Асинхронный двигатель

Узлы электродвигателя

Вал ротора имеет цилиндрическую форму и производится из стали. Металлические стержни, замыкающиеся с двух сторон, дают ему название – короткозамкнутый ротор.  Указанная конструкция обеспечивает высокую степень защиты, поскольку не возникает необходимость частого технического обслуживания устройства, нет нужды в замене подающих ток щеток и т.д.

Если присмотреться к фото ротора электродвигателя, то он напоминает клетку для белки, откуда и название «беличья клетка». Конструкция представляет собой собранные стальные листы небольшой толщины. В специальные пазы помещается обмотка, которая может быть нескольких типов.

Определяющее значение имеет ответ на вопрос о том, каков двигатель – фазного или короткозамкнутого типа. Большее распространение имеют последние конструкционные новинки. Стержни из меди, имеющие большую толщину, помещаются в пазы без дополнительной изоляции. Медные кольца позволяют соединить концы обмотки.

Бывают ситуации, когда «беличья клетка» получает альтернативу в виде литья. Таково в целом устройство ротора электродвигателя короткозамкнутого типа.

К основным причинам поломки двигателя асинхронного типа относят износ подшипников, в которых осуществляется вращение вала. Центровка или балансировка ротора электродвигателя осуществляется за счет установленных в статоре крышек. Двигатели также имеют подшипники для облегчения вращательных движений.

Кроме того устройство подразумевает установку крыльчатки, обеспечивающей должное охлаждение двигателя. Статор имеет специальные ребра, улучшающие отдачу тепла от нагреваемого устройства. Именно так обеспечивается работа моторов переменного тока в нормальных тепловых условиях.

Что это такое

Асинхронный двигатель – это устройство, которое используется для преобразования энергии электричества в механическую. Работает от сети переменного тока. Главным отличием от синхронной машины является то, что у данного двигателя частота вращения статора больше, нежели частота ротора. Этот электродвигатель пользуется большой популярностью благодаря своей надежности и простоте в использовании.

Трехфазный и однофазный двигатель состоит из статора и короткозамкнутого ротора, это отлично демонстрирует чертеж ниже. Статор состоит из отдельных цилиндрических листов стали и ротора. В пазах уложена обмотка, которая обустроена из обычного силового кабеля. Обмотка каждого паза находится по отношению к другому под углом 120 градусов, в разрезе становится видно, что во время работы пазы становятся звездой или треугольником.

Фото — асинхронный двигатель

Ротор – это сердечник, который находится внутри статора. Он также собран из отдельных стальных листов, которые соединены между собой при помощи расплавленного алюминиевого сплава. Благодаря этому вся конструкция образовывает собой шпильки (стержни). Они в свою очередь соединяются короткими кольцами, крепящимися к торцам стержней. Такая беличья клетка может быть соединена также медными кольцами, но тогда двигатель используется при меньших напряжениях, чтобы не расплавить металл.

Фото — конструкция ротора

Нужно отметить, что благодаря такой конструкции, обслуживание двигателя с асинхронным типом работы более простое, нежели синхронного. Из-за отсутствия щеток значительно продлевается эксплуатация прибора.

Приборы бывают в закрытом и открытом исполнении. Взрывозащищенный прибор находится в специальном кожухе, он защищен от возгорания при нестабильной работе сети. Также зависимо от расположения ротора, устройства бывают следующего типа:

  1. Доступностью. Сравнительно с синхронными машинами, асинхронные стоят гораздо меньше. Кроме того они очень распространены. Их можно найти в специализированных магазинах, рынках, интернет-порталах;
  2. Надежность. Помимо отсутствия щеток, которые перетираются значительно продлевает срок использования, устройство также поддается небольшим перегрузкам. Это необходимо, если двигатель используется на мощных производствах, где возможны перепады напряжения;
  3. Легкость в использовании. Пуск выполняется простыми интуитивно понятными действиями. Для включения используется простая схема;
  4. Высокие показатели КПД, сравнительно с синхронными машинами.

