в котором диод имеет наибольшее сопротивление.
Рассмотрим поведение тока в цепи при прямом и обратном включении на переменное и постоянное напряжение. Изначально мы будем иметь синусоиду, которая получается от источника переменного тока.
При таких способах подключения отсекается половина синусоиды положительная или отрицательная. На выходе — пульсирующий переменный ток одного знака (считай, постоянный, только загвоздка в том, что им никто не пользуется).
- анод (для прямого включения подключаем к плюсу), основание треугольника
- катод (подключаем к минусу для прямого включения) палочка
Ток течет от анода к катоду, некоторые прибегают к сравнению с воронкой. В широкое горлышко жидкость проходит быстрее, чем в узкое. Принцип работы заключается в пропускании тока при прямом включении и запирании диода при обратном включении (отсутствии тока). Всё дело в запирающем слое, который испаряется или расширяется в зависимости от способа подключения диода.
Рассмотрим поведение диода в схеме постоянного тока. На левом изображении ток, напряжение проходит — лампочка горит (черная) — это прямое включение. На правом изображении диод не пропускает достаточно тока и напряжения для загорания лампочки — обратное включение.
Применение
Отличительные особенности и принцип работы диода Шоттки обусловливают его широкое применение в быту и в промышленности. Кроме блоков питания компьютера, его часто можно встретить в схемах:
- бытовых электроприборов;
- стабилизаторов напряжения;
- во всем спектре радио- и телеаппаратуры;
- в другой электронике.
Подобные элементы используются в современных батареях и транзисторах, работа которых обеспечивается сенечной энергией.
Такое универсальное использование элемента связано с способностью полупроводникового диода с эффектом Шоттки во много раз усиливать работоспособность любого прибора и увеличивать его эффективность. Обратное сопротивление электротока восстанавливается, за счет чего он сохраняется в электрической сети. Потери динамики напряжения минимизируются. Также диод Шоттки вбирает несколько видов излучений.
Диод с барьером Шоттки — неприхотливый и простой элемент, обеспечивающий бесперебойную работу множества современных приборов. Доступный, надежный, отличается широкой сферой применения благодаря особенностям в своей конструкции.
Диод Шоттки в ВЧ цепях
Также диоды Шоттки обладают быстрой скоростью переключения. Это значит, что мы можем использовать их в высокочастотных (ВЧ) цепях.
Итак, возьмем генератор частоты и выставим синус частотой в 60 Гц
Возьмем диод 1N4007 и диод Шоттки 1N5817. Подключим их по простой схеме однополупериодного выпрямителя
и будем снимать с них показания
Как вы видите, оба они прекрасно справляются со своей задачей по выпрямлению сигнала на частоте в 60 Гц.
Но что будет, если мы увеличим частоту до 300 кГц?
Ого! Диод Шоттки более-менее справляется со своей задачей, что нельзя сказать о простом диоде 1N4007. Простой диод не может справиться со своей задачей не пропускать обратный ток, поэтому на осциллограмме мы видим отрицательный выброс
Отсюда можно сделать вывод: диоды Шоттки рекомендуется использовать в ВЧ цепях.
Миниатюризация
С развитием микроэлектроники стали широко применяться специальные микросхемы, однокристальные микропроцессоры. Все это не исключает использования навесных элементов. Однако если для этой цели использовать радиоэлементы обычных размеров, то это сведет на нет всю идею миниатюризации в целом. Поэтому были разработаны бескорпусные элементы – smd компоненты, которые в 10 и более раз меньше обычных деталей. ВАХ таких компонентов ничем не отличается от ВАХ обычных приборов, а их уменьшенные размеры позволяют использовать такие запчасти в различных микросборках.
Компоненты smd имеют несколько типоразмеров. Для ручной пайки подходят smd размера 1206. Они имеют размер 3,2 на 1,6 мм, что позволяет их впаивать самостоятельно. Другие элементы smd более миниатюрные, собираются на заводе специальным оборудованием, и самому, в домашних условиях, их паять невозможно.
Принцип работы smd компонента также не отличается от его большого аналога, и если, к примеру, рассматривать ВАХ диода, то она в одинаковой степени будет подходить для полупроводников любого размера. По току изготавливаются от 1 до 10 ампер. Маркировка на корпусе часто состоит из цифрового кода, расшифровка которого приводится в специальных таблицах. Протестировать на пригодность их можно тестером, как и большие аналоги.
Диод в цепи постоянного тока
Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.
прямое включение диода
Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.
диод в прямом включении
Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.
обратное включение диода
Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.
обратное включение диода
Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.
