Компенсация реактивной мощности «три

Преимущества автоматических установок компенсации реактивной мощности:

За счет внедрения автоматических конденсаторных и дроссельных установок на проектируемые и модернизируемые объекты можно добиться следующих результатов:

– снижение уровня энергопотребления до 40%,

– уменьшение нагрузки на силовых трансформаторах, что сказывается на долговечности их эксплуатации,

– уменьшение нагрузки на кабельные и проводные линии, что позволит использовать провода с меньшим сечением,

– убрать лишние наводки и гармоники в питающих электросетях, улучшить качество транспортируемого по ним электричества,

– стоимость компенсирующего оборудования и его монтажа может окупиться в течение полгода – года, а использовать полученные преимущества можно будет несколько десятилетий.

Примечание: Фото https://www.pexels.com, https://pixabay.com

карта сайта

Коэффициент востребованности
929

Архив номеров

Выпуски за 2009 год: №1 (1), №2 (2), №3 (3), №4 (4), №5 (5),

Выпуски за 2010 год: №1 (6), №2 (7), №3 (8), №4 (9), №5 (10), №6 (11), №7 (12), №8 (13),

Выпуски за 2011 год: №1 (14), №2 (15), №3 (16), №4 (17), №5 (18), №6 (19),

Выпуски за 2012 год: №1 (20), №2 (21), №3 (22), №4 (23), №5 (24), №6 (25),

Выпуски за 2013 год: №1 (26), №2 (27), №3 (28), №4 (29), №5 (30), №6 (31),

Выпуски за 2014 год: №1 (32), №2 (33), №3 (34), №4 (35), №5 (36), №6 (37),

Выпуски за 2015 год: №1 (38), №2 (39), №3 (40), №4 (41), №5 (42),

Выпуски за 2016 год: №1 (43), №2 (44), №3 (45), №4 (46),

Выпуски за 2017 год: №1 (47) , №2 (48), №3 (49), №4 (50),

Выпуски за 2018 год: №1 (51), №2 (52), №3 (53), №4 (54).

Определение

Реактивная мощность не выполняет полезной работы. Она обусловлена наличием у потребителя индуктивной или ёмкостной составляющей нагрузки. На предприятиях реактивная мощность возникает при работе электрических двигателей, трансформаторов или ламп ДРЛ. В домашних условиях это моторы пылесосов, стиральных машин или компрессоров холодильников. На корпусе данных агрегатов часто можно увидеть параметр cosф, называемый коэффициентом мощности. Он количественно характеризует долю реактива.

Обратите внимание! Cosф – параметр крайне нестабильный. Он способен меняться в широком диапазоне с течением года и временем суток

Также коэффициент мощности тесно связан с будними и выходными днями.

Бирка на двигателе

Все перечисленное служит примером источников индуктивной составляющей. Гораздо реже встречается ёмкостная. К её примерам относятся мощные импульсные блоки питания и всё, что во входной части содержит конденсаторы.

Ситуация с компенсацией реактивной мощности в последние годы

Судя по результатам проведенных в 2011-2012 гг. энергетических обследований электрических сетей, по результатам исследований АО «НТЦ ФСК ЕЭС», ситуация с уровнем компенсации реактивной мощности в электрических сетях в последние годы существенно не изменилась, а кое-где ухудшилась. К сожалению, в настоящее время отсутствует полная и достоверная информация о фактической степени компенсации реактивной мощности по стране в целом, по отдельным регионам и уровням напряжения электрических сетей. Но и та ограниченная информация, которой мы располагаем сегодня, свидетельствует о значительных проблемах, которые требуют безотлагательного решения.

В частности, значительное число линий и автотрансформаторов в магистральных электрических сетях 220-500 кВ работает с повышенными перетоками реактивной мощности (tgφ>0,5), что характеризуется табл. 3.

