Последовательное подключение
При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.
Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).
Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:
Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ — конечно, последовательным!
Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.
Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.
Вот пример готового устройства:
Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64…106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток — это от него уже не зависит.
Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.
Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:
Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) — либо через токоограничительный резистор, либо через токозадающий драйвер.
Цепи, состоящие из резисторов
Основная статья: Последовательное и параллельное соединение
Последовательное соединение резисторов
При последовательном соединении резисторов их сопротивления складываются
R=R1+R2+R3+…{\displaystyle R=R_{1}+R_{2}+R_{3}+\ldots }
Доказательство
Так как общая разность потенциалов равна сумме её составляющих: U=U1+U2+U3+…{\displaystyle U=U_{1}+U_{2}+U_{3}+\ldots }
А из закона Ома падение напряжения Ui{\displaystyle U_{i}} на каждом сопротивлении Ri{\displaystyle R_{i}} равно: Ui=IiRi{\displaystyle U_{i}=I_{i}R_{i}}
при этом из закона сохранения заряда, через все резисторы идёт одинаковый ток I{\displaystyle I}, поэтому подставляя в формулу для суммы напряжений закон Ома, записываем: IR=IR1+IR2+IR3+…{\displaystyle IR=IR_{1}+IR_{2}+IR_{3}+\ldots }
Делим всё на ток I{\displaystyle I} и получаем: R=R1+R2+R3+…{\displaystyle R=R_{1}+R_{2}+R_{3}+\ldots }
Если R1=R2=R3=…=Rn{\displaystyle R_{1}=R_{2}=R_{3}=…=R_{n}}, то общее сопротивление равно: R=nR1{\displaystyle R=nR_{1}}
При последовательном соединении резисторов их общее сопротивление будет больше наибольшего из сопротивлений.
Параллельное соединение резисторов
При параллельном соединении резисторов складываются величины, обратные сопротивлению (то есть общая проводимость 1R{\displaystyle {\frac {1}{R}}} складывается из проводимостей каждого резистора 1Ri{\displaystyle {\frac {1}{R_{i}}}})
1R=1R1+1R2+1R3+…{\displaystyle {\frac {1}{R}}={\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+\ldots }
Если цепь можно разбить на вложенные подблоки, последовательно или параллельно включённые между собой, то сначала считают сопротивление каждого подблока, потом заменяют каждый подблок его эквивалентным сопротивлением, таким образом находится общее (искомое) сопротивление.
Доказательство
Так как заряд при разветвлении тока сохраняется, то: I=I1+I2+I3+…{\displaystyle I=I_{1}+I_{2}+I_{3}+\ldots }
Из закона Ома ток Ii{\displaystyle I_{i}} через каждый резистор равен: Ii=UiRi{\displaystyle I_{i}={\frac {U_{i}}{R_{i}}}}, но разность потенциалов на всех резисторах будет одинакова, поэтому перепишем уравнение суммы токов: UR=UR1+UR2+UR3+…{\displaystyle {\frac {U}{R}}={\frac {U}{R_{1}}}+{\frac {U}{R_{2}}}+{\frac {U}{R_{3}}}+\ldots }
Делим всё на U{\displaystyle U} и получаем общую проводимость 1R=1R1+1R2+1R3+…{\displaystyle {\frac {1}{R}}={\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+\ldots }, и общее сопротивление R=11R1+1R2+1R3+…{\displaystyle R={\frac {1}{{\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+\ldots }}}
Для двух параллельно соединённых резисторов их общее сопротивление равно: R=R1R2R1+R2{\displaystyle R={\frac {R_{1}R_{2}}{R_{1}+R_{2}}}}.
Если R1=R2=R3=…=Rn{\displaystyle R_{1}=R_{2}=R_{3}=…=R_{n}}, то общее сопротивление равно: R=R1n{\displaystyle R={\frac {R_{1}}{n}}}
При параллельном соединении резисторов их общее сопротивление будет меньше наименьшего из сопротивлений.