Фото — типы двигателей

При этом у асинхронного двигателя с короткозамкнутым ротором есть недостатки:

  1. Высокие показатели пускового тока при номинальной скорости. При первом запуске возможны сильные перегрузки электрической сети;
  2. Низкий уровень защиты. Несмотря на защищенное исполнение обмоток, моторы такого типа подвержены поломкам. В частности, часто сгорает обмотка при постоянных перепадах напряжения;
  3. Слишком низкий коэффициент скольжения.

Видео: Трехфазные асинхронные двигатели

Пуск

В асинхронных двигателях с большим моментом инерции необходимо увеличение вращающего момента с одновременным ограничением пусковых токов – для этих целей применяют двигатели с фазным ротором. Для увеличения начального пускового момента в схему ротора включают трехфазный реостат.

В начале пуска он введен полностью, пусковой ток при этом уменьшается. При работе реостат полностью выведен. Для пуска асинхронных двигателей с короткозамкнутым ротором применяют три схемы: с реактивной катушкой, с автотрансформатором и с переключением со звезды на треугольник. Рубильник последовательно соединяет реактивную катушку и статор двигателя.

Как запустить трехфазный асинхронный двигатель

Когда скорость ротора приблизится к номинальной, замыкается рубильник, он закорачивает катушка и статор переключаются на полное напряжение сети. При автотрансформаторном пуске по мере разгона двигателя, автотрансформатор переводится в рабочее положение, в котором на статор подается полное напряжение сети. Пуск асинхронного двигателя с предварительным включением обмотки статора звездой и последующим переключением ее на треугольник дает трехкратное уменьшение тока.

При повреждении (пробое) изоляции станины и кожухи электрических машин и трансформаторов оказываются под напряжением относительно Земли. Прикосновение к этим частям машин может при таких условиях быть опасным для людей.

Для предупреждения этой опасности следует при напряжениях свыше 150 В относительно Земли заземлять станины и кожухи электрических машин и трансформаторов, то есть надежно соединять их металлическими проводами или стержнями с Землей. Это выполняется по специальным правилам, которые необходимо строго соблюдать во избежание несчастных случаев.

Трёхфазный двигатель приспособлен к трёхфазной сети, а к однофазной сети лучше подходит двухфазный двигатель со сдвигом фазы во второй обмотке либо через конденсатор (конденсаторные двигатели), либо через индуктивность.

Отличия подключения трехфазного асинхронного двигателя с одинарным или двойным напряжением иногда приводят к выходу из строя мотора – если не обратить внимание на то, какое напряжение верхнее, а какое нижнее, можно его подключить неправильно и он сгорит. Трехфазные асинхронные электродвигатели до сто тридцать второго габарита включительно обычно бывают на напряжение двести двадцать на триста восемьдесят вольт, от сто шестидесятого габарита – триста восемьдесят на шестьсот шестьдесят вольт, но могут быть и другие варианты.

Трехфазные асинхронные электродвигатели до сто тридцать второго габарита включительно обычно бывают на напряжение двести двадцать на триста восемьдесят вольт, от сто шестидесятого габарита – триста восемьдесят на шестьсот шестьдесят вольт, но могут быть и другие варианты.

Когда мы включаем в сеть ненагруженный двигатель, то в первые моменты  равно или близко к нулю, частота вращения поля относительно ротора  велика и индуцированная в роторе э. д. с. соответственно также велика – она раз в 20 превосходит ту э. д. с., которая возникает в роторе при работе двигателя с нормальной мощностью. Ток в роторе при этом тоже значительно превосходит нормальный.

Основные отличия

Наличие обмоток на якоре является одним из основных отличий между двумя типами двигателей

Несмотря на внешнее сходство, асинхронные двигатели и устройства синхронного типа имеют несколько принципиальных отличий:

  • ротор асинхронных моторов не нуждается в токовом питании, а индукция полюсов зависит от магнитного поля статора;
  • ротор в синхронном двигателе обладает обмоткой возбуждения в условиях независимого питания;
  • обороты в асинхронном моторе под нагрузкой отстают по величине скольжения от вращений магнитного поля внутри статора;
  • обороты в синхронных двигателях соответствуют частоте «оборотов» магнитного поля в статоре и постоянны в условиях разных нагрузок.