Табл. 3. Количество подстанций и линий электропередачи, работающих с повышенными перетоками реактивной мощности

ОЭС

Количество подстанций и линий электропередачи, шт., работающих с tgφ>0,5

подстанций

линий

Юга

38

280

Северо-Запада

6

19

Центра

70

138

Средней Волги

45

51

Урала

38

78

Наиболее подробный анализ режимов реактивной мощности по данным телеизмерений был проведен в ОЭС Сибири в 2011 году. Из 266 обследованных автотрансформаторов 220-550 кВ на 137 (более 50%) tgφ их нагрузки превышал допустимое значение 0,5.

По нормативным документам ПАО «ФСК ЕЭС» компенсация зарядной мощности ВЛ 500 кВ должна составлять 80-100%. Тем не менее по той же ОЭС Сибири, она составляет 0,67. По отдельным энергосистемам этой ОЭС степень компенсации находится в пределах 0,35-3,95, что видно из табл. 4.

Табл. 4. Степень компенсации реактивной мощности по отдельным энергосистемам ОЭС Сибири

Энергосистема

Отношение мощности компенсирующих устройств (Qку) к зарядной мощности линий (Qзар)

Qку/Qзар, о.е

Алтайская

1,20

Кузбасская

0,35

Новосибирская

0,66

Омская

1,26

Томская

3,95

Западная Сибирь

0,78

Иркутская

0,44

Красноярская

0,48

Хакасская

0,45

Восточная Сибирь

0,46

ОЭС Сибири

0,67

Не лучше ситуация и в других ОЭС. Степень использования установленных в магистральных электрических сетях 220-500 кВ компенсирующих устройств находится в пределах 40-50%.

Отмеченное выше, безусловно, сказывается на уровнях напряжения в электрических сетях. На ряде линий в режимах минимальных нагрузок имеет место избыток реактивной мощности и повышенное напряжение, на ряде перегруженных линий в часы максимума нагрузки наблюдаются пониженное напряжение. И в том и в другом случае это создает трудности при выводе оборудования в ремонт и при ликвидации аварий, а также приводит к дополнительным потерям мощности и электроэнергии в сети.

Недопустимые отклонения напряжения в контрольных точках сети вызваны не только недостаточными степенями компенсации реактивной мощности и использования средств компенсации, но и низкой оснащенностью автотрансформаторов 220-750 кВ средствами автоматического регулирования на трансформаторах (АРНТ) и степенью использования РПН и АРНТ, что видно из табл. 5.

Табл. 5. Оснащенность автотрансформаторов 220-750 кВ устройствами РПН и АРНТ и степень их использования, по состоянию на 2011 г.

Характеристики оснащенности и степени использования

Численное значение для номинального напряжения автотрансформаторов, кВ

220-330

500-750

Общее количество автотрансформаторов (АТ), шт.

1639

306

Число АТ, оборудованных РПН

шт.

1536

277

% от общего кол-ва АТ

94

90

Число РПН, использование которых запрещено руководством

шт.

116

48

% от общего кол-ва АТ

7

16

Общее число не используемых РПН

шт.

640

219

% от общего кол-ва АТ, оборудованных РПН

41

79

Общее число АТ, оборудованных АРНТ

шт.

802

169

% от общего кол-ва АТ

49

55

Общее количество АТ, оборудованных АРНТ и работающих

шт.

81

3

% от общего кол-ва АТ

4,9

1

Из этой таблицы, в частности, следует, что число неиспользуемых РПН от общего количества АТ, оборудованных РПН, составляет в сетях 220-330 кВ – 41%, в сетях 500-750 кВ – 79%. С использованием средств автоматического регулирования напряжения ситуация еще хуже. Только около 50% АТ оборудовано этими средствами, а используется для регулирования напряжения в сетях 220-330 кВ – 4,9%, а в сетях 500-750 кВ – 1% от общего количества АТ.

Виды компенсаторов и их принцип действия

Чаще всего в роли компенсирующего устройства применяется либо батареи конденсаторов, либо двигатели. При этом может использоваться как один компенсатор, так и множество подключенных параллельно.

В течение дня баланс мощности в сети может изменяться, на что УКРМ должно реагировать соответствующим образом. С этой точки зрения компенсаторы бывают:

  • нерегулируемые – без возможности переключения составных элементов;
  • автоматические – компенсатор сам отслеживает cosф, производит расчеты и решает, какое количество конденсаторов следует добавить в схему;
  • с ручным управлением – человек сам анализирует cosф по приборам и производит соответствующие переключения.

В зависимости от условий эксплуатации выделяют следующие типы коммутирующих устройств:

  • контакторные – только статические переключения;
  • тиристорные – работа в реальном времени;
  • вакуумные выключатели – для напряжений свыше 1 кВ.

Потребители реактивной мощности

Потребителями реактивной мощности, необходимой для создания магнитных полей, являются как отдельные звенья электропередачи(трансформаторы, линии, реакторы), так и такие электроприёмники, преобразующие электроэнергию в другой вид энергии которые по принципу своего действия используют магнитное поле(асинхронные двигатели, индукционные печи и т.п.). До 80-85% всей реактивной мощности, связанной с образованием магнитных полей, потребляют асинхронные двигатели и трансформаторы. Относительно небольшая часть в общем балансе реактивной мощности приходится на долю прочих её потребителей, например на индукционные печи, сварочные трансформаторы, преобразовательные установки, люминесцентное освещение и т.п.

Трансформатор как потребитель реактивной мощности. Трансформатор является одним из основных звеньев в передаче электроэнергии от электростанции до потребителя. В зависимости от расстояния между электростанцией и потребителем и от схемы передачи электроэнергии число ступеней трансформации лежит в пределах от двух до шести. Поэтому установленная трансформаторная мощность обычно в несколько раз превышает суммарную мощность генераторов энергосистемы. Каждый трансформатор сам является потребителем реактивной мощности. Реактивная мощность необходима для создания переменного магнитного потока, при помощи которого энергия из одной обмотки трансформатора передаётся в другую.

Асинхронный двигатель как потребитель реактивной мощности. Асинхронные двигатели наряду с активной мощностью потребляют до 60-65% всей реактивной мощности нагрузок энергосистемы. По принципу действия асинхронный двигатель подобен трансформатору. Как и в трансформаторе, энергия первичной обмотки двигателя– статора передаётся во вторичную– ротор посредствам магнитного поля.

Индукционные печи как потребители реактивной мощности. К крупным электроприемникам, требующим для своего действия большой реактивной мощности, прежде всего, относятся индукционные печи промышленной частоты для плавки металлов. По существу эти печи представляют собой мощные, но не совершенные с точки зрения трансформаторостроения трансформаторы, вторичной обмоткой которых является металл (садка), расплавляемый индуктированными в нём токами.

Преобразовательные установки, преобразующие переменный ток в постоянный при помощи выпрямителей, также относятся к крупным потребителям реактивной мощности. Выпрямительные установки нашли широкое применение в промышленности и на транспорте. Так, установки большей мощности с ртутными преобразователями используются для питания электроизоляционных ванн, например при производстве алюминия, каустической соды и др. Железнодорожный транспорт в нашей стране почти полностью электрифицирован, причём значительная часть железных дорог использует постоянный ток преобразовательных установок.

Реактивная мощность в электрической сети:

Понятие электрической мощности описывается скоростью, с которой генерируется, передается либо потребляется электроэнергия за определенный период. С ее ростом увеличивается и работа, совершаемая электроустановкой.

Полная мощность (S) в цепях переменного тока имеет активную (P) и реактивную (Q) составляющую. При первой (полезной) током совершается эффективная работа, вторая (паразитная) – ничего не выполняет, но разогревает провода и излучается в окружающее пространство.

Формула взаимосвязи мощностей может быть представлена в виде треугольника мощностей:

S2 = P2 + Q2

Где S измеряется в Вольт-амперах (ВА), P – в Ваттах (Вт), а Q – в Вольт амперах реактивных (Вар).

Для работы и синхронизации генераторных установок, вырабатывающих и передающих ток в линию, используются реактивные нагрузки (катушки либо конденсаторы). Но они сдвигают фазу тока на опережение либо отставание от напряжения. То же делают реактивные нагрузки на предприятиях-потребителях электричества. Этот угол между фазами принимают, как косинус фи (cos φ = P/S) и измеряют при помощи фазометра. В результате возникает реактивная составляющая мощности, способствующая появлению электромагнитных полей, поддерживающих функциональность оборудования. Она же способствует и перегрузкам электроподстанций, увеличению сечений передающих линий, снижению сетевого напряжения, так как все сети нагружаются полной мощностью без учета, что ее реактивная составляющая не выполняет полезной работы.

Реактивная мощность может и должна компенсироваться, за счет чего повышается эффективность работы сетей и улучшается качество транспортируемой энергии.

Выбор ступени регулирования УКРМ

Таким образом, при выборе УКРМ необходимо наряду с номинальной мощностью определить величину ступени регулирования. Ступень регулирования должна быть достаточно мала для поддержания коэффициента реактивной мощности в заданном диапазоне, см. (12), и в то же время без необходимости не увеличивала габариты и стоимость УКРМ.

Для наглядности нанесём значения QКУ, QКУ.min и QКУ.max на числовую ось Q для текущего (не расчетного) режима нагрузки в фиксированный момент времени (см. рис. 2, а).

Текущий режим нагрузки характеризуется значениями:

  • Pнагр.(Qнагр.) – активная (реактивная) мощность нагрузки;
  • cosϕнагр. – коэффициент мощности нагрузки;
  • QКУ – реактивная мощность, вырабатываемая КУ;
  • QКУ.min и QКУ.max – граничные значения реактивной мощности УКРМ для текущего режима нагрузки.

Рис. 2. Изображение реактивной мощности УКРМ в текущем режиме.

а – до переключения ступени регулирования; б – в момент переключения ступени регулирования

Значение QКУ находится между значениями QКУ.min и QКУ.max, значит коэффициент реактивной мощности tgϕВН находится в допустимом диапазоне значений. При уменьшении реактивной мощности нагрузки Qнагр. значения QКУ.min и QКУ.maxначинают уменьшаться, см. (5), (16) и (17). При этом они смещаются влево на оси Q до тех пор, пока QКУ.max не достигнет значения QКУ (см. рис. 2, б). При дальнейшем снижении Qнагр. значение QКУ выходит за допустимый диапазон. В этот момент УКРМ снижает вырабатываемую реактивную мощность QКУ на величину ступени регулирования ΔQКУ до значения Q’КУ. Очевидно, что величина ступени регулирования не должна превышать разность между значениями QКУ.max и QКУ.min. Аналогичные рассуждения можно провести при увеличении реактивной мощности нагрузки Qнагр.

Итак, расчётная величина ступени регулирования компенсирующего устройства определяется по выражению:

(21)

Подставив в (21) выражения (16) и (17), получим формулу расчёта ступени регулирования УКРМ:

Выбор ступени регулирования УКРМ ΔQКУ выполняется по выражению:

(23)

Подставив (22) в (23), окончательно получим:

Из (22) видно, что расчетное значение ступени регулирования зависит от величины активной мощности нагрузки Pнагр.; при снижении Pнагр. снижается и расчетное значение ΔQКУ.р. Следовательно, если ступень регулирования выбрана по расчетной мощности нагрузки Pр.нагр., то приемлемое значение tgϕВН гарантированно будет обеспечиваться только в диапазоне расчетных (максимальных) значений нагрузок потребителей. При снижении потребляемой нагрузки Pнагр.величина ΔQКУ.р может оказаться меньше ΔQКУ, и tgϕВН выйдет за границы диапазона допустимых значений tgϕmax и tgϕmin. Во избежание этой ситуации рекомендуется производить расчет ΔQКУ.р в режиме малых нагрузок. Тогда выбранная ступень регулирования ΔQКУ по выражению (24) обеспечит поддержание tgϕВН в требуемом диапазоне в режиме и больших, и малых нагрузок.

Основные компоненты УКРМ

Для компенсации индуктивной составляющей реактивной мощности применяют конденсаторные установки. Иногда их объединяют в целые батареи и оснащают различной коммутирующей аппаратурой. Она необходима для автоматического переключения конденсаторов с целью повышения или понижения конечной ёмкости батареи. Дополнительно требуется к.л. измерительный прибор для отслеживания коэффициента мощности cosф и прочих параметров УКРМ. На сегодняшний день такие контроллеры выполняются на основе микропроцессоров, которые делают всю работу без вмешательства человека.

Конденсаторный компенсатор

Ёмкостная составляющая компенсируется похожим образом. Здесь уже в качестве выравнивающего cosф устройства выступают синхронные двигатели или специальные реакторы (катушки, дроссели). Ёмкостная составляющая свойственна протяжённым кабельным и воздушным линиям, а не самому промышленному оборудованию.

Тарификация в зависимости от потребляемой реактивной энергии (квар∙ч)

Большинство поставщиков выдвигают условие поддержания среднего коэффициента мощности cosφ в течение месяца или расчётного периода выше 0,9. Если потребление реактивной энергии становится больше 50% потребления активной энергии, то дополнительная реактивная энергия будет тарифицироваться. Как говорилось выше, реактивная энергия будет измеряться отдельным счётчиком квар·ч. Обычно дополнительная реактивная энергия (квар·ч) оценивается в диапазоне от 10 до 15% стоимости активной энергии (кВт·ч). Оценка реактивной энергии также может быть предметом переговоров с местным поставщиком

Также нужно обратить внимание, оценивает ли энергоснабжающая компания дополнительную реактивную энергию по периоду высокого тарифа (дневного) или по периоду низкого тарифа (ночному)

В случае системы с распределённой генерацией, которая может отдавать активную энергию обратно в сеть, должны приниматься во внимание специальные технические соображения, так как значения коэффициента мощности cosφ могут оказаться во всех четырёх квадрантах при генерации в перевозбуждённом и недовозбуждённом режимах и для нагрузок с опережающим и отстающим коэффициентами мощности). На рисунке показан в графическом виде метод определения дополнительного потребления реактивной энергии при коэффициенте мощности, задаваемом энергоснабжающей компанией, например, при cosφ ≈ 0,9

Иногда поставщик может задавать разные коэффициенты мощности в дневной и ночной период, потому что ночью может оказаться удовлетворительным более низкое значение, чтобы избежать опережающего (емкостного) коэффициента мощности в системе электроснабжения. Такие условия могут быть предложены прежде всего в городской местности с большими кабельными сетями в периоды низкой нагрузки. Некоторые изготовители реле коэффициента мощности предлагают в качестве функции возможность автоматического переключения между двумя заданными значениями коэффициента мощности cosφ

На рисунке показан в графическом виде метод определения дополнительного потребления реактивной энергии при коэффициенте мощности, задаваемом энергоснабжающей компанией, например, при cosφ ≈ 0,9. Иногда поставщик может задавать разные коэффициенты мощности в дневной и ночной период, потому что ночью может оказаться удовлетворительным более низкое значение, чтобы избежать опережающего (емкостного) коэффициента мощности в системе электроснабжения. Такие условия могут быть предложены прежде всего в городской местности с большими кабельными сетями в периоды низкой нагрузки. Некоторые изготовители реле коэффициента мощности предлагают в качестве функции возможность автоматического переключения между двумя заданными значениями коэффициента мощности cosφ.

Выводы

С целью координации услуг, совершенствования нормативно правовой базы в соответствии с современными требованиями, передовым отечественным и зарубежным опытом, развития отечественного производства по компенсации реактивной мощности в России, представляется целесообразным:

Внести в соответствующие разделы Правил оптового и розничного рынков электроэнергии, а также в постановления Правительства РФ дополнительные требования по распространению услуги по реактивной мощности на генерирующие компании и потребителей, по координации и экономическому стимулированию оказания этих услуг;
ПАО «Россети» по согласованию с ПАО «СО ЕЭС» разработать и внедрить отраслевой стандарт по оценке системного экономического эффекта от установки и ввода в работу средств компенсации реактивной мощности в магистральных и распределительных электрических сетях;
ПАО «СО ЕЭС», ПАО «Россети» и ОАО «Совет рынка» разработать, согласовать и внедрить единую математическую модель ЕЭС – ЕНЭС России для расчетов и оптимизации текущих и перспективных режимов работы, выбора мест и мощности средств компенсации реактивной мощности;
ПАО «СО ЕЭС» совместно с ПАО «Россети» ускорить разработку программы, обеспечить финансирование и поэтапное внедрение многоуровневой автоматизированной системы управления потоками реактивной мощности и уровнями напряжения в электрических сетях;
Минэнерго России в составе Государственной информационной системы предусмотреть систему государственной отчетности и мониторинга объемов внедрения компенсирующих устройств, степени и эффективности их использования в электрических сетях и у потребителей;
ПАО «СО ЕЭС» в раздел 2 проекта «Правил технологического функционирования электроэнергетических систем» внести дополнение «-оптимизации потерь мощности и электроэнергии в электрических сетях»;
ПАО «Россети» провести инвентаризацию и анализ точности средств измерения реактивной мощности на границах балансовой принадлежности, подготовить и внедрить поэтапную программу приведения системы измерения реактивной мощности в соответствие с современными требованиями

Особое внимание при этом обратить на необходимость учета несинусоидальных и несимметричных режимов при измерении реактивной мощности;
Минэнерго России совместно с Минэкономразвития РФ ускорить разработку и внедрение экономического механизма возврата инвесторам полученной экономии от внедрения энергосберегающих энергосервисных контрактов, в том числе контрактов по внедрению компенсирующих и регулирующих устройств в электрических сетях и у потребителей;
Предприятиям отечественной электротехнической промышленности – изготовителям компенсирующих устройств организовать производство современных регулируемых СКРМ (статических и электромашинных), элементной базы силовой электроники, не уступающих лучшим мировым образцам и соответствующих международным стандартам;
ПАО «Россети» и ПАО «ФСК ЕЭС» в программах инновационного развития предусматривать широкое применение современных отечественных регулируемых СКРМ. При разработке интеллектуальных электрических сетей, алгоритмов и программ управления ими предусматривать совместное управление и комплексное использование регулирующего эффекта средств компенсации реактивной мощности и возобновляемых источников энергии (распределенной генерации) для целей оптимизации потоков активной и реактивной мощности в электрических сетях.
Разработать и внедрить шкалу коэффициентов к тарифам на электроэнергию за компенсацию реактивной мощности и качество электроэнергии;
Разработать и утвердить допустимые требования к электроприемникам, содержащим нелинейную нагрузку по допустимым искажающим токам.

Литература

Заключение

Подведем итоги, перечислив основные тезисы о компенсации реактивной энергии:

  • Назначение – разгрузка линий электропередач и электрических сетей предприятий. В состав устройства могут входить антирезонансные дроссели для уменьшения уровня гармоник в сети.
  • За неё не уплачивают счета частные лица, но платят предприятия.
  • В состав компенсатора входят батареи конденсаторов или в этих же целях используют синхронные машины.

Также рекомендуем просмотреть полезные видео по теме статьи:

Материалы по теме:

  • Причины потерь электроэнергии на больших расстояниях
  • Как определить потребляемую мощность
  • Беспроводная передача электроэнергии на расстояния

Заключение

Подведем итоги, перечислив основные тезисы о компенсации реактивной энергии:

  • Назначение – разгрузка линий электропередач и электрических сетей предприятий. В состав устройства могут входить антирезонансные дроссели для уменьшения уровня гармоник в сети.
  • За неё не уплачивают счета частные лица, но платят предприятия.
  • В состав компенсатора входят батареи конденсаторов или в этих же целях используют синхронные машины.

Также рекомендуем просмотреть полезные видео по теме статьи:

Материалы по теме:

  • Причины потерь электроэнергии на больших расстояниях
  • Как определить потребляемую мощность
  • Беспроводная передача электроэнергии на расстояния

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.