Смешанное соединение резисторов
Схема состоит из двух параллельно включённых блоков, один из них состоит из последовательно включённых резисторов R1{\displaystyle R_{1}} и R2{\displaystyle R_{2}}, общим сопротивлением R1+R2{\displaystyle R_{1}+R_{2}}, другой из резистора R3{\displaystyle R_{3}}, общая проводимость будет равна 1R=1(R1+R2)+1R3{\displaystyle {\frac {1}{R}}={\frac {1}{(R_{1}+R_{2})}}+{\frac {1}{R_{3}}}}, то есть общее сопротивление R=R3(R1+R2)R1+R2+R3{\displaystyle R={\frac {R_{3}(R_{1}+R_{2})}{R_{1}+R_{2}+R_{3}}}}.
Для расчёта таких цепей из резисторов, которые нельзя разбить на блоки, последовательно или параллельно соединённые между собой, применяют правила Кирхгофа. Иногда для упрощения расчётов бывает полезно использовать преобразование треугольник-звезда и применять принципы симметрии.
Расчет подтягивающего резистора
Расчет минимального сопротивления резистора достаточно прост и определяется из формулы:
Rp = (Vcc – 0,4)/3mA где:
- Rp – минимальный номинал сопротивления резистора;
- Vcc – Напряжение линии питания.
Соответственно Rp = (5V- 0,4V)/3mA= 1,5 кОм – Это минимальное сопротивление.
Максимальное сопротивление определяется по емкости шины конкретного устройства по формуле:
Rp = 1µs/Cb где:
1µs – время нарастания сигнала для стандартного сигнала;
Cb – емкость шины – 20 пФ.
Расчет показывает, что сопротивление будет равно 50 кОм.
Как правильно выбрать номинал
Номинал резистора лежит в пределах от 1,5 кОм до 50 кОм. Подбирается обычно подбором. Подается соответствующий сигнал с рабочей частотой. Просматриваются осциллограммы и меняя сопротивления выбирается наиболее подходящее.
Типы тормозных резисторов
Существует два вида тормозных резисторов, отличающихся материалом корпуса:
- Алюминиевые;
- Керамические.
По сравнению с керамическими, алюминиевые резисторы больше используются в погрузочно-разгрузочных машинах и агрегатах (ленточный конвейер, башенный кран). Они удобные, аккуратные, «упакованные» в оболочку. Их можно прикрепить на теплопроводное основание. Для увеличения теплосъема можно помещать в теплоотводящую жидкость. Но в цене они дороже керамических.
Алюминиевый тормозной резистор
Также резисторы различают по типу заявленной мощности. При выборе нужно ориентироваться на два основных показателя: сопротивление R и рассеиваемую мощность P.
Для лучшего сочетания некоторые резисторы собирают блоками из нескольких штук. При этом номиналы у всех в комплекте должны быть одинаковыми. Если прибор с подходящей мощностью отсутствует, то создают последовательное или параллельное соединение и подключают таким образом.
Резисторные блоки подключают напрямую при помощи тормозного модуля. Все зависит от того, какой преобразователь используется. Если процесс торможения занимает больше времени чем требуется, рекомендуется выполнить проверку ТР на наличие больших токов. Поэтому рекомендуется выбирать ТР с увеличенной номинальной мощностью, нежели указано в инструкции.
Механизмы, работа которых напрямую связана с электродвигателем, достаточно будет стандартного сопротивления тормозного резистора. Для более крупных машин сопротивление подбирается исходя из длительности и особенностей тормозного процесса.
Область применения резисторов
Резистор играет важнейшую функцию в работе электрических систем. Например, он способен контролировать распределение, мощность и прочие характеристики электричества в автомобиле. Резистор любого размера, находящийся в отопительной системе позволяет точно регулировать количество подаваемого тепла.
Элемент, расположенный в светодиодах, позволяет регулировать интенсивность освещения. Следовательно, данный механизм позволяет нам более точно регулировать параметры работы техники. В противном случае нам приходилось бы пользоваться заранее установленным режимом работы техники без возможности его изменения.
