Изоляционные материалы

Что из себя представляют электрические изоляторы?

Электрические изоляторы представляют собой диэлектрический элемент электроустановки, конструктивно выполняемый из изоляционного материала и армирующих деталей. Диэлектрик предназначен для электрического отделения, а металлические конструкции позволяют зафиксировать как сам изолятор, так и проводники на нем. В качестве диэлектрического материала используется стекло, полимер или керамика.

Назначение

Электрические изоляторы предназначены для крепления шин, проводов, тралеи и прочих токоведущих элементов к корпусу электроустановки, консолям опор и прочим конструкциям. Помимо этого они изолируют проводники при прохождении через стены, позволяют отделить электроустановки друг от друга и прочие несущие функции.

В зависимости от места установки их подразделяют на внутренней и наружной

Также немаловажное значение играет класс напряжения, на который рассчитан тот или иной изолятор. Из-за чего будет отличаться его конструктивное исполнение и определенные технические характеристики, определяющие возможность их применения в тех или иных электроустановках

Основные технические характеристики

В соответствии с требованиями нормативных документов, для электрических изоляторов регламентируются такие характеристики:

  • Сухоразрядное напряжение — это  такая величина, при которой произойдет электрический разряд в условиях сухого состояния поверхности. Перекрытие изолятора
  • Мокроразрядное напряжение – определяет такую же величину, как и предыдущий параметр, но при условии попадания дождя на поверхность. При этом рассматривается такой вариант, когда направление струй располагается под углом 45°.

Рис. 2. Изолятор под дождем

При таком потоке струй под углом 45°, которые обозначены на рисунке 2 буквой А, обеспечивается максимальное обтекание поверхности Б, и, как следствие, обеспечивается минимальное сопротивление электрическому току – от 9,5 до 10,5 кОм*см. Этот параметр всегда ниже сухоразрядного.

  • Напряжение пробоя – представляет собой такую величину, при которой произойдет пробой между двумя полюсами. В зависимости от конструкции, полюса могут быть представлены стержнем и шапкой либо шиной и фланцем.
  • Механическая прочность – проверяется нагрузкой на изгиб, разрыв или срез головки. При этом конструкцию жестко закрепляют и прикладывают к ней усилие, плавно повышаемое до такого уровня высочайшего напряжения в материале, которое приводит к разрушению.
  • Термическая устойчивость – испытывается посредством попеременного нагревания и резкого охлаждения. Состоит из двух-трех циклов, в зависимости от материала и конструкции. После чего прикладывается электрический потенциал, создающий множественные разряды.

Проверка технических характеристик.

Следует отметить, что испытательные процедуры не являются обязательными для всех изоляторов, выпускаемых на заводе. Электрическим, термическим и механическим воздействиям подвергаются только 0,5% от партии. Обязательной для всех изоляторов  является проверка напряжением перекрытия в течении трех минут, при котором на изоляторе возникают искровые разряды.

У подвесных изоляторов обязательно проверяется механическая характеристика. Для этого в течении минуты к нему прикладывается механическая нагрузка, которую регламентируют заводские или государственные нормы.

Такие испытания обеспечивают нормальную работу электрических изоляторов при номинальных токах и номинальных напряжениях в сети. А также, достаточный уровень надежности. Кроме этого, некоторые модели подвергаются периодической проверке в ходе эксплуатации. По результатам периодических осмотров и испытаний они могут проходить очистку, выбраковку и замену.

Это интересно: Испытание кабеля повышенным напряжением — методика, нормы, сроки

Слоистые изоляционные материалы

К слоистым изоляционным материалам относятся текстолит, стеклотекстолит, и гетинакс.

Текстолит

Текстолит представляет собой слоистый изоляционный материал. Изготовлен методом прессованния при 150°С многослойной х/б ткани, пропитанную резольной смолой. По сравнению с другим изоляционным материалом, гетинаксом имеет более высокую механическую прочность, но худшие некоторые характеристики, такие, как влагостойкость и цена. Выпускается в форме цилиндров, стержней, трубок и листов. Имеет две основные марки: А — которая обладает высокой электрической прочностью, и Б — с лучшими механическими свойствами и хорошей влагостойкостью. Текстолит хорошо механически обрабатывается. Из него изготавливаются каркасы катушек, диэлектрические щиты, платы, штанги, прокладки. Благодаря хорошим износостойким свойствам из него делают шестеренки, вкладыши для подшипников.

