Определение и использование эффекта Холла

Достоинства и недостатки датчиков Холла

Главным плюсом датчиков Холла является отличная электрическая изоляция между путем протекания электричества и цепью измерения (в проектировании схем она носит название гальванической развязки). Ее принцип незаменим в тех случаях, когда для проекта необходима связь электросхем, полностью исключающая обмен электрическим током между ними. Такие приборы не оказывают влияния на предмет измерения, поскольку не оказывается сколько-нибудь существенного сопротивления, поэтому электромагнитные показатели схемы остаются такими же, как до включения датчика Холла в цепь.

Пример использования. Оцифрованный сигнал необходимо передать с помощью оптоизолятора, поскольку в нем импульсы напряжения перекладываются в световые, и передача происходит с помощью оптики, а не электрики. Гальваническая развязка с использованием эффекта Холла помогает не допустить проблемы, которые вызывают контуры заземления. Если приходится измерять токи большого напряжения, то с помощью датчиков Холла рассеивается самая малая мощность.

Также приборы Холла демонстрируют довольно высокую точность измерений, минимальный процент ошибок стремится к единице.

Обратите внимание! В отдельных случаях датчики с резисторами дают даже лучшие показатели (ниже одного процента), однако и более высокий процент ошибок допустим при исследованиях больших напряжений, где обычно и применяют датчики Холла. У приборов с использованием описываемого эффекта есть и зарегистрированные недостатки

Среди них можно выделить то, что все они работают лишь с весьма ограниченным разбросом частот и стоят достаточно дорого. Так, «АСиЭс-712» может применяться на частотах до 80 килогерц, а широкополосный «Мелексис МЛХ-91-208» – максимум до 250 килогерц, тогда как обычный резистивный датчик, имеющий высокоскоростное усиление, справляется с частотами в мегагерцовом интервале

У приборов с использованием описываемого эффекта есть и зарегистрированные недостатки. Среди них можно выделить то, что все они работают лишь с весьма ограниченным разбросом частот и стоят достаточно дорого. Так, «АСиЭс-712» может применяться на частотах до 80 килогерц, а широкополосный «Мелексис МЛХ-91-208» – максимум до 250 килогерц, тогда как обычный резистивный датчик, имеющий высокоскоростное усиление, справляется с частотами в мегагерцовом интервале.

Описание сути явления

Возникновение разности потенциалов в проводнике с током под воздействием магнитного поля называют эффектом Холла. Электропроводность металлов зависит от концентрации электронов проводимости (n) и их подвижности (b). Данные величины являются весьма важными характеристиками металла и определяются опытным путем. Так, для измерения концентрации электроном используют эффект Холла. Рассмотрим проводник в виде прямоугольной пластины, в которой течет ток плотности $\overrightarrow{j.}$ Эквипотенциальными поверхностями внутри этой пластины являются плоскости, перпендикулярные направлению тока, следовательно, разность потенциалов на рис.1 между точками (1 и 2) равна нулю.

Рис. 1

Если в металле создать магнитное поле, которое будет перпендикулярно току, то между точками 1 и 2 (рис.1) возникнет разность потенциалов, которая говорит о том, что при наличии магнитного поля эквипотенциальные поверхности в пластинке отклоняются от первоначального положения. В возникновении поперечной разности потенциалов заключается эффект Холла.

Готовые работы на аналогичную тему

  • Курсовая работа Эффект Холла 480 руб.
  • Реферат Эффект Холла 280 руб.
  • Контрольная работа Эффект Холла 230 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Эффект Холла и его применение

Эффект Холла был открыт уже более века назад, но особого внимания удостоился только в последние три-четыре десятилетия. Первое практическое применение (не считая лабораторных исследований) эффекта Холла было в 50-х годах в датчике микроволнового излучения.

Затем, в связи с освоением массового производства полупроводниковой продукции, эффект Холла стал применяться более широко. В 1968 году произошла революция в производстве микропереключателей: появилась первая твердотельная клавиатура.

