Как правильно подключить светодиодный прожектор к сети 220 вольт

Основные неисправности светодиодных ламп на 220 вольт

Исходя из многолетнего опыта, если не горит светодиодная лампа 220 в, то причины могут быть следующими:

1. Выход из строя светодиодов

Поскольку в светодиодной лампе все светодиоды подключены последовательно, если выходит хотя бы один из них, вся лампочка перестает светится поскольку возникает обрыв цепи. В большинстве случаев светодиоды в лампах на 220 применяются 2-х типоразмеров: SMD5050 и SMD3528.

Для устранения этой причины необходимо найти вышедший из строя светодиод и заменить его на другой, или же поставить перемычку (перемычками лучше не злоупотреблять — так как они могут увеличить ток через светодиоды в некоторых схемах).  При решении проблемы вторым способом незначительно уменьшится световой поток, однако лампочка опять станет светить.

Чтоб найти поврежденный светодиод нам понадобится источник питания с низким током (20 мА) или мультиметр.

Для этого подаем «+» на анод, а «–» на катод. Если светодиод не засветится, значит он вышел из строя. Таким образом нужно проверить каждый из светодиодов лампы. Также вышедший из строя светодиод можно определить визуально, это выглядит примерно так:

Причиной данной поломки в большинстве случаев является отсутствие какой-либо защиты светодиода.

2. Выход из строя диодного моста

В большинству случаев при таковой неисправности основная причина — заводской брак. И в таком в случае зачастую «вылетают» и светодиоды. Для решения данной проблемы необходимо заменить диодный мост (или диоды моста) и проверить все светодиоды.

Чтобы проверить диодный мост необходим мультиметр. Необходимо подать на вход моста переменное напряжение 220 В, и проверить напряжение на выходе. Если на выходе оно остается переменным, то значит диодный мост вышел из строя.

Если диодный мост собран на отдельных диодах, их можно поочередно выпаять и проверить прибором. Диод должен пропускать ток только в одном направлении. Если он вообще не пропускает ток или пропускает при подаче на катод положительной полуволны значит он вышел из строя и требует замены.

3. Плохая пайка выводных концов

В данном случае нам будет необходим мультиметр. Нужно разобраться в схеме светодиодной лампы и далее проверять все точки, начиная со входного напряжения 220 В и заканчивая выводами светодиодов. Исходя из опыта, данная проблема присуща дешевым светодиодным лампам и чтоб ее устранить достаточно паяльником дополнительно пропаять все детали и компоненты.

Достоинства и недостатки ленты 220 В

Светодиодные ленты с прямым
питанием от 220 В имеют важные преимущества:

  • не требуют использования блока питания;
  • способны обеспечивать световое оформление
    участков большой длины;
  • относительно недороги и доступны;
  • демонстрируют хорошую работу в условиях улицы,
    особенно при низких температурах воздуха.

Говоря о
достоинствах LED лент на 220 В, следует упомянуть и о недостатках. Их немало:

большая протяженность ленты не только важное
достоинство, но иногда серьезный недостаток. Подсветить небольшой отрезок таким
устройством не удастся;
ленты, предназначенные для питания от 220 В, не
имеют липкого слоя, что несколько усложняет монтаж;
простота подключения имеет оборотную
сторону — отсутствие гальванической развязки ленты, которая становится
опасной и требует надежной изоляции всех соединений

Кроме того, для исключения
опасности поражения электротоком необходима защита не ниже IP67;
нагрев светодиодов достаточно велик, а
возможности теплоотведения у них практически нет. Обычно такие ленты хорошо
защищены от внешних воздействий, но, с увеличением надежности защиты резко
уменьшается возможность охлаждения. Это является причиной использования
преимущественно в уличных условиях;
выпрямитель, имеющийся в стандартном проводе
питания, не имеет сглаживающего конденсатора. Это делается из соображений
компактности, но в результате светодиоды при включении начинают мерцать с
частотой 100 раз в секунду (100 Гц). это не заметно невооруженным глазом, но
человеческий мозг способен воспринимать мерцание такой частоты. Оно оказывает
отрицательное воздействие, по санитарным нормам от него следует избавляться;
подобные светильники недороги, что означает использование
материалов низкого качества. Силикон, которым покрыта лента для защиты от
влаги, издает заметный запах, который усиливается при нагреве. Это является еще
одной причиной преимущественного использования на улице.