Статоры в двигателях асинхронного и синхронного типа характеризуются одинаковым устройством и создают вращающееся магнитное поле.

Синхронные двигатели способны работать с одновременным совмещением функций мотора и генератора.

Виды электромеханических устройств

Статор — понятие и принцип действия

Используют ротор в таких электромеханических устройствах, как двигатели, работающие на постоянном и переменном электрическом токе, генераторы.

Агрегаты, работающие на переменном токе

К таким агрегатам относятся различные электродвигатели. Наиболее распространенная модель данного устройства состоит из следующих частей:

  • Алюминиевый или чугунный ребристый корпус с монтажной коробкой для подключения обмоток статора и ротора;
  • Статор – неподвижная часть в виде полого цилиндра, расположенная внутри корпуса. Обмотка статора состоит из 3 пар расположенных друг напротив друга намотанных в пазы корпуса катушек из медного изолированного провода
  • Цельнометаллический цилиндрический ротор с валом и пазами, в которые впаяны обладающие высокой токопроводящей способностью алюминиевые стержни.


Двигатель, запитываемый от переменного тока

Вращается ротор на двух опорных подшипниках, запрессованных на его валу. Охлаждение работающего на больших оборотах электродвигателя происходит, благодаря крыльчатке – небольшому вентилятору, состоящему из множества лопастей и расположенному на одном из концов вала ротора. Также эффективному охлаждению работающего агрегата способствует ребристая структура алюминиевого корпуса.

Принцип работы подобного двигателя заключается в следующем:

  1. При подключении тока к агрегату он попеременно проходит через одну из трех пар катушек статора.
  2. При протекании по парам статорных катушек электрического тока они создают магнитное поле, силовые линии которого пересекают ротор.
  3. Попеременно запитываемые пары катушек создают подвижное магнитное поле, которое по закону электромагнитной индукции провоцирует появление в неподвижных металлических стержнях ротора электрического тока.
  4. Индуцированный ток в роторе приводит к появлению силы, выталкивающей его из магнитного поля статора. Так как частота подачи тока на катушки статора в среднем составляет порядка 30 импульсов в секунду, появившаяся в роторе выталкивающая сила приводит к его вращению с большой скоростью.

Важно! В зависимости от одновременности вращения ротора и порождающего это движение магнитного поля электрический двигатель переменного тока может быть синхронный (ротор агрегата вращается синхронно с магнитным полем статора) и асинхронный (вращение якоря не синхронизировано с движением магнитного поля статора). Первый вид отличается высокой мощностью и надежностью, в то время как второй характеризуется большим разнообразием конструкций и областей применения

Машины постоянного тока

Наиболее распространенный электродвигатель постоянного тока щеточного вида представляет собой электрический агрегат, состоящий из:

  • Чугунного корпуса с ребрами охлаждения и специальным монтажным коробом для подключения обмоток агрегата;
  • Вала из прочной инструментальной стали с двумя подшипниками;
  • Якоря, состоящего из сердечника (набора пластин из специальной электротехнической стали), якорной обмотки (размещенных в пазах сердечника катушек из медного провода);
  • Индуктора, состоящего из полюсов возбуждения с намотанными на них катушками из медного провода;
  • Коллектора – расположенных на валу медных пластин, к которым подключаются выводы катушек якорной обмотки;
  • Подпружиненных графитовых или металлографитовых щеток (щеточной группы).

Охлаждается такой двигатель, как и аналог, работающий от переменного тока, – расположенной на валу крыльчаткой.