Вначале чувствительный элемент и остальную электронику производили как отдельные узлы, но сейчас датчики на эффекте Холла используются практически везде: в компьютерах и швейных машинах, в автомобилях и самолетах, инструментах и медицинском оборудовании.

Эффект Холла технологически является очень выгодным. Чувствительный элемент — это всего лишь тонкая пластинка проводящего материала с выводами, расположенными перпендикулярно протеканию тока.

Если эту пластинку подвергнуть воздействию магнитного поля, то напряжение на выводах изменится пропорционально величине напряженности этого магнитного поля. Напряжение на выводах очень мало, порядка микровольт, и требуется дополнительное усиление, чтобы добиться напряжения, с которым можно работать.

Когда элемент Холла объединяется со вспомогательной электроникой — получается датчик Холла. Сердцем всех микропереключателей основанных на эффекте Холла является микросхема, состоящая из элемента Холла и согласующей схемы.

Несмотря на то, что датчик Холла чувствителен к магнитному полю, он может быть использован как основной элемент в различных типах датчиков, таких как датчики тока, температуры, давления, положения и т. д. Принцип его применения в следующем.

Датчик Холла всегда реагирует на изменение магнитного поля, созданного магнитной системой. В свою очередь состояние магнитной системы изменяется в зависимости от изменения измеряемой величины: температуры, давления, положения или какого-нибудь другого параметра через входной преобразователь.

Выходной преобразователь формирует необходимый выходной сигнал измерителя, используя напряжение датчика Холла.

Основные преимущества использования датчика Холла следующие:

  • монолитность конструкции;
  • высокая наработка на отказ (порядка 30 миллиардов операций);
  • высокая скорость срабатывания (частота переключений свыше 100 кГц);
  • способность работы при не подвижной магнитной системе;
  • отсутствие подвижных частей;
  • совместимые логические уровни входов и выходов;
  • допустимые рабочие температуры от -40 до +150 °C;
  • высокая точность повторяемости операций.

Области применения

Свое применение э-т Холла находит во множестве сфер человеческой деятельности, например, он дает возможность определять показатель подвижности и концентрации н. з., а иногда и самого типа носителя заряда. Эффект Холла в полупроводниках и металлах считается отличным способом исследования полупроводниковых свойств, что объясняется вышеуказанной способностью к определению различных характеристик носителей заряда.

Датчик Холла – прибор, работающий на основе этого эффекта. Он измеряет такую характеристику м. п., как напряженность. Такие датчики находят свое применение в двигателях вентильного, бесколлекторного характера, а также в электродвигателях. Их функция заключается в реализации обратной связи по отношению к положению ротора, а их функция аналогична функции коллекторного ДПТ. Такие приборы часто называют датчиком положения ротора.

Места применения:

  1. Система электронного зажигания в двигателях с внутренним типом сгорания.
  2. Вентиляторы компьютеров и приборов, им аналогичных, а также дисководные приводы.
  3. Электронные компасы смартфонов в качестве исполнителя физической работы имеют именно такие датчики, находящиеся в магнитометре.
  4. Приборы, направленные на измерение бесконтактной силы тока, также используют датчик Холла.
  5. Двигатели ракет ионного типа работают на основе э-та Холла.

Формула эффекта Холла

Вот некоторые математические выражения, которые широко используются в вычислениях эффекта Холла:

Напряжение Холла

Напряжение Холла представлено V H. Формула для напряжения Холла:

Где:

I — Ток, протекающий через датчик

B — напряженность магнитного поля

q — заряд

n — количество носителей заряда на единицу объема

d — толщина датчика

Коэффициент Холла

Он представлен RH. Формула для коэффициента Холла: RH равно 1 / (qn). Коэффициент Холла (R H) положителен, если число отверстий положительного заряда больше, чем число электронов отрицательного заряда. Аналогично, коэффициент Холла (RH) отрицателен, если число отрицательных зарядовых электронов больше, чем число отверстий положительного заряда.