Шаги
Метод 1 из 2:
Осмотр маркировки
-
1
Изучите принцип работы диода. Диод состоит из полупроводников p- и n-типа. Полупроводник n-типа отвечает за отрицательную сторону диода и называется катодом. Полупроводник р-типа является положительной стороной диода и называется анодом.
- Если положительная сторона источника напряжения соединена с положительной стороной диода (анодом), а отрицательная сторона соединена с отрицательной стороной (катодом), то диод будет проводить ток.
- Если перевернуть диод обратной стороной, то он не будет пропускать электрический ток (до определенной величины).
-
2
Узнайте, что означают условные обозначения. Диоды обозначаются на схеме символом (—▷|—), который показывает, как его следует устанавливать. Стрелка указывает на вертикальную полосу, из которой выходит линия.
X
Источник информацииСтрелка указывает на положительную сторону диода, а вертикальная линия — на отрицательную. Проще запомнить так: положительная сторона перетекает в отрицательную, а стрелка указывает на направление потока.
-
3
Найдите большую ленту. Если на диоде отсутствуют условные обозначения, найдите на диоде кольцо, ленту или линию. Возле отрицательной стороны (катода) большинства диодов обычно находится большая цветная лента, опоясывающая диод.
-
4
Распознайте положительную сторону светодиода. LED — это светодиод, стороны которого легко различить по его ножкам. Длинная ножка будет положительным концом (анодом).
X
Источник информацииЕсли ножки были обрезаны, осмотрите внешний корпус светодиода. Электрод, который находится ближе в плоскому краю, является отрицательным (катодом).
Метод 2 из 2:
С помощью мультиметра
-
1
Настройте мультиметр на проверку диода.
Диод можно проверить и без этого режима на мультиметре. Для этого установите ручку мультиметра в режим для измерения сопротивления (Ω).
Для этого поверните ручку на условное обозначение диода (—▷|—). В этом режиме мультиметр пропустит через диод немного тока, что облегчит его проверку.
-
2
Подсоедините мультиметр к диоду. Приставьте положительный щуп мультиметра к одному концу диода, а отрицательный — к другому. Показания отобразятся на экране мультиметра.
X
Источник информации- Если на мультиметре есть режим проверки диода и вы правильно подключили его щупы к диоду (положительный к положительному, отрицательный к отрицательному), то экран покажет наличие напряжения. В противном случае вы ничего не увидите.
- Если на мультиметре нет режима для проверки диода и вы правильно подключили его щупы к диоду (положительный к положительному, отрицательный к отрицательному), то дисплей покажет низкое сопротивление. В противном случае на экране отобразится очень сильное сопротивление, которое может быть выражено символами «OL».
-
3
Проверьте светодиод. LED — это светодиод. Поверните ручку на мультиметре в положение для проверки диода. Приставьте положительный щуп мультиметра к одному концу диода, а отрицательный — к другому. Если светодиод загорится, значит, положительный щуп касается положительного конца (анода), а отрицательный щуп — отрицательного (катода). Если светодиод не загорится, значит, щупы касаются противоположных концов.
Стадии
Как и любое другое инфекционное заболевание, микробная экзема протекает в несколько стадий:
- I — начало болезни (эритематозная экзема). Проявляется зудом и легким покраснением ограниченных участков кожи.
- II — развитие патологии (папуловезикулярная стадия). Характеризуется появлением узелковых высыпаний, которые со временем заполняются прозрачной жидкостью.
- III — разгар болезни (стадия мокнутия). Пузырьки самопроизвольно вскрываются с выделением серозной жидкости, в местах папул формируются гнойные очаги.
- IV — затухание патологии (сухая экзема). Воспаленные участки кожи подсыхают, покрываются серовато-желтыми корками, которые со временем могут трескаться.
Острая микробная экзема диагностируется в случае, когда длительность заболевания не превышает 3 месяца. Воспалительные очаги при этом имеют ярко-красную окраску, подвергаются постоянному мокнутию, сильно зудят.
В случае если симптомы экземы не проходят в период от 3 до 6 месяцев, речь идет о подостром течении патологии. При данной форме пораженные участки кожи имеют менее насыщенный цвет (розоватый, светло-красный), отличаются большей плотностью, сухостью и постоянно шелушатся.
Для хронической формы патологии характерно длительное, более 6 месяцев, течение. Протекает с периодами ремиссии и обострения. В неактивной фазе экземы кожа практически не отличается от здоровой, но имеет более плотную структуру, склонна к повышенной сухости. Клинические симптомы активной фазы болезни сходны с проявлениями острой экземы.