Двигатель, работающий от постоянного тока

Важно! В отличие от электродвигателя переменного тока частотой вращения ротора в таком силовом агрегате управляет специальный блок, который при помощи установленного на валу датчика Холла определяет положение ротора и его скорость. Работает подобный агрегат следующим образом:

Работает подобный агрегат следующим образом:

  1. На обмотку возбуждения подается напряжение, создавая тем самым постоянное магнитное поле;
  2. Через щетки и коллектор напряжение подается на катушки сердечника якоря – возникающее при этом магнитное поле отталкивается от такого же, образованного индуктором, вследствие чего двигатель начинает вращаться («запускается»);
  3. Впоследствии при вращении через щетки запитываются остальные катушки якорной обмотки, что приводит к равномерному вращению якоря с определённой скоростью.

Останавливают вращение такого агрегата прекращением подачи напряжения на щеточную группу.

Помимо описанных выше электромоторов, к машинам, работающим на постоянном токе, относится также роторный стартер – устройство, необходимое для запуска бензиновых и дизельных автомобильных двигателей внутреннего сгорания.

Литература

Принцип действия и устройство электромашин разных типов

Асинхронные и синхронные электродвигатели похожи по конструкции, но есть и отличия.

Устройство и принцип действия асинхронных электродвигателей

Это самые распространённые машины переменного тока. Такие электродвигатели состоят из трёх основных частей:

  • Корпус с подшипниковыми щитами и лапами или фланцем.
  • В корпусе находятся магнитопровод из железных пластин с обмотками. Этот магнитопровод носит название статор.
  • Вал с подшипниками и магнитпроводом. Эта конструкция называется ротор . В электродвигателях с короткозамкнутым ротором в магнитопроводе находятся соединённые между собой алюминиевые стержни, эта конструкция носит название «беличья клетка». В машинах с фазным ротором вместо стержней намотаны обмотки.

В пазах статора со сдвигом 120° намотаны три обмотки. При подключении к трёхфазной сети в статоре наводится вращающееся магнитное поле. Скорость вращения называется «синхронная скорость».

Справка! В однофазных электродвигателях вращающееся поле создаётся дополнительной обмоткой или конструктивными особенностями статора.

Это поле наводит ЭДС в роторе, возникающий при этом ток создаёт своё поле, взаимодействующее с полем статора и приводящее его в движение. Скорость вращения ротора меньше синхронной скорости. Эта разница называется скольжение.

Рассчитывается скольжение по формуле S=(n1-n2)/n1*100%, где: · n1 — синхронная скорость; · n2 — скорость вращения ротора.

Номинальная величи

на скольжения в обычных электромоторах 1-8%. При увеличении нагрузки на валу двигателя скольжение и вращающий момент растут до критической величины, при достижении которой двигатель останавливается.

В электродвигателях с фазным ротором вместо беличьей клетки в пазах ротора намотаны три обмотки. Через токосъёмные кольца и щётки они подключаются к добавочным сопротивлениям. Эти сопротивления ограничивают ток и магнитное поле в роторе. Это увеличивает скольжение и уменьшает скорость двигателя.

Такие аппараты используются при тяжёлом пуске и в устройствах с регулировкой скорости, например, в мостовых кранах.

Принцип действия синхронных электродвигателей

Эти двигатели устроены сложнее и дороже асинхронных машин. Их достоинство в постоянной скорости вращения, не меняющейся при нагрузке. Статор синхронной машины не отличается от асинхронной. Отличие в роторе. В отличие от асинхронного двигателя, вращение осуществляется за счёт взаимодействия вращающегося магнитного поля статора и постоянного поля ротора. Для его создания в роторе находятся электромагниты. Напряжение к катушкам подводится при помощи токосъёмных колец и графитных щёток.

Справка! В роторе синхронных машин малой мощности вместо электромагнитов установлены постоянные или просто магнитопровод имеет явновыраженные полюса. Скольжение, как в асинхронных машинах, отсутствует, и частота вращения определяется только частотой питающего напряжения.

Преимущества АС двигателя

Главной особенностью характеристик этого двигателя и самым ценные их проявлением, считают тот факт, что нагрузка на двигатель практически никак не зависит от частоты вращения вала. Магнитные поля и электродвижущую силу изучают уже лет двести, а наш асинхронный двигатель стал лучшим подтверждением тому, это один из самых эффективных методов трансформации энергии.