Стеклотекстолит

Стеклотекстолит изготовляют та же, как и текстолит, только из стеклоткани, пропитанной теплостойкой смолой. Характеристики стеклотекстолита выше, чем у текстолита и гетинакса. Стеклотекстолит имеет высокую электрическую прочность (20 кВ/мм), большую механическую прочность, нагревостойкость (от 180 до 225° С) и влагостойкостью. Но имеет себестоимость выше текстолита.

Гетинакс

Гетинакс изготовляют из прессованной бумаги, пропитанной бакелитовой смолой. Современная промышленность выпускает в виде листов толщиной от 0,4 до 50 мм. Так же гетинакс выпускается в виде стержней различного диаметра. Гетинакс маркируется А, Б, В, Вс. Диэлектрическая прочность гетинакса составляет 20 – 25 кВ/мм и может работать как на воздухе, так и в масле. Гетинакс превосходно обрабатывается как ручным инструментом, так и станками. Из гетинакса могут изготовляться диэлектрические щиты, штанги, прокладки, платы, каркасы катушек и трансформаторов. К недостаткам можно отнести низкую нагревостойкость. При нагреве поверхность гетинакса обугливается и начинает проводить электрический ток.

Жидкие диэлектрики

Жидкая изоляция

К такому виду диэлектриков относят различные виды масел, лаков, паст и смол. Большое распространение получили продукты переработки нефти – минеральные масла. Такие изоляторы используются в трансформаторных подстанциях небольшой мощности, масляных выключателях, кабелях и конденсаторах. Жидкая изоляция для проводов применяется при подготовке к работе кабелей и конденсаторов.

Заметка. В качестве альтернативы жидкой изоляции можно применить спрей для проводов. Дистиллированная вода также является диэлектриком.

Технические характеристики жидких диэлектриков напрямую зависят от их чистоты. Чем больше загрязнены масло, вода и другие подобные диэлектрические жидкости, тем более худшими характеристиками они обладают. Очистка таких жидкостей производится при помощи дистилляции или ионообменной сорбции.

Характеристики электроизоляторов

Ко всем без исключения электроизоляторам предъявляются общие требования.

Электрическая прочность

Главная задача диэлектрика – обеспечить требуемый уровень значения величины электрической прочности на пробой. Данная величина находится в прямой зависимости от того, насколько толстая фарфоровая стенка изолятора. Нарушение прочности происходит при пробое твердого диэлектрика или в результате разряда по поверхности изолятора. Прочность характеризуется напряжением промышленной частоты, которое способен выдержать изолятор при сухой и мокрой поверхности, а также импульсным напряжением при испытании.  Эту величину проверяют специальным прибором – мегаомметром.

Удельное сопротивление

Изоляционный материал пропускает небольшую часть электрического тока. Эта величина является несоизмеримо малой, в сравнении с теми токами, которые протекают постоянно по жилам. Электрический ток может идти через два пути: сквозь сам изоляционный материал или по его поверхности. Удельным сопротивлением называется величина сопротивления единицы объема материала. Она равна отношению произведений величин сопротивлений тока, идущего по изолятору и сквозь него, к их же сумме.

В качестве единицы измерения данной величины взято значение сопротивления изоляционного материала, выполненного в форме куба с гранью 1 см, где направление тока совпадает с вектором направления двух наружных противоположных граней. Величина удельного сопротивления зависит от агрегатного состояния материала и других важных величин.

Диэлектрическая проницаемость

После помещения изолятора в электромагнитное поле происходит изменение направления в пространстве частиц с плюсовыми зарядами: они выстраиваются по силовым линиям электромагнитного поля. Электронные оболочки меняют свою ориентацию в противоположную сторону. Молекулы поляризуются. При поляризации диэлектриков происходит образование собственного поля у молекул, которое действует в сторону, противоположную направлению общего поля. Эта способность определяется диэлектрической проницаемостью.

Важно! Диэлектрическая проницаемость характеризует степень поляризации диэлектрика. Она оказывает влияние на емкость таких элементов, как конденсаторы

При их изготовлении следует применять изоляцию с большой величиной диэлектрической проницаемости. Измерение величины производят в фарадах на метр погонный (Ф/м). Единица измерения получила свое название в честь великого английского ученого Майкла Фарадея, внесшего весомый вклад в науку в области электромагнетизма.

Угол диэлектрических потерь

Диэлектрические потери – энергия электрического поля, рассеивающаяся в изоляционном материале за определенную единицу времени. Энергия никуда не исчезает, а переходит из одного состояния в другое (тепло). Чем выше величина потерь, тем больше риск теплового разрушения диэлектрика. Эта характеристика электроизолирующего материала измеряется тангенсом угла диэлектрических потерь. Зависимость тангенса угла от значения диэлектрических потерь линейная.

Твердые диэлектрики

Твердая изоляция

Это самая распространённая и популярная группа электроизолирующих материалов. К таким изоляторам относят:

  • Стекла из неорганических веществ.
  • Установочная и конденсаторная керамика.
  • Мусковит, флогопит.
  • Асбест.
  • Пленки из неорганических материалов.

Кроме этого, твердые изоляторы делятся на полярные, неполярные и сегнетоэлектрические. Критерием разделения выступает степень поляризации. К основным свойствам твердых изоляторов также можно отнести их химическую стойкость, трекингостойкость и дендритостойкость. Первое качество характеризует способность материала противостоять агрессивным химическим средам, типа кислот и щелочей. Трекингостойкость – это способность противостоять воздействию электрической дуги. Дендритостойкость характеризует устойчивость к появлению дендритов. Дендрит – продукт осадка частиц в электролите, получаемый при воздействии электрического тока высоких плотностей.

Помимо всего этого, провода также защищают от электромагнитных помех. В качестве такой защиты используют фольгу, спиральную обмотку, оплетку жил.

Монтажные работы

Перед началом монтажа все изоляторы тщательно осматриваются и отбраковываются. Необходимо заранее проверить сопротивление фарфоровых конструкций с помощью мегаомметра на значение напряжения 2500 В. Стеклянные изделия не проверяются.

При наличии штыревых изделий, установка кронштейнов, траверс и других элементов выполняется заранее, до подъема опоры воздушной линии. Штыревая часть находится в строго вертикальном положении. Для деревянных опор используются стандартные крюки, без траверс. На все металлические детали заранее наносится защитное покрытие.

Закрепление изоляторов на штырях или крюках проводится разными способами. Чаще всего используются полиэтиленовые уплотнительные колпачки, насаживаемые на места креплений.

Электрическая изоляция

Представляет собой слой материала, не способного проводить электричество, или, другими словами, диэлектрика. Покрытая таким материалом металлическая токопроводящая жила надежно защищена от контакта с другим проводником, а также не способна нанести повреждения человеку, производящему работы с ней.

Как изоляционные материалы выступают следующие диэлектрики: стекло, керамика, различные виды полимеров, слюда. Одной из разновидностей изоляции является воздушная. Конструкция ее примечательна тем, что жилы проводников расположены в пространстве таким образом, что между ними находится прослойка воздуха, которая ограничивает их контакт.

Исторически первые образцы изоляции выполнялись из навитой на медные провода бумаги, которая была пропитана парафином, или резины. На сегодняшний день резина используется для проводов и кабелей, эксплуатирующихся в условиях больших температурных перепадов.

Срок службы изоляции сильно зависит от температуры рабочей среды.  Достаточно превышения в несколько градусов для снижения срока эксплуатации материала изоляции примерно в два раза.

Типы по конструкции и назначению

По конструкции выделяют три основных разновидности изоляторов ВЛ:

  • штыревые;
  • подвесные линейные;
  • опорные и проходные.

Штыревые относятся к линейным изоляторам. Используются в ЛЭП до 35 кВ. В том числе на линиях 0,4 кВ. Этот тип исполнения цельный, на нем есть канавка для закрепления провода и отверстия для установки на траверсы, крюки, штыри.

Интересно: на ВЛ от 6 до 10 кВ используют одноэлементные изоляторы, а на 20-35 – из двух элементов.

Подвесные используются на высоковольтных воздушных линиях напряжением 35 кВ и больше. Они бывают двух типов поддерживающими (стержневыми) и натяжными.

Натяжные тарельчатые изоляторы работают на растяжение и удерживают линию на опоре, монтируются под углом. Конструктивно они выполнены в виде фарфоровой или стеклянной тарелки. В нижней части обычно выступает стержень с расширяющейся шляпкой. Сверху расположена металлическая крышка с отверстием специальной формы, такой чтобы в ней можно было закрепить нижний стержень. Таким образом происходит унификация и вы можете набрать в гирлянду столько изоляторов, сколько нужно для достижения нужных номинальных напряжений пробоя. Такая гирлянда получается гибкой, она удерживает линии электропередач на опоре.

На промежуточных опорах устанавливают подвесные стержневые изоляторы. Они выполнены в виде опорного стержня, на его концах металлические части для крепления к опоре и проводам. Они устанавливаются вертикально и провод ложится на них – это и есть основное отличие от предыдущих. Также они отличаются тем, что натяжные изоляторы выдерживают больший вес, поэтому могут использоваться на опорах, расположенных дальше друг от друга.

Интересно: на ответственных участках и для повышения надежности монтажа ЛЭП могут использоваться сдвоенные гирлянды натяжных изоляторов.

Опорные и проходные изоляторы уже являются станционными, а не линейными. Этот вид так называется потому что используется внутри электростанций и трансформаторных подстанций. Изготовляются из полимеров или фарфора. Опорные используют для крепления токопроводящих шин к заземленным конструкциям, например, корпусу трансформаторов или внутри вводных и распределительных электрощитов.

Маркировка изоляторов всех разновидностей подобная, обычно она содержит сведения о типе изделия и номинального напряжения линии, например:

Для того чтобы провести кабель или шину через стену используются проходные изоляторы. Эта разновидность изделий с полым телом, в котором расположена токоведущая часть. Для повышения изолирующих свойств может иметь дополнительно масляный барьер или маслобумажную прокладку. Такой тип изоляторов позволяет прокладывать линию до 110 кВ. Бывают и другого типа – без токопровода внутри, просто диэлектрический полый цилиндр с отверстием, который надевается на кабель.

На это мы и заканчиваем нашу статью. Теперь вы знаете, какие бывают изоляторы для воздушных линий электропередач и где применяется каждый вариант исполнения!

Материалы по теме:

  • Как установить электрический столб на участке
  • Монтаж электропроводки в ретро-стиле
  • Как изолировать провода
  • Арматура для монтажа СИП кабеля

Опубликовано:
21.07.2018
Обновлено: 21.07.2018

Презентация на тему: » Проводники и диэлектрики По электрическим свойствам (уровню подвижности заряженных частиц) вещества деление проводники диэлектрики полупроводники.» — Транскрипт:

2

Проводники и диэлектрики По электрическим свойствам (уровню подвижности заряженных частиц) вещества деление проводники диэлектрики полупроводники

3

Проводники и диэлектрики все металлы Имеются заряженные частицы (заряды частиц = свободные заряды) Способные перемещаться внутри проводника под действием электрического поля Проводники Диэлектрики Состоят из нейтральных в целом атомов или молекул Заряженные частицы связаны друг с другом и не могут перемещаться под действием поля по всему объему тела

4

Проводники и диэлектрики Свободные заряды – заряженные частицы одного знака, способные перемещаться под действием электрического поля Не могут возникнуть, если энергия связи электрона со своим атомом велика по сравнению с энергией взаимодействия с соседними атомами вещества СВЯЗАННЫЕ ЗАРЯДЫ

5

Проводники и диэлектрики — вещество, в котором свободные заряды могут перемещаться по всему объему ПРОВОДНИК металлы растворы солей, кислот, щелочей Влажный воздух плазма Тело человека

6

Проводники В металлах носители свободных зарядов = электроны При образовании металла из нейтральных атомов атомы взаимодействуют друг с другом электроны внешних оболочек атомов полностью утрачивают связи со своими атомами и становятся собственностью всего проводника в целом положительные ионы окружены отрицательно заряженным газом из электронов (взаимодействие кулоновское)

7

Проводники электрические заряды неподвижны! поле внутри проводника = 0 в проводнике – свободные заряды существовал бы электрический ток E 0 иначе НЕТ ТОКА – НЕТ И ПОЛЯ!!!

8

Проводники заряженный незаряженный, помещенный во внешнее электрическое поле ПРОВОДНИК ВНУТРИ E = 0 (поле отсутствует)

9

Проводники уничтожение электростатического поля в проводнике Электрическое поле Проводящий шар Сначала возникнет электрический ток, так как поле внутри шара вызывает перемещение электронов Части шара заряжаются по-разному: Левая – отрицательно; Правая – положительно (явление электростатической индукции) Эти заряды на поверхности проводника создают электрическое поле, которое накладывается на внешнее поле и компенсирует его

10

Проводники уничтожение электростатического поля в проводнике Линии электростатического поля вне проводника перпендикулярны его поверхности – иначе по поверхности бы протекал электрический ток

11

Диэлектрики — вещество, содержащее только связанные заряды

12

Диэлектрики — вещество, содержащее только связанные заряды ДИЭЛЕКТРИК

13

Диэлектрики — разноименные заряды, входящие в состав атомов (или молекул), которые не могут перемещаться под действием электрического поля независимо друг от друга СВЯЗАННЫЕ ЗАРЯДЫ

14

Диэлектрики полностью отсутствуют!!! СВОБОДНЫЕ ЗАРЯДЫ диэлектрик практически не проводит электрический ток ХОРОШИЙ ИЗОЛЯТОР!!!

15

Диэлектрики ГАЗЫ ДИЭЛЕКТРИКИ НЕКОТОРЫЕ ЖИДКОСТИ НЕКОТОРЫЕ ТВЕРДЫЕ ТЕЛА дистиллированная вода, бензол Стекло, фарфор, слюда

16

Диэлектрики в соответствии со структурой их молекул ДИЭЛЕКТРИКИ деление полярные неполярные

17

Диэлектрики (полярные)

18

Диэлектрики (неполярные) В неполярных диэлектриках электростатическое поле сначала поляризует молекулы, растягивая в разные стороны положительные и отрицательные заряды, а затем поворачивает их оси вдоль напряженности поля

19

Диэлектрики — процесс ориентации диполей или появление под действием внешнего электрического поля ориентированных по полю диполей ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКА

20

Диэлектрики — число, показывающее, во сколько раз напряженность электростатического поля в однородном диэлектрике меньше, чем напряженность в вакууме ОТНОСИТЕЛЬНАЯ ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ СРЕДЫ

21

Диэлектрики Уменьшение напряженности электростатического поля в диэлектрике приводит к тому, что сила взаимодействия точечных зарядов q 1 и q 2, находящихся в диэлектрике на расстоянии r друг от друга, уменьшается в ε раз:

22

Полупроводники — вещество, в котором количество свободных зарядов зависит от внешних условий (температура, напряженность электрического поля) ПОЛУПРОВОДНИК

Где применяются диэлектрики и проводники

Материалы применяются во всех сферах деятельности человека, где используется электрический ток: в промышленности, сельском хозяйстве, приборостроении, электрических сетях и бытовых электроприборах.

Выбор проводника обусловлен его техническими характеристиками. Наименьшим удельным сопротивлением обладают изделия из серебра, золота, платины. Использование их ограничено космическими и военными целями из-за высокой себестоимости. Медь и алюминий проводят ток несколько хуже, но сравнительная дешевизна привела к их повсеместному применению в качестве проводов и кабельной продукции.

Чистые металлы без примесей лучше проводят ток, но в ряде случаев требуется использовать проводники с высоким удельным сопротивлением — для производства реостатов, электрических печей, электронагревательных приборов. Для этих целей используются сплавы никеля, меди, марганца (манганин, константан). Электропроводность вольфрама и молибдена в 3 раза ниже, чем у меди, но их свойства широко используются в производстве электроламп и радиоприборов.