Диагностика диодов Шоттки
Можно провести диагностику электронного элемента Шоттки, если возникнет такая необходимость, но на это уйдет немного времени. Прежде всего, необходимо выпаять один элемент из диодного моста или электронной схемы. Осмотреть визуально и проверить тестером. В результате этих простых технических операций узнаете исправный ли полупроводник или нет. Хотя и необязательно выпаивать всю сборку, ведь это лишняя работа, а самое главное — затраты времени.
Также можно проверить данный диод или диодный мост мультиметром, при этом учитывайте то, что на приборе изготовитель пишет ток сбоку. Мы включаем мультиметр и подводим его щупы к концам анода и катода, и он покажет нам напряжение диода.
Иногда бывает так, что диод Шоттки может стать неисправным по некоторым причинам. Рассмотрим их:
- Если в полупроводниковом элементе возникнет пробоина, то он просто перестает держать ток и становится проводником.
- Если в полупроводнике или диодном мосту возникнет обрыв, тогда он вообще перестанет пропускать ток.
Причем в обоих случаях запаха гари вы не почувствуете и дыма не увидите, так как в корпусе встроена специальная защита против таких происшествий. Если вдруг в одном транзисторе сгорел вышесказанный диод, то убедитесь, что это единственное устройство, где вы нашли неисправность, потому что диоды обязательно нужно проверять все.
Хотя иногда может и не быть такой возможности для того, чтобы проверить диоды на исправность, когда это будет необходимо. Иногда бывает так, что компьютер начинает тормозить, включаться очень долго, «зависает». Возможно, дело связано именно с диодами, и каждый может разобрать процессор и посмотреть, что внутри случилось.
Проверка транзистор-тестером
Проверить на работоспособность полупроводниковых элементов можно с помощью универсального тестера радиокомпонентов. Часто его называют транзистор-тестером.
Это универсальный измерительный прибор с цифровым индикатором. С помощью транзистор-тестера можно проверить различные радиодетали. К ним относятся резисторы, конденсаторы, катушки индуктивности. А также и полупроводниковые приборы, транзисторы, тиристоры, диоды, стабилитроны, супрессоры и т.п.
Для проверки работоспособности, зажмите детальку в ZIF-панельке (специальном разъёме с рычагом для зажимания элементов), после чего на дисплее высвечивается схемное обозначение элемента. Однако рассматриваемые в этой статье элементы проверяются как обычные диоды. Поэтому не стоит рассчитывать, что транзистор тестер определит, на какое напряжение стабилитрон. Для этого все равно нужно будет собрать схему типа той, что показана выше или такую как рассмотрим далее.
Рекомендуем посмотреть видео о том, что такое универсальный транзистор-тестер и как им проверять радиоэлектронные компоненты.
Тестер, также как и мультиметр, проверяет целостность р-n перехода и корректно определяет напряжением стабилизации стабилитронов до 4,5 вольт.
При ремонте аппаратуры, рекомендуется элемент стабилизации менять на новый. Не зависимо от наличия исправного p-n перехода. Т.к. высока вероятность, что у диода изменилось напряжение стабилизации или оно может произвольно меняться в процессе работы аппаратуры.
Проверка диодов Шоттки
Бытовой мультиметр хорошо справляется с задачей проверки любого вида диодов с барьером Шоттки. Способ проверки очень схож с проверкой рядового диода. Однако есть свои секреты. Электронный элемент с утечкой особенно тяжело поддаётся корректной проверке. Во-первых, диодную сборку необходимо извлечь из схемы. Для этого потребуется паяльник. Если диод пробит, то сопротивление, близкое к нулю, во всех возможных режимах работы подскажет о его неработоспособности. По физическим процессам это напоминает замыкание.
«Утечка» диагностируется сложнее. Самый распространённый мультиметр для населения – dt-830, в большинстве случаев измерений в положении «диод» не увидит проблему. При переведении регулятора в положение «омметр» омическое сопротивление уйдёт в бесконечность. Также прибор не должен показывать наличие Омического сопротивления. В противном случае требуется замена.
Тестирование диодов Шоттки
Диоды Шоттки распространены в электрике и радиоэлектронике. Область их использования широкая, вплоть до приёмников альфа излучения и различных космических аппаратов.
Конструкция
Отличается диод Шоттки от обыкновенных диодов своей конструкцией, в которой используется металл-полупроводник, а не p-n переход. Понятно, что свойства здесь разные, а значит, и характеристики тоже должны отличаться.
Действительно, металл-полупроводник обладает такими параметрами:
- Имеет большое значение тока утечки;
- Невысокое падение напряжения на переходе при прямом включении;
- Восстанавливает заряд очень быстро, так как имеет низкое его значение.