Принцип работы этого мотора как раз основан на взаимодействии подвижного магнитного поля и токопроводящего элемента, распложенного внутри этого поля. Двигатель, как известно еще со школьной скамьи, состоит из двух базовых узлов — рoтора и статора. Статoр как раз генерирует вращающееся магнитное поле. Конструктивно, статoр представляет собой металлический сердечник, на него намотана обмотка из медной проволоки с термолаковой изоляцией.

Внутри статора, внутри его магнитного поля, поместили ротор, который представляет собой вал с сердечником и обмоткой. На рисунке ниже изображена схема устройства асинхронного мотора. По схеме понятно, что статор состоит из наборных пластин и нескольких обмоток, которые намотаны на пластинчатый сердечник. Эти обмотки могут подсоединяться по разным схемам, в зависимости от типа напряжения. Каждая их обмоток сдвинута друг отнoсительно друга на 120 градусов. А ротор такого двигателя может быть принципиально двух типов.

Устройство, принцип действия асинхронного двигателя

Асинхронный двигатель – это машина переменного тока. Слово «асинхронный» означает неодновременный. При этом имеется в виду, что у асинхронных двигателей частота вращения магнитного поля отличается от частоты вращения ротора. Основными частями машины являются статор и ротор, отделенные друг от друга равномерным воздушным зазором.

Рис.1. Устройство асинхронных двигателей

Статор – неподвижная часть машины (рис. 1, а ). Его сердечник с целью уменьшения потерь на вихревые токи набирают из штампованных листов электротехнической стали толщиной 0,35 – 0,5 мм, изолированных друг от друга слоем лака. В пазы магнитопровода статора укладывается обмотка. В трехфазных двигателях обмотка трехфазная. Фазы обмотки могут соединяться в звезду или в треугольник в зависимости от величины напряжения сети.

Ротор – вращающаяся часть двигателя. Магнитопровод ротора представляет собой цилиндр, набранный из штампованных листов электротехнической стали (рис. 1, б. в ). В пазах ротора укладывают обмотку, в зависимости от типа обмотки роторы асинхронных двигателей делятся на короткозамкнутые и фазные (с контактными кольцами). Короткозамкнутая обмотка представляет собой неизолированные медные или алюминиевые стержни (рис. 1, г ), соединенные с торцов кольцами из этого же материала («беличья клетка»).

У фазного ротора (см. рис. 1, в ) в пазах магнитопровода уложена трехфазная обмотка, фазы которой соединены звездой. Свободные концы фаз обмотки присоединены к трем медным контактным кольцам, насаженным на вал двигателя. Контактные кольца изолированы друг от друга и от вала. К кольцам прижаты угольные или медно-графитные щетки. Через контактные кольца и щетки в обмотку ротора можно включить трехфазный пуско-регулировочный реостат.

Преобразование электрической энергии в механическую в асинхронном двигателе осуществляется посредством вращающегося магнитного поля. Вращающееся магнитное поле это постоянный поток, вращающийся в пространстве с постоянной угловой скоростью.

Необходимыми условиями возбуждения вращающегося магнитного поля являются:

— пространственный сдвиг осей катушек статора,

— временной сдвиг токов в катушках статора.

Первое требование удовлетворяется соответствующим расположением намагничивающих катушек на магнитопроводе статора. Оси фаз обмотки смещены в пространстве на угол 120º. Второе условие обеспечивается подачей на катушки статора трехфазной системы напряжений.

При включении двигателя в трехфазную сеть в обмотке статора устанавливается система токов одинаковой частоты и амплитуды, периодические изменения которых относительно друг друга совершаются с запаздыванием на 1/3 периода.

Токи фаз обмотки создают магнитное поле, вращающееся относительно статора с частотой n1. об/мин, которая называется синхронной частотой вращения двигателя:

где f1 – частота тока сети, Гц;

р – число пар полюсов магнитного поля.