Концентрация несущей заряда

Концентрация электронов в носителе заряда обозначена как «n», а «дырки» — как «p». Математическое выражение для концентрации носителей заряда:

Холловская мобильности

Холловская мобильность для электронов представлена как «μ n», а для отверстий — как «μ p». Математическое выражение для мобильности Холла:

Где:

μ n — проводимость за счет электронов

μ p — проводимость благодаря отверстиям

Использование эффекта Холла

Напряжения, генерируемые с помощью эффекта Холла малы по отношению к воздействиям шума, смещения и температуры, которые, как правило, влияют на схему, и, таким образом, реальные датчики на основе эффекта Холла не были широко распространены до появления полупроводниковой технологии, позволившей создание компонентов с высокой степенью интеграции, которые включали в себя и элемент Холла, и дополнительную схему, необходимую для усиления напряжения Холла. Тем не менее, датчики на основе эффекта Холла ограничены в своей способности измерять небольшие токи. Например, чувствительность ACS712 от Allegro MicroSystems составляет 185 мВ/А. Это означает, что ток 10 мА создаст выходное напряжение только 1,85 мВ. Это напряжение может быть приемлемым, если у схемы низкий уровень шума, но, если в цепь протекания тока включить резистор 2 Ом, в результате можно получить напряжение 20 мВ, что значительно лучше.

Эффект Холла используется в различных датчиках; устройства, основанные на относительно простой связи между током, магнитным полем и напряжением, могут использоваться для измерения положения, скорости и напряженности магнитного поля

В данной статье мы сосредоточим внимание на устройствах, которые измеряют ток через напряжение Холла, генерируемое, когда магнитное поле, создаваемое измеряемым током, концентрируется в элементе датчика Холла

Применение эффекта Холла на практике

Уже сказано (см. датчики Холла), что первые промышленные приложения эффекта Холла нашли себе путь в жизнь во второй половине XX века. Сегодня чуть более половины доли сегмента приходится на автомобильную промышленность. Точнее – передовые технологии в остальные области приходят оттуда. К примеру, модули ASIC и ASSP. Ведущая роль на десятые года XXI века принадлежит компании Asahi Kasei Microsystems (АКМ), поставляющей компасы для мобильных устройств на основе эффекта Холла. Среди промышленных гигантов отметим Micronas, Infineon, Allegro, Melexis. Среди датчиков магнитного поля основанные на эффекте Холла занимают почётную долю в 87%.

Часто датчик включается в состав микросхемы. Историческим предком является серия КМОП. На её основе выпущены интегрированные в кристалл датчики для измерения угла положения дроссельной заслонки, руля, скорости вращения распределительного и коленчатого вала. Широко значение технологии в работе вентильных двигателей, где по угловому положению ротора нужно коммутировать определённым образом обмотки. Измерением величины поля занимаются новейшие 3D-датчики, определяющие угловое и линейное положение системы магнитов. Прежде фиксировался просто факт наличия или отсутствия объекта в поле зрения. Это нужно для успешной конкуренции с магниторезистивной технологией.

Сегодня последним писком моды считаются программируемые конструкции, куда посредством кода заносятся разные функции. Датчики могут использоваться различными способами. К примеру, по взаимному положению чувствительной площадки и магнита различают режимы:

  1. Лобовой. В этом случае магнит находится прямо напротив датчика, удаляясь от него или приближаясь по прямой линии. Поле зависит квадратично от дистанции и закон выходного сигнала от дальности напоминает гиперболу. Такой режим называется униполярным, напряжённость не может поменять направление.
  2. Скольжение. В этом случае между чувствительной площадкой и магнитом имеется некий зазор. Эта координата остаётся неизменной. А магнит может скользить параллельно датчику по одной оси. Поле в этом случае не меняется, а зависимость выходного сигнала от координаты близка к гауссовому распределению. Направление напряжённости не меняется, посему режим также называют униполярным.
  3. Биполярное скольжение. Иногда требуется узнать, в какую именно сторону отклонился магнит. А не только определить дистанцию. В этом случае магнит используется подковообразный. Соответственно, полюсы вызывают отклики разной полярности. Что и дало название режиму.

Данные режимы периодически используются в комбинации. К примеру, когда требуется точно позиционировать магнит относительно датчики (при помощи исполнительных устройств), чувствительность оборудования повышается крутой характеристикой зависимости выходного сигнала от координат. Применяются магниты из трёх полос с чередованием полюсов. Крайний спуски графика получаются пологими, а центральный пик резко выражен. Чем достигается точное позиционирование системы.

Для усиления линий напряжённости, придания чётко выраженного направления применяются полюсные наконечники. Это куски металла из мягких ферромагнитных сплавов. По мере приближения магнита линии начинают стремиться к участку, образуя зазор, где остаются прямыми. Если туда поместить датчик Холла, чувствительность системы ощутимо повышается. С аналогичной целью применяются магниты смещения, остающиеся на месте и не вызывающие самостоятельное срабатывание. По мере приближения движущейся части плотность магнитного поля резко нарастает. Это упрощает срабатывание и уменьшает требования к чувствительности датчика.

Добавим, что по структуре выходного сигнала сенсоры бывают аналоговыми и цифровыми. В последнем случае система легко сопрягается с автоматикой, а измеренный сигнал уже не теряет точности, будучи переданным на обработку.

Виды

Токоизмерительные клещи

В классическом варианте эффект холла это перемещение в определенном направлении зарядов при воздействии магнитного поля. Ниже представлены особенности разных видов явления, которые основаны на иных принципах.

Аномальный

В этом случае главная особенность заключается в том, что разница потенциалов регистрируется без воздействия магнитного поля. Подобные явления наблюдают в изделиях с намагниченными свойствами.

Квантовый

Эта разновидность ЭХ определяется появлением квантовых характеристик сопротивления при существенном снижении температуры образца. Экспериментально подтверждена зависимость проводимости от силовых параметров магнитного поля при сохранении постоянства концентрации носителей зарядов.

Дробный

Такое явление – разновидность рассмотренного выше квантового ЭХ. Его зарегистрировали в ходе последовательного увеличения магнитной индукции.

Спиновый

В этом варианте для экспериментов используют проводники с немагнитными характеристиками. Внешнее поле отсутствует. Наблюдают смещение зарядов в противоположных направлениях.

Возможности и преимущества

  • Возможность измерений в режимах постоянного и переменного сигнала. Использование переменного тока и фазочувствительного детектирования исключает тепловые эффекты и погрешности, связанные с изменением параметров системы со временем, а также значительно улучшает соотношение сигналшум. Режим постоянного сигнала используется тогда, когда захват носителей ловушками, выпрямление на неомических контактах или паразитные емкости влияют на переменный ток.
  • Возможность измерения различными способами: Ван-дер-Пау и т.д. согласно стандарту ASTM F-76.
  • Простая и удобная зондовая система, повышающая производительность.
  • Компактный настольный дизайн прибора.
  • Широкий диапазон значения тока и автоматическая установка его величины для минимизации нагрева образца.
  • Ограничение величины электрического поля во избежание эффектов ударной ионизации при низких температурах.
  • Дополнительный буферный усилитель/источник тока для расширения диапазона измеряемого поверхностного сопротивления до 100 ГОм/см2.
  • Программный контроль всех параметров измерений, возможность сохранения и архивирования данных, текстовый и графический вывод на печать.
  • Дополнительные возможности проведения измерений при различных температурах:
    1. две фиксированные температуры: комнатная и 77К;
    2. криостат с жидким азотом, от 90К до 500К;
    3. криостат с непрерывной прокачкой жидкого гелия, от 4К до 500К;
    4. криостат с непрерывной прокачкой жидкого гелия, от 4К до 300К.
  • Редкоземельный постоянный магнит, обеспечивающий высокую стабильность.
  • В процессе измерения пластина помещается под непрозрачный кожух, тем самым исключаются ошибки, обусловленные посторонней засветкой.
  • Используемая конструкция зондов позволяет быстро осуществлять установку и измерения при комнатной температуре и температуре жидкого азота (77К) пластин диаметром до 3 дюймов.
  • Тщательная проверка правильности измерений, в том числе алгоритмы контроля качества контактов
  • Система электрического вжигания контактов