Диод Шоттки изготавливается из таких материалов, как арсенид галлия, кремний; намного реже, но также может использоваться – германий. Выбор материала зависит от свойств, которые нужно получить, однако в любом случае максимальное обратное напряжение, на которое могут изготавливаться данные полупроводники, не выше 1200 вольт – это самые высоковольтные выпрямители. На практике же намного чаще их используют при более низком напряжении – 3, 5, 10 вольт.
На принципиальной схеме диод Шоттки обозначается таким образом:
Но иногда можно увидеть и такое обозначение:
Это означает сдвоенный элемент: два диода в одном корпусе с общим анодом или катодом, поэтому элемент имеет три вывода. В блоках питания используют такие конструкции с общим катодом, их удобно использовать в схемах выпрямителей. Часто на схемах рисуется маркировка обычного диода, но в описании указывается, что это Шоттки, поэтому нужно быть внимательными.
Диодные сборки с барьером Шоттки выпускаются трех типов:
1 тип – с общим катодом;
2 тип – с общим анодом;
3 тип – по схеме удвоения.
Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.
Такое соединение помогает увеличить надежность элемента: ведь находясь в одном корпусе, они имеют одинаковый температурный режим, что важно, если нужны мощные выпрямители, например, на 10 ампер. Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт
При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а
Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а
Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а.
Еще один главный недостаток: для этих приборов нельзя превышать обратный ток даже на мгновение. Они тут же выходят из строя, в то время как кремниевые диоды, если не была превышена их температура, восстанавливают свои свойства.
Но положительного все-таки больше. Кроме низкого падения напряжения, диод Шоттки имеет низкое значение емкости перехода. Как известно: ниже емкость – выше частота. Такой диод нашел применение в импульсных блоках питания, выпрямителях и других схемах, с частотами в несколько сотен килогерц.
ВАХ такого диода имеет несимметричный вид. Когда приложено прямое напряжение, видно, что ток растет по экспоненте, а при обратном – ток от напряжения не зависит.
Все это объясняется, если знать, что принцип работы этого полупроводника основан на движении основных носителей – электронов. По этой же самой причине эти приборы и являются такими быстродействующими: у них отсутствуют рекомбинационные процессы, свойственные приборам с p-n переходами. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.
Основные диоды Шоттки, которые встречаются в блоках питания
Шоттки TO-220 SBL2040CT 10A x 2 =20A 40V Vf=0.6V при 10AШоттки TO-247 S30D40 15A x 2 =30A 40V Vf=0.55V при 15AУльтрафаст TO-220 SF1004G 5A x 2 =10A 200V Vf=0.97V при 5AУльтрафаст TO-220 F16C20C 8A x 2 =16A 200V Vf=1.3V при 8AУльтрафаст SR504 5A 40V Vf=0.57Шоттки TO-247 40CPQ060 20A x 2 =40A 60V Vf=0.49V при 20AШоттки TO-247 STPS40L45C 20A x 2 =40A 45V Vf=0.49VУльтрафаст TO-247 SBL4040PT 20A x 2 =40A 45V Vf=0.58V при 20AШоттки TO-220 63CTQ100 30A x 2 =60A 100 Vf=0.69V при 30AШоттки TO-220 MBR2545CT 15A x 2 =30A 45V Vf=0.65V при 15AШоттки TO-247 S60D40 30A x 2 =60A 40-60V Vf=0.65V при 30AШоттки TO-247 30CPQ150 15A x 2 =30A 150V Vf=1V при 15AШоттки TO-220 MBRP3045N 15A x 2 =30A 45V Vf=0.65V при 15AШоттки TO-220 S20C60 10A x 2 =20A 30-60V Vf=0.55V при 10AШоттки TO-247 SBL3040PT 15A x 2 =30A 30-40V Vf=0.55V при 15AШоттки TO-247 SBL4040PT 20A x 2 =40A 30-40V Vf=0.58V при 20AУльтрафаст TO-220 U20C20C 10A x 2 =20A 50-200V Vf=0.97V при 10A
Существуют и современные отечественные диодные сборки на большой ток. Вот их маркировка и внутренняя схема:
Высоковольтные силовые диоды Шоттки с напряжением до 1200 В
Хотя более предпочтительным является применение диодов Шоттки в низковольтных мощных выпрямителях с выходными напряжениями в пару десятков вольт, на высоких частотах переключения.
|
BAT54C | WW1 | 2 шоттки | 30В | 200мА | 5 нс | 10 пФ | SOT23 | BAT54CW | 43 | 2 Шоттки | 30В | 200мА | 5 нс | 10 пФ | SOT323 | BAT54S | WV4 | 2 шоттки | 30В | 200мА | 5 нс | 10 пФ | SOT23 | BAT54SW | 44 | 2 Шоттки | 30В | 200мА | 5нс | 10 пФ | SOT323 |
Купить
Упаковка: