Термопреобразователь: принцип работы

Возможно, вам также будет интересно

В марте прошлого года компания Omron Electronic Components BV представила серию цифровых датчиков дифференциального давления D6F-PH, обеспечивающих высокую точность и повторяемость измерений таких параметров низкоскоростных воздушных потоков, как давление и расход. В первой части статьи (Control Engineering Россия, №3’2014) были рассмотрены конструкция и принцип действия данных устройств.

Новые технологии занимают все более значимое место в повышении производительности труда. В то же время российские промышленные предприятия, в силу своей консервативности и на фоне слабого инвестирования в инновации, не спешат повернуться лицом к прогрессу. В статье рассматривается роль дополненной реальности как рычага для улучшения эффективности производства. Приведены примеры успешного примен…

Компания ПРОЕКТ-П (г. Вологда) разработала и внедрила систему GSM-телеметрии двух газовых котельных торгово-выставочного комплекса (ТВК) «Прокопьевский» (г. Великий Устюг, Вологодская обл.).
Газовые котельные снабжают теплом и горячей водой два здания ТВК «Прокопьевский», в состав которого входят торговые ряды, специализированные магазины, гостиница, аптека, косметический салон, кафе, сауна и мн. др.  Отклонение температуры воздуха в помещениях ТВК, а также понижение температуры горячей воды вызывали недовольство со стороны посетителей данных заведений. Поэтому задачей системы телеметрии, …

Как работает

Терморезистор — полупроводниковый элемент с меняющимися характеристиками (по сопротивлению) в зависимости от температуры. Изделие изобрели в 1930 году, а его создателем считается известный ученый Самуэль Рубен. С момента появления терморезистор получил широкое распространение в радиоэлектронике и успешно применяется во многих смежных сферах.

Деталь изготавливается с применением материалов, имеющих высокий температурный коэффициент (ТК). В основе лежат специальные полупроводники, по характеристикам превосходящие наиболее чистые металлы и их сплавы.

При получении главного резистивного элемента применяются оксиды некоторых металлов, галогениды и халькогениды. Для изготовления используется медь, никель, марганец, кобальт, германий, кремний и другие вещества. В процессе производства полупроводнику придется разная форма. В продаже можно найти терморезисторы в виде тонких трубок, крупных шайб, тонких пластинок или небольших круглых элементов. Некоторые детали имеют габариты, исчисляемые несколькими микронами.

Термистор, это резистор с большим значением температурного коэффициента сопротивления (ТКС). При изменении температуры токопроводящего материала термистора его электрическое сопротивление значительно изменяется. Термисторы могут быть как с положительным, так и с отрицательным ТКС. Термисторы с положительным ТКС называются PTC-термисторы или позисторы, с отрицательным – NTC-термисторы. При нагреве PTC-термистора (позистора) его сопротивление увеличивается. При нагреве NTC-термистора его сопротивление уменьшается.

Основные параметры и характеристики терморезисторов с отрицательным ТКС.

Сопротивление позистора соответствует номинальному Rн, указанному в справочной документации обычно при температуре 25 гр. Цельсия, реже при 20. В начале нагрева PTC-термистора его сопротивление будет незначительно уменьшаться до некоторого минимального значения Rмин. При дальнейшем нагреве до некоторой температуры Tref сопротивление позистора станет незначительно увеличиваться.

Дальнейший нагрев на участке температур от Tref до максимально допустимого значения влечёт стремительное увеличение сопротивления. При этом разница сопротивлений может достигать нескольких порядков.

Преимущества и недостатки термометров сопротивления

При сравнении с термопарой можно упомянуть следующие минусы ТС:

  • высокую стоимость;
  • обязательное использование внешнего источника стабилизированного электропитания;
  • ограниченный рабочий диапазон.

Плюсы:

  • линейный график измеряемых параметров;
  • точность;
  • корректная компенсация искажений от соединительных проводов.

Выбор подходящего датчика организуют на основе подготовленных критериев. Кроме базовых технических параметров, уточняют допустимые габариты, условия эксплуатации. Для продления срока службы необходимы регулярные проверки состояния термосопротивления и других компонентов измерительной схемы.

Класс допуска

Приведенные ниже данные соответствуют международным и российским стандартам. Допустимо использование уникальных температурных диапазонов, утвержденных в ТУ определенного предприятия производителя.

Допуски

Классификация по ГОСТ Допустимое отклонение, °C Нормированный температурный диапазон для разных видов ТС (минимум/ максимум в °C)
Платиновый проволочный (пленочный) Медный Никелевый
АА ±(0,1 + 0,0017) -50/+250 (-50/+150)
А ±(0,15 + 0,002) -100/+450(-30/+300) -50/+120
В ±(0,3 + 0,005) -196/+660 (-50/+500) -50/+200
С ±(0,6 + 0,01) -196/+660 (-50/+600) -180/+200 -60/+180

Зависимость сопротивления платинового термосопротивления от температуры

Для промышленных платиновых термометров сопротивления используется уравнение Каллендара-Ван Дьюзена (en), с известными коэффициентами, которые установлены экспериментально и нормированы в стандарте DIN EN 60751-2009 (ГОСТ 6651-2009):

RT=R1+AT+BT2+CT3(T−100)(−200∘C<T<∘C),{\displaystyle R_{T}=R_{0}\left\;(-200\;{}^{\circ }\mathrm {C} <T<0\;{}^{\circ }\mathrm {C} ),}
RT=R1+AT+BT2(∘C≤T<850∘C),{\displaystyle R_{T}=R_{0}\left\;(0\;{}^{\circ }\mathrm {C} \leq T<850\;{}^{\circ }\mathrm {C} ),}
здесь RT{\displaystyle R_{T}} — сопротивление при температуре T{\displaystyle T} °C,
R{\displaystyle R_{0}} сопротивление при 0 °C,
A,B,C{\displaystyle A,B,C} — коэффициенты — константы, нормированные стандартом:
A=3.9083×10−3∘C−1{\displaystyle A=3.9083\times 10^{-3}\;{}^{\circ }\mathrm {C} ^{-1}}
B=−5.775×10−7∘C−2{\displaystyle B=-5.775\times 10^{-7}\;{}^{\circ }\mathrm {C} ^{-2}}
C=−4.183×10−12∘C−4.{\displaystyle C=-4.183\times 10^{-12}\;{}^{\circ }\mathrm {C} ^{-4}.}

Поскольку коэффициенты B{\displaystyle B} и C{\displaystyle C} относительно малы, сопротивление растёт практически линейно при увеличении температуры.

Для платиновых термометров повышенной точности и эталонных термометров выполняется индивидуальная градуировка в ряде температурных реперных точек и определяются индивидуальные коэффициенты вышеприведенной зависимости.

Таблица сопротивлений некоторых термометров сопротивления

Сопротивление в Омах (Ω)
Температурав °C Pt100 Pt1000 нем. PTC нем. NTC NTC NTC NTC NTC
Typ: 404 Typ: 501 Typ: 201 Typ: 101 Typ: 102 Typ: 103 Typ: 104 Typ: 105
−50 80,31 803,1 1032
−45 82,29 822,9 1084
−40 84,27 842,7 1135 50475
−35 86,25 862,5 1191 36405
−30 88,22 882,2 1246 26550
−25 90,19 901,9 1306 26083 19560
−20 92,16 921,6 1366 19414 14560
−15 94,12 941,2 1430 14596 10943
−10 96,09 960,9 1493 11066 8299
−5 98,04 980,4 1561 31389 8466
100,00 1000,0 1628 23868 6536
5 101,95 1019,5 1700 18299 5078
10 103,90 1039,0 1771 14130 3986
15 105,85 1058,5 1847 10998
20 107,79 1077,9 1922 8618
25 109,73 1097,3 2000 6800 15000
30 111,67 1116,7 2080 5401 11933
35 113,61 1136,1 2162 4317 9522
40 115,54 1155,4 2244 3471 7657
45 117,47 1174,7 2330 6194
50 119,40 1194,0 2415 5039
55 121,32 1213,2 2505 4299 27475
60 123,24 1232,4 2595 3756 22590
65 125,16 1251,6 2689 18668
70 127,07 1270,7 2782 15052
75 128,98 1289,8 2880 12932
80 130,89 1308,9 2977 10837
85 132,80 1328,0 3079 9121
90 134,70 1347,0 3180 7708
95 136,60 1366,0 3285 6539
100 138,50 1385,0 3390
105 140,39 1403,9
110 142,29 1422,9
150 157,31 1573,1
200 175,84 1758,4

Выбор наиболее подходящего типа датчика

При выборе типа датчика, наиболее подходящего для конкретного технологического процесса и поставленной задачи, следует предварительно поставить несколько основных вопросов. Ответы на них предоставят ценную информацию.

Каков диапазон измеряемых температур?

При выборе датчика определение правильного температурного диапазона является очень важным. Если температура будет превышать +850 °C, необходимо использовать ТП. При температурах ниже +850 °C можно выбрать как ТС, так и ТП. Кроме того, не стоит забывать, что проволочные ТС обладают более широким диапазоном измерения температур, чем тонкопленочные (рис. 2).

Рис. 2. Диапазоны измерения температур различными типами термодатчиков

Какова требуемая точность измерения датчика?

Определение требуемого уровня точности является еще одним важным фактором при выборе датчика. Как правило, ТС имеют большую точность по сравнению с ТП, а проволочные ТС — по сравнению с тонкопленочными. Если предположить, что на выбор одной из двух технологий не оказывают влияние другие факторы, это правило помогает сделать выбор наиболее точного датчика.

Вызывает ли опасения вибрация, возникающая в ходе процесса обработки?

Уровень вибрации при технологическом процессе также необходимо учитывать при выборе датчика. ТП обладают наиболее высокой вибростойкостью из всех существующих технологий измерения температуры.

Существуют различные типы термопар, определяющиеся сочетанием используемой в них проволоки. ТП большинства типов могут использоваться для измерения более высоких температур, чем ТС.

Если достоверно известно, что в ходе процесса возникает сильная вибрация, использование ТП позволит достичь максимальной надежности измерения температуры. Тонкопленочные ТС также устойчивы к воздействию вибрации; тем не менее они не обладают достаточной прочностью. Использование проволочных ТС в условиях повышенной вибрации исключено.

Виды датчиков и их характеристики

Измерение температуры термометром сопротивления происходит с помощью одного или нескольких чувствительных элементов сопротивления и соединительных проводов, которые надежно спрятаны в защитном корпусе.

Классификация ТС происходит именно по типу чувствительного элемента.

Металлический термометр сопротивления по ГОСТ 6651-2009

Согласно ГОСТ 6651-2009 выделяют группу металлических термометров сопротивления, то есть ТС, чей чувствительный элемент — это небольшой резистор из металлической проволоки или пленки.

Платиновые измерители температуры

Платиновые ТС считаются самым распространёнными среди других видов, поэтому их часто устанавливают для контроля важных параметров. Диапазон измерения температуры лежит от -200 °С до 650 °С. Характеристика близка к линейной функции. Один из самых распространённых видов — Pt100 (Pt — платиновый, 100 — означает 100 Ом при 0 °С).

Никелевые термометры сопротивления

Никелевые ТС почти не используются в производстве за счет узкого температурного диапазона (от -60 °С до 180 °С) и сложностей эксплуатации, однако, следует отметить, что именно они имеют самый высокий температурный коэффициент 0,00617 °С-1.

Ранее такие датчики использовались в кораблестроении, однако, сейчас в этой отрасли их заменили на платиновые ТС.

Медные датчики (ТСМ)

Казалось бы, у медных датчиков диапазон использования еще уже, чем у никелевых (всего от -50 °С до 170 °С), но, тем не менее, именно они являются более популярным типом ТС.

Секрет в дешевизне прибора. Медные чувствительные элементы просты и неприхотливы в использовании, а также отлично подходят для измерения невысоких температур или сопутствующих параметров, например, температуры воздуха в цехе.

Срок службы такого устройства невелик, однако, и средняя стоимость медной ТС не слишком бьет по карману (около 1 тыс. рублей).