Количество недостатков превосходит достоинства, но это не настолько страшно, как может показаться. Назначение светодиодных лент на 220 В — подсветка наружных конструкций значительной протяженности. Некоторые из минусов ленты таким образом попросту нивелируются — например, нагрев или запах силиконового покрытия. Мерцание также мало влияет на органы восприятия людей, поскольку подобную подсветку никто не рассматривает подолгу.

Заметным недостатком можно считать невозможность прямого подключения RGB светильников. Каждый из них фактически представляет собой три ленты, нуждающиеся в обособленном питании. Световые эффекты, демонстрируемые разноцветными конструкциями, управляются контроллером, который параллельно является блоком питания.

Обойтись без него нельзя — будет гореть либо только один цвет, либо сразу все три. Кроме того, размер RGB лент не превышает 5 м, что для уличных инсталляций слишком мало.

Конструкция светодиодного прожектора

Большинство прожекторов данного типа изготавливается на основе алюминиевого корпуса, содержащего стеклянные или пластиковые рефлекторы для рассеивания света или формирования узконаправленных световых пучков. Наличие нескольких наклонных зеркал внутри корпуса или специальных панелей (не обязательно стеклянных) позволяет задавать нужное направление светового потока.

Рабочая часть прожектора называется светодиодной матрицей. Она состоит из одного или нескольких полупроводников, впаянных в обычную плату. Несмотря на то, что матрица не выделяет тепло наружу, она нагревается изнутри. От того, насколько качественно будет организован отвод тепла, зависит продолжительность эксплуатации устройства.

В этих целях используются специальные радиаторы. В процессе нагрева температура по подложке с минимальным сопротивлением уходит на радиатор (обязательно наличие термопасты).

Для стабильной и продолжительной работы светодиодам необходимо постоянное напряжение с минимальными перепадами. За соблюдение данного требования отвечает дополнительный элемент – драйвер (блок питания). Эта небольшая деталь содержит трансформатор, диодный мост, конденсатор и стабилизаторы. Может быть дополнена иными электротехническими компонентами.

К уличным прожекторам нередко подключают датчики движения, поэтому они работают только при необходимости, когда сенсор регистрирует приближение человека. Датчик движения характеризуется разными параметрами, среди которых – чувствительность и диапазон действия. От первой характеристики зависит, будет ли устройство реагировать на передвижение собаки и других мелких существ, от второй – на каком расстоянии должен находиться от прожектора человек, чтобы включился свет.

Еще одним новшеством в схеме подключения светодиодных прожекторов является автоматический коммутатор. Он реагирует на уровень освещенности окружения и в зависимости от того, насколько в комнате/на территории темно, включает осветительный прибор на определенную мощность. К примеру, днем в солнечную погоду прожектор и вовсе не включится.

Топ-3 лучших производителя ЛЕД лент на 220 в

Назвать однозначно лучших
производителей сложно, поскольку общих критериев оценки подобных устройств
попросту не существует. Среди достойных фирм имеются и американские, и
европейские, и китайские компании. К лучшим из них можно условно отнести
следующие бренды:

  • CREE. Это американская компания, которая
    работает с 1987 года, т.е. практически с момента возникновения LED ламп. Сегодня компания CREE
    производит широкий ассортимент светодиодных приборов, и ленты среди них
    занимают значительную часть;
  • OSRAM. Это известная фирма, которая относится к
    числу европейских лидеров в производстве осветительной техники и, в частности,
    полупроводниковых лампочек. Продукция компании отличается заметной
    дороговизной, но и качество их светильников вполне соответствует ценовым
    запросам;
  • ЭРА. Российская компания, созданная в 2004 году,
    представляет вполне конкурентоспособную продукцию, которую высоко оценивают
    пользователи как в нашей стране, так и в соседних республиках. Привлекательной
    особенностью светодиодных лент этого бренда является низкая цена при вполне
    достойном качестве, что подтверждает устойчивый спрос.

Выбор ленты следует производить в
первую очередь по техническим характеристикам. Имя компании служит лишь
гарантией соответствия заявленных и реальных параметров товара.

Важные нюансы управления яркостью

Протяженные специализированные ленты на 220 В не имеют блока управления, хотя могут диммироваться, если возникает необходимость. Яркость светодиодов изменяется в зависимости от напряжения питания

Здесь важно не превысить предел возможностей, хотя в стандартных конструкциях для этого надо, чтобы в сети оказалось не 220 В, а гораздо больше. С уменьшением напряжения яркость свечения падает, что можно использовать для создания световых эффектов

Если же используется лента, собранная самостоятельно из отдельных фрагментов, то надо проследить, чтобы все они были одинаковы. Если соединить отрезки разной длины и, соответственно, с разным количеством светодиодов, то лента будет светиться неравномерно — короткие куски будут гореть ярче, а более длинные — тусклее.

Чем больше разница в длинах фрагментов, тем заметнее будет расхождение в режиме работы. При этом, возможность подключения диммера у таких светильников присутствует в той же степени, что и у специализированных длинных лент.               

Вариант №1 » последовательное включение светодиода и резистора.

Итак, первым вариантом все же будет схема, где последовательно к светодиоду подключается обычный резистор с нужным сопротивлением. Величину сопротивления можно вычислить по закону ома. Допустим у нас светодиод, рассчитанный на напряжение 3 вольта и потребляющий 9 миллиампер. Напряжение питания (220 В) разделится между резистором и светодиодом. Если на светодиоде осядет 3 вольта, то на резисторе осядет около 217 вольт. Ток в последовательных цепях во всех точках одинаковый (в нашем случае он будет равен 9 мА). И чтобы узнать сопротивление резистора мы 217 вольт делим на 9 миллиампер и получаем 24 килоома (24000 ом).

Теоретически эта схема подключения светодиода к сети 220 вольт рабочая, но практически она скорее всего сгорит сразу при включении. Почему это так. Дело в том, что большинство обычных светодиодов рассчитаны на напряжение питания (при прямом своем включении, то есть плюс светодиода к плюсу источника питания и минус светодиода к минусу источника питания), где-то в пределах от 2,5 до 4,5 вольта. При прямом включении на светодиоде будет его рабочее напряжение (пусть 3 вольта), а излишек (217 вольт) осядет на резисторе. Обратное напряжение у светодиодов не такое уж и высокое (где-то около 30 вольт). И когда обратная полуволна переменного напряжения подается на светодиод, то светодиод просто выйдет из строя из-за слишком большого обратного напряжения, поданного на него. Напомню, что полупроводники при обратном включении имеют очень большое внутреннее сопротивление (гораздо большее чем стоящий в цепи резистор). Следовательно все сетевое напряжение осядет именно на светодиоде.

Другие варианты подключения

В предыдущих схемах защитный диод был включен встречно-параллельно, однако его можно разместить и так:

Это вторая схема включения светодиодов на 220 вольт без драйвера. В этой схеме ток через резистор будет в 2 раза меньше, чем в первом варианте. А, следовательно, на нем будет выделяться в 4 раза меньше мощности. Это несомненный плюс.

Но есть и минус: к защитному диоду прикладывается полное (амплитудное) напряжение сети, поэтому любой диод здесь не прокатит. Придется подобрать что-нибудь с обратным напряжением 400 В и выше. Но в наши дни это вообще не проблема. Отлично подойдет, например, вездесущий диод на 1000 вольт — 1N4007 (КД258).

Не смотря на распространенное заблуждение, в отрицательные полупериоды сетевого напряжения, светодиод все-таки будет находиться в состоянии электрического пробоя. Но благодаря тому, что сопротивление обратносмещенного p-n-перехода защитного диода очень велико, ток пробоя будет недостаточен для вывода светодиода из строя.

Внимание! Все простейшие схемы подключения светодиодов в 220 вольт имеют непосредственную гальваническую связь с сетью, поэтому прикосновение к ЛЮБОЙ точке схемы — ЧРЕЗВЫЧАЙНО ОПАСНО!

Для уменьшения величины тока прикосновения нужно располовинить резистор на две части, чтобы получилось как показано на картинках:

Благодаря такому решению, даже поменяв местами фазу и ноль, ток через человека на «землю» (при случайном прикосновении) никак не сможет превысить 220/12000=0.018А. А это уже не так опасно.

Как узнать падение напряжения?

Для того чтобы определить, на сколько вольт светодиод, можно воспользоваться теоретическим и практическим методами. Они оба хороши и применяются в зависимости от ситуации и сложности испытуемого прибора.

Теоретический метод

Для анализа характеристик светодиода таким способом большую подсказку дают габариты прибора, цвет и форма его корпуса. Примеси различных химических элементов вызывают свечение кристаллов от красного до желтого цвета. Конечно, если видна расцветка корпуса, тогда можно определить некоторые параметры светодиода по внешнему виду. Но при его прозрачности придется воспользоваться мультиметром. Выставляем тестер на «обрыв» и щупами прикасаемся к выводам светодиода. Ток, проходящий через светодиод, вызывает слабое свечение кристалла.

Типы и виды светодиодов

В состав этих изделий входят различные полупроводниковые металлы. Этот фактор и влияет на падение напряжения на p-n-переходе. Чтобы обозначить такие характеристики, независимо от марок и производителей светодиода, их окрашивают в различные цвета. Но стоит знать, что конкретно утверждать, на сколько вольт светодиод, опираясь только на его окраску, будет неверно. Цвета этих приборов дают приблизительные значения для проведения измерений. Примерные параметры по цветовому признаку приведены в таблице.

Цвет прибора Напряжение, В
Красный 1,63–2,03
Желтый 2,1–2,18
Зеленый 1,9–4,0
Синий 2,48–3,7
Оранжевый 2,03–2,1
Инфракрасный до 1,9
Фиолетовый 2,76–4
Белый 3,5
Ультрафиолетовый 3,1–4,4

Примерные характеристики светодиода можно определить по цвету его корпуса и размерам

На прямое напряжение светодиода не воздействуют габариты или вариации корпуса, однако может проглядываться количество кристаллов, которые излучают свет и соединяются последовательно. Бывают виды элементов SMD, где люминофор прячет цепочку кристаллов.

В корпусе SMD-светодиода последовательно соединяются три кристалла белого цвета. Наиболее часто они применяются в лампах на 220 В китайского производства. Из-за того, что такие светодиоды начинают реагировать только от 9,6 вольт, протестировать их мультиметром не удастся, так как его батарейка питания рассчитана на 9,5 В.

Теоретически можно воспользоваться интернетом, скачав специальную программу datasheet, в поисковике которой вписать известные параметры светодиода, его цвет. Это позволит найти приблизительные характеристики, где падение напряжения и значения тока могут быть неточными.

Практический метод

Проведение тестирования практическим способом позволяет получить наиболее точные значения силы тока и падения напряжения. Рассчитанная таким образом характеристика прибора позволяет безопасно и долговременно использовать его по назначению. Для получения неизвестных параметров потребуется вольтметр, мультиметр, блок питания, рассчитанный на 12 В, резистор от 510 Ом.

Принцип измерений аналогичен описанному выше для тестирования светодиода на номинальный ток. Необходимо собрать схему с резистором и вольтметром, после чего увеличивать постепенно напряжение до начала свечения кристалла. При достижении яркости высшей точки показания замедляют рост. Можно снимать с экрана номинальное напряжение светодиода.

При 1,9 вольт может отсутствовать свечение. В этом случае часто проверяется инфракрасный диод. Чтобы это уточнить, необходимо перевести излучатель в телефонную камеру. Если будет видно на экране белое пятно, то это и есть инфракрасный диод.

Схема проверки падения напряжения на светодиоде

Если нет возможности применить блок питания на постоянные 12 В, можно использовать батарейку «Крона», рассчитанную на 9 вольт. При отсутствии вышеперечисленных источников питания отлично подойдет стабилизатор сетевого напряжения, который может выдавать необходимое выпрямленное напряжение, только потребуется заново рассчитать номинал сопротивления резистора, задействованного в схеме. В этом случае также нужно повышать напряжение до засвечивания светодиода. Напряжение, при котором произойдет свечение, и будет номинальным, на которое он рассчитан.

При неизвестных характеристиках светодиода обязательно необходимо рассчитывать его значения номинального тока и падения напряжения, чтобы предотвратить быстрый выход из строя.

Как различить светодиоды 3 Вт и 1 Вт

При включении чипов на полную мощность Вы вряд ли сможете отличить 1 Вт и 3 Вт по свету. Глаз не воспримет слишком яркое свечение.

Можно использовать черную коробку, по отдельности включать светодиоды и смотреть, какой образец даст больший световой эффект. Вместо коробки можно использовать черный лист. Это пример, но смысл понятен, думаю.