При стандартной частоте тока сети Гц частота вращения поля по формуле (1) и в зависимости от числа пар полюсов имеет следующие значения:

Вращаясь, поле пересекает проводники обмотки ротора, наводя в них ЭДС. При замкнутой обмотке ротора ЭДС вызывает токи, при взаимодействии которых с вращающимся магнитным полем возникает вращающий электромагнитный момент. Частота вращения ротора в двигательном режиме асинхронной машины всегда меньше частоты вращения поля, т.е. ротор «отстает» от вращающегося поля. Только при этом условии в проводниках ротора наводится ЭДС, протекает ток и создается вращающий момент. Явление отставания ротора от магнитного поля называется скольжением. Степень отставания ротора от магнитного поля характеризуется величиной относительного скольжения

где n2 – частота вращения ротора, об/мин.

Для асинхронных двигателей скольжение может изменяться в пределах от 1 (пуск) до величины, близкой к 0 (холостой ход).

185.154.22.117 studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Конструкция турбогенератора

Турбогенератор — работающий в паре с турбиной синхронный генератор. Основная функция в преобразовании механической энергии вращения паровой или газовой турбины в электрическую. Скорость вращения ротора 3000, 1500 об/мин. Механическая энергия от турбины преобразуется в электрическую посредством вращающегося магнитного поля ротора в статоре. Поле ротора, которое создается током постоянного напряжения, протекающего в медной обмотке ротора, приводит к возникновениютрёхфазного переменного напряжения и тока в обмотках статора. Напряжение и ток на статоре тем больше, чем сильнее поле ротора, т.е. больше ток протекающий в обмотках ротора. Напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель — небольшой генератор на валу турбогенератора. Турбогенераторы имеют цилиндрический ротор установленный на двух подшипниках скольжения, в упрощенном виде напоминает увеличенный генератор легкового автомобиля. Выпускаются 2-х полюсные (3000 об/мин), 4-х полюсные (1500 об/мин как на Балаковской АЭС), следовательно, имеют высокие частоты вращения и проблемы с этим связанные. По способам охлаждения обмоток турбогенератора различают: с водяным охлаждением (три воды), с воздушным и водородным (чаще применяются на АЭС).

В зависимости от системы охлаждения турбогенераторы подразделяются на несколько типов: с воздушным, масляным, водородным и водяным охлаждением. Также существуют комбинированные типы, например, генераторы с водородно-водяным охлаждением. Также существуют специальные турбогенераторы, к примеру, локомотивные, служащие для питания цепей освещения и радиостанции паровоза. В авиации турбогенераторы служат дополнительными бортовыми источниками электроэнергии. Например, турбогенератор ТГ-60 работает на отбираемом от компрессора авиадвигателя сжатого воздуха, обеспечивая привод генератора трёхфазного переменного тока 208 вольт, 400 герц, номинальной мощностью 60 кВ*А.

Конструкция турбогенератора

Генератор состоит из двух ключевых компонентов — статора и ротора. Но каждый из них содержит большое число систем и элементов. Ротор — вращающийся компонент генератора и на него воздействуют динамические механические нагрузки, а также электромагнитные и термические. Статор — стационарный компонент турбогенератора, но он также подвержен воздействию существенных динамических нагрузок — вибрационных и крутящих, а также электромагнитных, термических и высоковольтных. Первоначальный (возбуждающий) постоянный ток ротора генератора подается на него с возбудителя генератора. Обычно возбудитель соосно соединён упругой муфтой с валом генератора и является продолжением системы турбина-генератор-возбудитель. Хотя на крупных электрических станциях предусмотрено и резервное возбуждение ротора генератора. Такое возбуждение происходит от отдельно стоящего возбудителя. Такие возбудители постоянного тока приводятся в действие своим электродвигателем переменного трехфазного тока и включены как резерв в схему сразу нескольких турбоустановок. С возбудителя постоянный ток подается в ротор генератора посредством скользящего контакта через щётки и контактные кольца. Современные турбогенераторы используют тиристорные системы самовозбуждения.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.