Принцип работы переменного резистора
Элемент электрической схемы, сопротивление которого можно изменять от нуля до номинального значения, называется переменным резистором и позволяет вручную плавно регулировать величину сопротивления для обеспечения нормальной работы остальных компонентов электрической схемы.
Устройство
Переменное сопротивление состоит из:
- резистивного элемента, который определяет номинал сопротивления, с припаянными по краям двумя фиксированными выводами для подключения в схему;
- подвижного подпружиненного третьего контакта (ползунка, бегунка), который можно передвигать по металлической или металлизированной дорожке (коллектору), уменьшая или увеличивая сопротивление;
- ручки, которая управляет регулировочным механизмом.
Конструктивное исполнение:
- Поворотный – токопроводящий элемент выполняется в виде кольца (подковы), ползунок перемещается поворотным регулировочным механизмом при помощи специальной ручки. Поворотные резисторы могут быть однооборотные и многооборотные.
- Движковый – величина сопротивления регулируется прямым перемещением ползунка по токопроводящему элементу.
Для чего используется
Регулируемый резистор плавно изменяет параметры электрической цепи непосредственно во время работы.
Применяется во многих электроприборах и бытовых устройствах – в качестве потенциометрических датчиков разного назначения и для регулировки громкости и тембра звука, настройки частоты радиоприема, яркости свечения светодиодов или температуры нагрева простым поворотом ручки-регулятора.
Чем отличается от подстроечного
Подстроечный резистор компактного размера, устанавливается непосредственно на электронной плате и применяется для вывода схемы в нужный режим только на стадии настройки и наладки, после чего фиксируется краской или клеем.
Для регулировки подстроечного сопротивления используется отвертка, которая вставляется в специальный паз регулировочного механизма, связанного с круговым ползунком.
Физическая сущность
Изучение учёными электричества привело к пониманию, что существует что-то, мешающее свободным зарядам проходить через вещество. Способность тела пропускать через себя электрический ток была названа электропроводимостью. Как выяснилось позже, она определяется количеством свободных зарядов, присутствующих в структуре элемента, характером внешнего воздействия и физическими размерами тела. Все существующие вещества были разделены на три вида:
- проводники;
- полупроводники;
- диэлектрики.
К первой группе отнесли материалы, при прохождении через которые значение электрического тока практически не уменьшается. Это все металлы и электролиты. Ко второй — элементы, проводимость которых существенно изменяется при воздействии на них внешних факторов, таких как температура, свет, электромагнитное излучение. Например, кремний, германий, селен. Диэлектриками назвали вещества, практически полностью поглощающие энергию электронов, то есть преобразовывающие электрическую мощность в тепловую. Яркими представителями этой группы являются: каучук, пластмассы, композиционные материалы (текстолит, гетинакс, второпласт).
Это слово произошло от латинского resisto, что в дословном переводе на русский язык звучит как «сопротивляюсь». Правильное его определение, которое можно встретить в специализированной литературе, звучит следующим образом: «Резистор, или сопротивление, представляет собой пассивную радиодеталь в электрической цепи, характеризующуюся постоянной или изменяемой величиной проводимости. Он предназначен для преобразования силы тока в разность потенциалов или наоборот».
Резистор в цепи
На российских схемах элементы с постоянным сопротивлением принято обозначать в виде белого прямоугольника, иногда с буквой R над ним. На зарубежных схемах можно встретить обозначение резистора в виде значка «зигзаг» с аналогичной буквой R сверху. Если для работы прибора важен какой-либо параметр детали, на схеме принято его указывать.
Мощность может обозначаться полосками на прямоугольнике:
- 2 Вт — 2 вертикальные черты;
- 1 Вт — 1 вертикальная черта;
- 0,5 Вт — 1 продольная линия;
- 0,25 Вт — одна косая линия;
- 0,125 Вт — две косые линии.