Если у Вас есть два диода, не понятного происхождения, то определить какой из них 3 Вт, а какой 1 Вт можно следующим способом: подключаем оба к источнику питания и подаем на них 3,5 В. При этом начальное значение тока должны быть в пределах 350мА. Посмотрим на графическую зависимость яркости от тока.

Зависимости светодиодов 1 и 3 Вт от тока

1
of 2

График зависимости 1 Вт диода

График зависимости 3 Вт диода

При увеличении начального напряжения в 3,5 В яркость 1 Вт диода еще немного увеличится и практически остановится, если дальше повышать напряжение (ток). В случае, если у Вас 3 Вт диод, то при увеличении напряжения от 3,5 В ток будет расти, а согласно графику, приведенному выше, мы видим, что яркость будет постепенно увеличиваться до момента, пока ток не достигнет 700 мА.

График зависимости тока от напряжения 1 и 3 Вт светодиодов

1
of 2

Зависимость тока от напряжения 1 Вт

Зависимость тока от напряжения 3 Вт диода

Т.е. визуально мы можем определить любой светодиод 1 Вт или 3 Вт если подав на него ток 350 мА будем постепенно увеличивать его. Увеличение яркости от 350 мА говорит о том, что перед нами 3 Вт диод. Незначительное увеличение яркости от 350 до 700 мА говорит о том, что перед нами 1 Вт диод.

Другой способ определить где 3 Вт или 1 Вт мощный светодиод — нагрев. Здесь простая физика. При тех же 350 мА 1 Вт светодиод будет нагреваться быстро. И в руке его держать Вы не сможете. 3 Вт же светодиод при том же токе можно достаточно долго держать в руке без заметных неприятных ощущений. Естественно, что это побочный способ определения где какой диод. Но имеет право на существование.

Ну и последний способ — отличить светодиоды по размеру кристалла. Чтобы наверняка это делать, стоит приобрести USB микроскоп . Это бюджетный вариант и достаточно качественный, с необходимыми гаджетами. можно посмотреть много микроскопов различной ценовой категории. Вообще USB микроскоп интересная штуковина и пригодится дома не один раз. Далее используя калибровочную линейку и предустановленную программу можно легко замерить размеры кристалла. С ним мы точно можем сказать, какой размер кристалла установлен. Однако и этот способ не даст нам точного понятия где какой диод

Но беря во внимание, что чем больше кристалл, тем больше мощность — соответственно можно сделать вывод для себя

Мощные диоды 1 Вт имеют размеры 30х30mil. Кристаллы в 3 Вт диодах — 45х45mil. Это, конечно идеальные размеры.

Если у Вас нет микроскопа, а хочется узнать размеры, то можно воспользоваться подручными средствами. Подадим на светодиоды очень маленький ток. Кристаллы начнут еле-еле светиться.

Слева мы видим, что размер кристалла на порядок больше. Именно этот светодиод был приобретен на Aliexpress. Тот образец, что был приобретен в офф-лайн магазине явно 1 Вт, не смотря на то, что продавался с заявленной мощностью — 3Вт. В принципе, мне хватило одного взгляда на кристалл через микроскоп и понять где какой диод будет. Но для себя любимого я проверил свечение по первому способу (увеличение тока) и визуальный вывод был подтвержден.

Ну вот и все. Вот такими нехитрыми способами теперь Вы можете спокойно проверить, сравнить и различить 3 Вт мощные светодиоды от 1 Вт. Но, чтобы этим не заниматься постоянно, стоит приобретать светодиодную продукцию в проверенных магазинах и площадках.

Безопасность при подключении

При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению. Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам. Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.

В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.

Подключение LED по простой схеме с резистором и диодом — вариант 2

Другая простая схема показывает, как подключить светодиоды к 220 В переменного напряжения не намного сложнее и ее также можно отнести к простым схемам.

Рассмотрим принцип работы. При положительной полуволне ток идет сквозь резисторы 1 и 2, а также сам светодиод. В данном случае стоит помнить, что падение напряжения на светодиоде будет обратным для обычного диода — VD1. Как только в схему «попадает» отрицательная полуволна 220 В, ток пойдет через обычный диод и резисторы. В этом случае уже прямое падение напряжение на VD1 будет обратным по отношению к светодиоду. Все просто.