Что из себя представляет явление

В кратчайшем изложении ЭХ представляет собой частный случай действия магнитных сил на электрозаряженные частицы. Таким образом, если поместить проводник (либо полупроводник) в виде пластины в магнитное поле и сориентировать ее так, что она будет расположена перпендикулярно его линиям возникнет сила, которая заставит частицы смещаться в поперечнике этой пластины.

  1. Направление движения электронов будет зависеть от двух факторов:
  2. Направленности силовых магнитных линий. Направления силы тока.

Итогом эксперимента станет скопление на одной из кромок пластины частиц с отрицательным зарядом. На противоположной стороне пластины возникнет симметричный положительный потенциал. Между ними возникнет разность, которая и наблюдается в виде электрического напряжения. Оно будет нарастать, пока не станет равно лоренцовой силе, действующей на электроны в проводнике.

Встречаются и другие разновидности данного явления, например, аномальный эффект Холла, который возникает в условиях отсутствия постоянного магнитного поля, действующего образец. Возникает подобное явление и в квантовых системах (квазидвумерных электронных жидкостях и газах), оно получило название – квантовое холловское сопротивление.

Как проверить емкость АКБ

Существует несколько эффективных способов узнать емкость любого аккумулятора. Некоторые из них не требует особых затрат или специальной аппаратуры, а только нехитрые математические вычисления.

Точность таких методов не так высока, как при использовании специальных устройств, однако они позволяют узнать приблизительную емкость. Для многих этого будет достаточно.

Итак, для вычисления емкости бесплатным методом необходимо использовать известный ток. В характеристиках аккумулятора имеется информация о токе. Батарея, имеющая емкость 3600 заряжается на протяжении 36 часов током 100 мАч. Это значит, что конечный результат получается за счет перемножения двух составляющих: времени и тока. Поэтому, зная, сколько требуется для полной зарядки, можно узнать емкость.

Для измерения емкости другим способом, необходимо будет потратить деньги. Существует множество интеллектуальных зарядных устройств, с помощью которых можно быстро измерить емкость. Их можно приобрести в специализированном магазине или на aliexpress. Они используются для измерения различных показателей, а не только емкости.

Устройство измеряющее реальную емкость

Для осуществления третьего способа понадобятся такие детали, как АКБ, часы, амперметр с фонариком. Необходимо вставить батарейку в фонарик, включить его на максимальную мощность. Амперметр необходимо для измерения тока. Если фонарик будет светить 20 часов с потреблением тока в 100 мА, то получаем 20*100= 2000 мАч.

История эффекта Холла

Принцип эффекта Холла был назван в честь американского физика Эдвина Холла (1855–1938). Впервые он был представлен миру в 1879 году.

В 1879 году он обнаружил, что когда проводник / полупроводник с током расположен перпендикулярно магнитному полю, генерируется напряжение, которое можно измерить под прямым углом к пути тока. До этого времени электрический ток в проводе считался чем-то похожим на текущую жидкость в трубе.

Принцип эффекта Холла предполагает, что магнитная сила в токе приводит к скученности на конце трубы или провода. Электромагнитный принцип теперь объясняет явления, лежащие в основе эффекта Холла, гораздо лучше. Теория этого ученого, безусловно, намного опередила свое время. Лишь два десятилетия спустя, с введением полупроводников, работы по исследованию эффекта Холла были эффективно использованы.

Первоначально этот принцип использовался для классификации химических образцов. Позднее датчики Холла (с использованием полупроводниковых соединений арсенида индия) стали источником для измерения постоянного или статического магнитного поля без поддержания датчика в движении. Через десятилетие, в 1960-х годах, появились кремниевые полупроводники. Это было время, когда элементы Холла были объединены со встроенными усилителями, и таким образом выключатель Холла был представлен миру.

Достоинства и недостатки

Основное преимущество датчиков, созданных на основе данного эффекта, – изолированность цепей (измерения и токопроводящей). Кроме отмеченной выше хорошей защищенности от внешней среды, такое конструкторское решение обеспечивает отсутствие обратного влияния на основную электрическую схему. Подразумевается возможность оперативного изменения места измерения. Дополнительный плюс – минимальная мощность потребления.

Недостатком является ограниченная точность (1-2% в лучших образцах). Применение резистивного аналога в комплекте с дифференциальным усилителем позволяет улучшить результат с меньшими затратами. Однако в этом случае предполагаются монтаж контрольного компонента в рабочую цепь и сравнительное увеличение потребляемой мощности.

Также следует отметить ограниченный частотный диапазон датчиков Холла. Серийные модели функционируют корректно до 70-90 кГц. Более дорогие изделия широкополосной категории рассчитаны на применение до уровня 240-260 кГц. Нужно учитывать низкую чувствительность, которая вызывает затруднения при работе с малыми токами.

Магнитные датчики

Основное преимущество использования датчиков магнитного поля, заключается в их бесконтактной работе. Они бывают аналоговыми и дискретными. Первый тип считается классическим. В его основе лежит принцип, что чем сильнее будет магнитное поле, тем больше будет величина напряжения. В современных приборах и устройствах такой тип уже практически не используется из-за значительных размеров. Цифровой же датчик построен на режиме работы «ключ» и имеет два устойчивых положения. Если сила индукции недостаточна он не срабатывает.

Вам это будет интересно Устройство термопары, ее виды и принцип работы

Разделяются дискретные элементы Холла на два типа:

  • униполярные — срабатывание которых зависит от полюса магнитного поля;
  • биполярные — переключения состояния датчика происходит при изменении магнитного полюса;
  • омниполярные — реагируют на действие магнитной индукции любого направления.

Конструктивно датчик представляет собой электронный прибор с тремя выводами. Он может выпускаться как в стандартном исполнении DIP, DFN или SOT, так и в герметичном: например, 1GT101DC (герметичный), A1391SEHLT-T (DNF6), SS39ET (SOT), 2SS52M (DIP).

Характеристики устройства

Выпускаемые датчики, использующие явление Холла, как и любые электронные радиокомпоненты характеризуются своими параметрами. Главным из них является тип прибора и напряжение питания. Но, кроме этого, выделяют следующие технические характеристики:

  1. Величина измеряемой индукции. Измеряется она в гауссах или миллитеслах.
  2. Чувствительность — определяется значением магнитного потока, на который реагирует датчик, единица измерения мВ/Гс или мВ/мТл.
  3. Нулевое напряжение магнитного поля — значение разности потенциалов, соответствующее отсутствию магнитного поля.
  4. Дрейф нуля — изменение напряжения, зависящее от температуры. Указывается в процентном отклонении от температуры 25 °C.
  5. Дрейф чувствительности — изменение чувствительности, вызванное изменением температуры.
  6. Полоса пропускания — уровень снижения чувствительности с шагом в 3 дБ.
  7. Индукция включения и выключения — это значение напряжённости поля, при котором датчик устойчиво срабатывает.
  8. Гистерезис — разность между индукциями включения и выключения;
  9. Время срабатывания — характеризуется промежутком времени перехода из одного устойчивого состояния в другое.

Изготовление приборов

Материал, из которого выполняется элемент Холла, должен обладать большой подвижностью носителей зарядов. Для получения наибольшего значения напряжения вещество не должно иметь высокую электропроводностью. Поэтому при производстве устройств используется: селенид, теллурид ртути, антимонид индия. Тонкопленочные датчики получаются методом испарения вещества и осаждения его на подложку. В качестве её служит слюда или керамика.

Изготавливают датчики также из полупроводников — германия и кремния. Их легируют мышьяком или фосфорной сурьмой. Такие устройства обладают низкой зависимостью от изменения температуры, а величина образуемой на них ЭДС может достигать одного вольта.

Типовой процесс производства пластинчатого датчика Холла состоит из следующих операций:

  • обрезка пластины нужного размера;
  • шлифовка поверхности;
  • формирование с помощью пайки либо сварки симметричных выводов;
  • герметизация.

Одним из главных преимуществ датчиков, выполненных на этом эффекте, является электрическая изоляция (гальваническая развязка) делающие их применение удобным и безопасным.

Формулы и расчёты

Так как в классическом определении эффект Холла – это перемещение зарядов под воздействием внешнего магнитного поля, можно сделать несколько выводов:

  • образующееся в контрольных точках напряжение (Uх) будет прямо пропорционально току (I);
  • аналогичная зависимость определена силовыми параметрами поля, которые выражают через вектор (В) магнитной индукции;
  • существенное значение имеет размерность проводника.

Какой получится потенциал при определенных исходных параметрах? Ниже показан алгоритм преобразований с итоговой формулой для расчетов.

Для определения силы Лоренца (Fл) используют выражение:

Fл = q*v*B,

где:

  • q – элементарный заряд;
  • v – скорость его перемещения.

При подключении пластины по схеме основного эксперимента при постоянной силе тока разница потенциалов стабилизируется. После этого созданное электрическое поле будет воздействовать на заряды с определенной силой Fэ = q * E, где E – это соответствующая напряженность.

В этом состоянии Fл =  Fэ, поэтому значение правых частей формул также будет равным: q*v*B = q * E. Следовательно E =  v*B.

Плотность тока (j) определяется выражением:

j = q * v *n, где n – это число заряженных частиц в единице объема.

После преобразования выражения расчет для скорости подставляют в формулу напряженности:

E = (j/q*n) * B.

Разницу потенциалов несложно вычислить по напряженности и расстоянию (d) между контрольными точками (гранями пластины):

Uх = E * d = d * (j/q*n) * B = (1/q*n) * d * j * B.

Часть выражения (1/q*n) = R – это постоянная Холла. Она определяет обратную зависимость от суммарного заряда частиц.

Подставив коэффициент Холла в последнее выражение, можно записать итоговую формулу следующим образом:

Uх = R * d * j * B.

От Лоренца к Холлу

Что является источником магнитного поля

Для лучшего понимания физических процессов следует вспомнить базовые определения силы Лоренца. Они описывают воздействие на движущийся заряд магнитного поля. При перпендикулярном расположении силовых линий и вектора скорости электрон будет отклоняться вертикально вверх.


Сила Лоренца и эффект Холла: пояснение основных зависимостей

На второй части рисунка показано, каким образом сила Лоренца воздействует на поток электронов. Их движение в определенном направлении обеспечивает подключенный источник постоянного тока. В соответствующих точках плоского проводника несложно измерить разницу потенциалов (Uх).

Для определения полярности потенциала пользуются известным правилом правой руки. Разместив ладонь в соответствии с направлением движения электронов, положением большого пальца определяют направление воздействия силы Лоренца. В рассматриваемом примере она перемещает отрицательные заряды на пластине вниз. Соответствующий знак «-» отмечен на картинке.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.