Терморезисторы

Терморезисторы — это термометр сопротивления, чей чувствительный элемент сделан из полупроводника. Это может быть оксид, галогенид или другие вещества с амфотерными свойствами.

Преимуществом данного прибора является не только высокий температурный коэффициент, но и возможность придать любую форму будущему изделию (от тонкой трубки до устройства длиной в несколько микрон). Как правило терморезисторы рассчитаны для измерения температуры от -100 °С до +200 °С.

Различают два вида терморезисторов:

  • термисторы — имеют отрицательный температурный коэффициент сопротивления, то есть при росте температуры, сопротивление уменьшается;
  • позисторы — имеют положительный температурный коэффициент сопротивления, то есть при увеличении температуры, сопротивление также возрастает.

Схемы подключения

Для хороших результатов нужно не только выбрать датчик, но и правильно его подключить. Для этого есть 3 способа, все хорошо подходят для мостовой схемы питания.

Двухпроводная

Используется только для грубых измерений, поскольку на точность влияет сопротивление проводов. Диапазон длины этих проводов задается в паспорте устройства, нарушать его нельзя. Это ограничивает сферу применения такого способа подключения. Не подходит для устройств с классом точности АА и А.

Трехпроводная

В ней, помимо сопротивления чувствительного элемента, отдельно измеряется проводимость одного из монтажных кабелей, что позволяет вычесть эту величину из расчета. Предполагается, что сопротивления проводов равны между собой. При этом ток через сигнальный провод не течет, на него поступает только напряжение с датчика. Соответственно, изменение проводимости чувствительного элемента влияет на напряжение в сигнальном проводе, которое и регистрируется вольтметром.

Четырехпроводная

Электрическое сопротивление кабелей питания может различаться между собой. Достоинство этой схемы в том, что она позволяет учитывать проводимость сразу 2-х кабелей питания датчика. Принципиально не отличается от трехпроводной. Применяется для очень точных измерений в лабораторных условиях и эталонных установках. Последние 2 схемы допускают использование прибора в любых условиях. У них нет ограничений по длине проводов, что благотворно сказывается на общей компоновке систем измерения.

Виды и их характеристика

Основное различие между термометрами – устройство датчика. Они сделаны из разных материалов, отличаются толщиной чувствительного элемента и имеют различную стоимость.

Металлические

Они бывают платиновые, никелевые и медные. Рассмотрим подробнее элементы их этих металлов.

Платина. Самый дорогой материал, из нее изготавливаются самые точные лабораторные и эталонные приборы. Достоинства – очень высокая точность и широкий диапазон измерений, стабильность работы, практически линейная зависимость электропроводности от температуры (номинальная статическая характеристика, НСХ). Недостаток – высокая стоимость, хотя сейчас развитие технологий уменьшает количество платины, а значит, и цену. Все плюсы при этом сохраняются. Приборы с датчиком из платины обозначаются как ТСП (Термометр Сопротивления с платиновым датчиком).

Также существуют различные конструкции чувствительного элемента.

Проволочный. Чувствительный элемент – проволока, намотанная на каркас из металла, керамики, кварца, слюды или пластмассы. Во избежание потерь на индукцию намотка бифилярная (это когда провод складывается вдвое и только затем наматывается). Между витками есть мелкодисперсный наполнитель из Al2O3, который нужен для дополнительной изоляции витков и амортизации при колебаниях. Катушка заключена в металлический корпус и загерметизирована.

Полупроводниковые

Обычно они изготавливаются из германия и кремния. В качестве легирующей добавки выступает сурьма. Также есть кобальто-марганцевые (КМТ) и медно-марганцевые (ММТ) приборы, работающие в пределах от -90 до +180 градусов. Благодаря большому внутреннему сопротивлению датчика проводимостью соединителей можно пренебречь. Чувствительный элемент расположен в защитном корпусе.

Преимущества – высокое быстродействие, возможность работы в сверхнизких температурах – от -270 градусов по Цельсию. Точность и стабильность измерений большие. Недостатки – нелинейная характеристика НСХ и невоспроизводимость градуировочной характеристики.

Благодаря нелинейной зависимости «температура-сопротивление» такие устройства скачкообразно меняют проводимость при определенной температуре. Это называется релейным эффектом и позволяет использовать данные приборы в системах сигнализации. Датчики по-разному крепятся на поверхность. Варианты креплений делятся на:

  • ввинчивающиеся;
  • поверхностные;
  • вставные;
  • с присоединительными проводами;
  • с байонетными соединениями (это осевое перемещение и поворот, как в боксах для дисков).

Расшифровка обозначений термометров сопротивления не составит труда. Обычно латиницей или кириллицей указывается его тип, далее цифрами – сопротивление в Ом при температуре 0 градусов Цельсия. Например, Pt100 – термометр платиновый, сопротивление термопреобразователя – 100 Ом при 0 градусов. Также есть несколько общепринятых сокращений:

  • ТПТ – технический платиновый термометр;
  • ТСПН – термометр, предназначенный для регистрации низких температур;
  • ЭТС – эталонные термометры сопротивления, которые используются для калибровки других датчиков.

Подключение термометров сопротивления в электрическую измерительную схему

Используется 3 схемы включения датчика в измерительную цепь:

Схема подключения терморезистора по двухпроводной схеме.

2-проводная.

В схеме подключения простейшего термометра сопротивления используется два провода. Такая схема используется там, где не требуется высокой точности измерения. Точность измерения снижается за счёт сопротивления соединительных проводов, суммирующегося с собственным сопротивлением термометра и приводит к появлению дополнительной погрешности. Такая схема не применяется для термометров классов А и АА.

3-проводная.

Эта схема обеспечивает значительно более точные измерения за счёт того, что появляется возможность измерить в отдельном опыте сопротивление подводящих проводов и учесть их влияние на точность измерения сопротивления датчика.

4-проводная.

Является наиболее точной схемой измерения, обеспечивающей полное исключение влияния на результат измерения подводящих проводов. При этом по двум проводникам подается ток на терморезистор, а два других, в которых ток равен нулю, используются для измерения напряжения на нём. Недостаток такого решения — увеличение объёма используемых проводов, стоимости и габаритов изделия. Эту схему Невозможно использовать в четырехплечем мосте Уитстона.

В промышленности наиболее распространенной является трёхпроводная схема. Для точных и эталонных измерений используется только четырёхпроводная схема.

Металлический термометр сопротивления

Представляет собой резистор, изготовленный из металлической проволоки или металлической плёнки на диэлектрической подложке и имеющий известную зависимость электрического сопротивления от температуры.

Наиболее точный и распространённый тип термометров сопротивления — платиновые термометры. Это обусловлено тем, что платина имеет стабильную и хорошо изученную зависимость сопротивления от температуры и не окисляется в воздушной среде, что обеспечивает их высокую точность и воспроизводимость. Эталонные термометры изготавливаются из платины высокой чистоты с температурным коэффициентом 0,003925 1/К при 0 °C.

В качестве рабочих средств измерений применяются также медные и никелевые термометры сопротивления. Технические требования к рабочим термометрам сопротивления изложены в стандарте ГОСТ 6651-2009 (Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). В стандарте приведены диапазоны, классы допуска, таблицы номинальных статических характеристик (НСХ) и стандартные зависимости сопротивление-температура. ГОСТ 6651-2009 соответствует международному стандарту МЭК 60751 (2008). В этих стандартах, в отличие от ранее действующих стандартов не нормированы номинальные сопротивления при нормальных условиях. Начальное сопротивление изготовленного термосопротивления может быть произвольным с некоторым допуском.

Промышленные платиновые термометры сопротивления в большинстве случаев считаются имеющими стандартную зависимость сопротивление-температура (НСХ), что обеспечивает погрешность не более 0,1 °C (класс термосопротивлений АА при 0 °C).

Термометры сопротивления изготовленные в виде напыленной на подложку металлической плёнки отличаются повышенной вибропрочностью, но меньшим диапазоном рабочих температур. Максимальный диапазон, в котором установлены классы допуска платиновых термометров для проволочных чувствительных элементов, составляет 660 °C (класс С), для плёночных — 600 °C (класс С).

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.