При положительной полуволне сетевого напряжения ток протекает через резисторы R1, R2 и светодиод HL1 (при этом прямое падение напряжения на светодиоде HL1 является обратным напряжением для диода VD1). При отрицательной полуволне сетевого напряжения ток протекает через диод VD1 и резисторы R1, R2 (при этом прямое падение напряжения на диоде VD1 является обратным напряжением для светодиода HL1).

Расчетная часть схемы

Номинальное напряжение сети:

UС.НОМ = 220 В

Принимается минимальное и максимальное напряжение сети (опытные данные):

UС.МИН = 170 В
UС.МАКС = 250 В

Принимается к установке светодиод HL1, имеющий максимально допустимый ток:

IHL1.ДОП = 20 мА

Максимальный расчетный амплитудный ток светодиода HL1:

IHL1.АМПЛ.МАКС = 0,7*IHL1.ДОП = 0,7*20 = 14 мА

Падение напряжения на светодиоде HL1 (опытные данные):

UHL1 = 2 В

Минимальное и максимальное действующее напряжение на резисторах R1, R2:

UR.ДЕЙСТВ.МИН = UС.МИН = 170 В
UR.ДЕЙСТВ.МАКС = UС.МАКС = 250 В

Расчетное эквивалентное сопротивление резисторов R1, R2:

RЭКВ.РАСЧ = UR.АМПЛ.МАКС/IHL1.АМПЛ.МАКС = 350/14 = 25 кОм

Максимальная суммарная мощность резисторов R1, R2:

PR.МАКС = UR.ДЕЙСТВ.МАКС2/RЭКВ.РАСЧ = 2502/25 = 2500 мВт = 2,5 Вт

Расчетная суммарная мощность резисторов R1, R2:

PR.РАСЧ = PR.МАКС/0,7 = 2,5/0,7 = 3,6 Вт

Принимается параллельное соединение двух резисторов типа МЛТ-2, имеющих суммарную максимально допустимую мощность:

PR.ДОП = 2·2 = 4 Вт

Расчетное сопротивление каждого резистора:

RРАСЧ = 2*RЭКВ.РАСЧ = 2*25 = 50 кОм

Принимается ближайшее большее стандартное сопротивление каждого резистора:

R1 = R2 = 51 кОм

Эквивалентное сопротивление резисторов R1, R2:

RЭКВ = R1/2 = 51/2 = 26 кОм

Максимальная суммарная мощность резисторов R1, R2:

PR.МАКС = UR.ДЕЙСТВ.МАКС2/RЭКВ = 2502/26 = 2400 мВт = 2,4 Вт

Минимальный и максимальный амплитудный ток светодиода HL1 и диода VD1:

IHL1.АМПЛ.МИН = IVD1.АМПЛ.МИН = UR.АМПЛ.МИН/RЭКВ = 240/26 = 9,2 мА
IHL1.АМПЛ.МАКС = IVD1.АМПЛ.МАКС = UR.АМПЛ.МАКС/RЭКВ = 350/26 = 13 мА

Минимальный и максимальный средний ток светодиода HL1 и диода VD1:

IHL1.СР.МИН = IVD1.СР.МИН = IHL1.ДЕЙСТВ.МИНФ = 3,3/1,1 = 3,0 мА
IHL1.СР.МАКС = IVD1.СР.МАКС = IHL1.ДЕЙСТВ.МАКСФ = 4,8/1,1 = 4,4 мА

Обратное напряжение диода VD1:

UVD1.ОБР = UHL1.ПР = 2 В

Расчетные параметры диода VD1:

UVD1.РАСЧ = UVD1.ОБР/0,7 = 2/0,7 = 2,9 В
IVD1.РАСЧ = UVD1.АМПЛ.МАКС/0,7 = 13/0,7 = 19 мА

Принимается диод VD1 типа Д9В, имеющий следующие основные параметры:

UVD1.ДОП = 30 В
IVD1.ДОП = 20 мА
I0.МАКС = 250 мкА

Минусы использования схемы подключения светодиодов к 220 В по варианту 2

Главные недостатки подключения светодиодов по этой схеме — малая яркость светодиодов, за счет малого тока. IHL1.СР = (3,0-4,4) мА и большая мощность на резисторах: R1, R2: PR.МАКС = 2,4 Вт.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.