Твёрдые диэлектрики — материалы, обеспечивающие безопасность и бесперебойную работу токопроводящих элементов. Они используются в качестве электроизоляционного материала, не допуская утечки тока, изолируют проводники между собой, от корпуса прибора, от земли. Примером такого изделия являются диэлектрические перчатки, про которые написано в нашей статье.

Жидкие диэлектрики используют в конденсаторах, силовых кабелях, циркулирующих системах охлаждения турбогенераторов и высоковольтных масляных выключателей. Материалы применяют в качестве заливки и пропитки.

Газообразные изоляционные материалы. Воздух — естественный изолятор, одновременно обеспечивающий отвод тепла. Азот применяется в местах, где недопустимы окислительные процессы. Водород применяется в мощных генераторах с высокой теплоёмкостью.

Слаженная работа проводников и диэлектриков обеспечивает безопасную и стабильную работу оборудования и сетей электроснабжения. Выбор конкретного элемента для поставленной задачи зависит от физических свойств и технических параметров вещества.

Проходные изоляторы

Проходные изоляторы предназначены для проведения проводника сквозь заземленные кожухи трансформаторов и аппаратов, стены и перекрытия зданий.

Проходные изоляторы для внутренней установки до 35 кВ включительно имеют полый фарфоровый корпус без наполнителя с небольшими ребрами. Для крепления изолятора в стене, перекрытии предусмотрен фланец, а для крепления проводника — металлические колпаки. Длина фарфорового корпуса определяется номинальным напряжением, а диаметр внутренней полости — сечением токоведущих стержней, следовательно, номинальным током.

Рис.5. Проходной изолятор для внутренней установки 10 кВ, 250-630 А

Рис.6. Проходной изолятор для внутренней установки 20 кВ, 8000-12500 А

Изоляторы с номинальным током до 2000 А (рис.5) снабжены алюминиевыми стержнями прямоугольного сечения. Изоляторы с номинальным током свыше 2000 А (рис.6) поставляются без токоведущих стержней. Размеры внутренней полости выбраны здесь достаточными, чтобы пропустить через изолятор шину или пакет шин прямоугольного сечения, а при очень большом токе — трубу круглого сечения.

Фланцы и колпаки, в особенности у изоляторов с большим номинальным током, изготовляют из немагнитных материалов (специальных марок чугуна, а также силумина — сплава на основе алюминия и кремния) во избежание дополнительных потерь мощности от индуктированных токов. У изоляторов, предназначенных для ввода жестких и гибких шин в здания РУ или шкафы КРУ наружной установки, часть фарфорового корпуса, обращенная наружу, имеет развитые ребра (рис.7) для увеличения разрядного напряжения под дождем.

Рис.7. Проходной изолятор наружно-внутренней установки 35 кВ, 400-630 А

Проходные изоляторы 110 кВ и выше в зависимости от назначения получили названия линейных или аппаратных вводов. Кроме фарфоровой они имеют бумажно-масляную изоляцию. На токоведущий стержень наложены слои кабельной бумаги с проводящими прокладками между ними. Размеры слоев бумаги и прокладок выбраны так, чтобы обеспечить равномерное распределение потенциала как вдоль оси, так и в радиальном направлении.

Рис.8. Герметизированный бумажно-масляный ввод 500 кВ с выносным бачком давления

Ввод (рис.8) состоит из следующих частей: металлической соединительной втулки 1, предназначенной для закрепления ввода в кожухе аппарата или в проеме стены, верхней 2 и нижней 3 фарфоровых покрышек, защищающих внутреннюю изоляцию от атмосферной влаги и служащих одновременно резервуаром для масла, заполняющего ввод. Вводы, предназначенные для аппаратов с маслом, имеют укороченную нижнюю часть; это объясняется более высоким разрядным напряжением по поверхности фарфора в масле сравнительно с разрядным напряжением в воздухе.

Вводы обычно герметизированы. Для компенсации температурных изменений в объеме масла предусмотрены компенсаторы давления, встроенные в верхнюю часть ввода или помещенные в особый бачок давления 4, соединенный с вводом гибким трубопроводом. Вводы имеют измерительное устройство, которое служит для контроля давления в системе ввод-бак.

No tags for this post.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.