Допустимо указание мощности на схеме римскими цифрами.
Обозначение переменных резисторов отличается наличием дополнительной над прямоугольником линии со стрелкой, символизирующей возможность регулировки, цифрами может быть указана нумерация выводов.
Полупроводниковые резисторы обозначаются тем же белым прямоугольником, но перечеркнутым косой линией (кроме фоторезисторов) с буквенным указанием типа управляющего воздействия (U — для варистора, P — для тензорезистора, t — для терморезистора). Фоторезистор обозначается прямоугольником в круге, к которому направлены две стрелки, символизирующие свет.
Параметры резистора не зависят от частоты протекающего тока, это означает, что данный элемент одинаково функционирует в цепях постоянного и переменного тока (как низкой, так и высокой частоты). Исключением являются проволочные резисторы, которым свойственна индуктивность и возможность потери энергии вследствие излучения на высоких и сверхвысоких частотах.
В зависимости от требований к свойствам электрической цепи резисторы могут соединяться параллельно и последовательно. Формулы для расчета общего сопротивления при разном соединении цепей существенно отличаются. При последовательном соединении итоговое сопротивление равно простой сумме значений входящих в цепь элементов: R = R1 + R2 +… + Rn.
При параллельном соединении для вычисления суммарного сопротивления необходимо сложить величины, обратные значениям элементов. При этом получится значение, также обратное итоговому: 1/R = 1/R1+ 1/R2 + … 1/Rn.
Общее сопротивление параллельно соединенных резисторов будет ниже наименьшего из них.
Watch this video on YouTube
Реостат.
Реостат (переменный резистор, включенный по схеме реостата) в основном используется для регулировки силы тока. Если мы включим последовательно с реостатом амперметр, то при перемещении ползунка будем видеть меняющееся значение силы тока. Резистор R_1 в этой схеме исполняет роль нагрузки, ток через которую мы и собираемся регулировать переменным резистором. Пусть максимальное сопротивление реостата равно R_{max}, тогда по закону Ома максимальный ток через нагрузку будет равен:
I = \frac{U}{R_1 + 0}
Здесь мы учли то, что ток будет максимальным при минимальном значении сопротивления в цепи, то есть когда ползунок в крайнем левом положении. Минимальный ток будет равен:
I = \frac{U}{R_1 + R_{max}}
Вот и получается, что реостат выполняет роль регулировщика тока, протекающего через нагрузку. В данной схеме есть одна проблема – при потере контакта между ползунком и резистивным слоем цепь окажется разомкнутой и через нее перестанет протекать ток. Решить эту проблему можно следующим образом:
Отличие от предыдущей схемы заключается в том, что дополнительно соединены точки 1 и 2. Что это дает в обычном режиме работы? Да ничего, никаких изменений Поскольку между ползунком резистора и точкой 1 ненулевое сопротивление, то весь ток потечет напрямую на ползунок, как и при отсутствии контакта между точками 1 и 2. А что же произойдет при потере контакта между ползунком и резистивным слоем? А эта ситуация абсолютно идентична отсутствию прямого соединения ползунка с точкой 2. Тогда ток потечет через реостат (от точки 1 к точке 3), и величина его будет равна:
I = \frac{U}{R_1 + R_{max}}
То есть при потере контакта в данной схеме будет всего лишь уменьшение силы тока, а не полный разрыв цепи как в предыдущем случае.
С реостатом мы разобрались, давайте рассмотрим переменный резистор, включенный по схеме потенциометра.
Советы по подключению тормозного резистора
Существует два способа подключения:
- Внутренний, когда резистор располагается внутри преобразователя частот;
- Внешний, через прерыватель, подключенный к шине внутри преобразователя.
На выбор подключения влияют конструктивные особенности конкретного агрегата и мощность преобразователя частоты. Первый способ подходит для ЧП до 30 кВт. Второй предназначен для более мощных.
Плавный пуск кран-балки
Несколько советов по подключению:
Перед началом работ измерьте напряжение на клеммах.
Обесточьте силовой модуль.
Соблюдайте правила монтажа, во избежание замыкания.
Обеспечьте сохранность кабеля от механических повреждений.
Используйте кабель с двойной изоляцией.
Прокладывайте в раздельных каналах или трубах.
Применять соединительные кабели длиной не более 100 метров при допустимом сечении вывода – 35 мм².
При выборе резистора следует начать с требований, предъявляемых процессом. Изучить технические характеристики. Рассмотреть специально для конкретного применения. В некоторых случаях решением может быть сочетание последовательного и параллельного соединения.
Пример
Пуск электродвигателя производится раз в смену. Номинальный ток электрической машины равен 120 А, относительный пиковый момент равен Мп = 2, момент переключения Мпер = 0,8; пиковый ток 2Iн, ток переключения 0,8Iн. Первая ступень работает в течении t1 = 1,35 с, вторая ступень t2 = 1,35+0,54 = 1,9 с. Для работы выбран резистор на длительный ток 33 А с постоянной времени Т = 250 с. Поскольку постоянная времени Т значительно больше t1 и t2, то эквивалентный ток по нагреву равен эквивалентному току по теплу. Исходя из этого для первой ступени:
Так как пусковой резистор должен допускать троекратный перегруз, то для первой ступени tpi = 3t1=3·1,35=4,05 c. Воспользовавшись приведенной ниже кривой для tр1/Т = 4,05/250 = 0,015, находим эквивалентный ток резистора: Iэ.дл. = 0,13Ipi = 22,6 A. Для второй ступени резистора: tр2 = 3t2 = 3·1,9 = 5,7 c.
Поскольку ток переключения и пиковый ток такие же, как и для первой ступени, то Iр1 = Iр2. Для данной ступени (tр2/Т) = 0,023. С помощью кривой, приведенной выше, найдем Iэ.дл. = 26 А. Так как длительный ток резистора равен 33 А, то данный резистор проходит проверку по нагреву.
Для перемежающегося режима расчет ведется аналогичным образом. Если постоянная времени Т велика по сравнению со временем цикла tр1 + tр2, то уравнение можно упростить:
При проведении расчетов по формуле (2) нет необходимости в постоянной нагрева Т, данный подход более прост по сравнению с формулой (1) и дает результат с запасом. Формулу (2) можно использовать при проведении предварительных расчетов.
Для повторно-кратковременного режима работы Ip1 = Ip = const, Ip2 = 0. В таком случае для любого tp/T будем иметь:
Если же tp<<T, то формула (3) может быть значительно упрощена:
Эквивалентный по теплу ток Iр.ц за время цикла tp + tп можно найти из равенства:
Из формул (4) и (4а) следует, что Iэ.н. = Iр.ц.
Отсюда следует вывод, что при принятых допущениях эквивалентный по теплу ток равен эквивалентному току по нагреву за время одного цикла.
Тепловой расчет резисторов является кропотливым и довольно громоздким, поэтому для типовых схем включения рекомендовано выбирать резисторы из специальных таблиц, в которых величины сопротивлений и их ток выражены в зависимости от параметров электродвигателя.
При компоновке резисторов в реостаты и ящики все они должны максимально использоваться по нагреву, так как это позволит уменьшить вес и габарит электрического аппарата. Для максимально эффективного использования резисторов при включении их последовательно все они должны иметь один и тот же длительный ток.
При создании пусковых схем для электрических машин большой мощности приходится использовать параллельное соединение элементов силовой цепи.
При параллельном соединении резисторов падения напряжений на них равны и для их полного использования нужно, чтобы произведение длительно допустимого тока на сопротивление для всех резисторов было равно.
Например, если один из реостатов имеет ra меньшее, чем у других, а падение напряжение на нем равно iara, то при параллельном соединении это значит, что по нему будет протекать больший ток (поскольку напряжение равно при параллельном соединении для всех элементов). В итоге получим один перегруженный по мощности реостат, а остальные недогружены.