Характеристики и физические свойства материалов
Параметры проводников определяют область их применения. Основные физические характеристики:
- удельное электрическое сопротивление — характеризует способность вещества препятствовать прохождению электрического тока;
- температурный коэффициент сопротивления — величина, характеризующая изменение показателя в зависимости от температуры;
- теплопроводность — количество тепла, проходящее в единицу времени через слой материала;
- контактная разность потенциалов — происходит при соприкосновении двух разнородных металлов, применяется в термопарах для измерения температуры;
- временное сопротивление разрыву и относительное удлинение при растяжении — зависит от вида металла.
При охлаждении до критических температур удельное сопротивление проводника стремится к нулю. Это явление называется сверхпроводимостью.
Свойства, характеризующие проводник:
- электрические — сопротивление и электропроводимость;
- химические — взаимодействие с окружающей средой, антикоррозийность, способность соединения при помощи сварки или пайки;
- физические — плотность, температура плавления.
Особенность диэлектриков — противостоять воздействию электротока. Физические свойства электроизоляционных материалов:
- диэлектрическая проницаемость — способность изоляторов поляризоваться в электрическом поле;
- удельное объёмное сопротивление;
- электрическая прочность;
- тангенс угла диэлектрических потерь.
Изоляционные материалы характеризуются по следующим параметрам:
- электрические — величина пробивного напряжения, электрическая прочность;
- физические — термостойкость;
- химические — растворимость в агрессивных средствах, влагостойкость.
Сверхпроводимость
Свойство материала обладать нулевым электрическим сопротивлением при температуре ниже определенного значения получило название сверхпроводимости.
У некоторых проводящих веществ эта способность возникает при холодной температуре, близкой к химическому состоянию жидкого гелия.
В 1986 году произошло открытие веществ с высокотемпературной сверхпроводимостью. Например, керамика из кислорода, бария, меди, лантана не проводит ток в обычных условиях, а вследствие нагревания становится сверхпроводником.
На практике используют вещества, пропускающие электрический ток при 58 градусах Кельвина и более, то есть при температуре выше точки кипения азота.
Чаще всего находят применение твердые высокотемпературные сверхпроводники. Жидкие и газообразные используют реже. Все эти материалы необходимы для изготовления современных электротехнических устройств различной мощности.
«Электрическое поле. Проводники и диэлектрики»
Электрическое взаимодействие отличается от взаимодействия тел, изучаемого механикой, прежде всего тем, что заряженные тела взаимодействуют, находясь на некотором расстоянии друг от друга. Это взаимодействие наблюдается как в вещественной среде, так и в безвоздушном пространстве. Согласно утверждению английских учёных М. Фарадея и Д. Максвелла, в пространстве, в котором находится заряженное тело, существует электрическое поле. Посредством этого поля одно заряженное тело действует на другое.
Электрическое поле материально, наряду с веществом оно представляет собой вид материи. Это означает, что электрическое поле реально, оно существует независимо от нас. Убедиться в реальности электрического поля заряженного тела можно, наблюдая его действие на другие тела.
Электрическая сила
Силу, с которой поле действует на внесённый в него электрический заряд, называют электрической силой. Предположим, что в электрическое поле, существующее вокруг некоторого заряженного тела, вносят электрический заряд. Значение силы, с которой это поле действует на заряд, зависит от расстояния между зарядами и от значения этих зарядов.
Одним из способов электризации тел является электризация через влияние. Предположим, что к шару электрометра поднесли, не касаясь его, отрицательно заряженную палочку. Электрическое поле этой палочки будет действовать на заряды, содержащиеся в электрометре. При этом свободные электроны будут отталкиваться и соберутся на конце стержня и на стрелке, отклонение стрелки покажет наличие заряда. На шаре электрометра при этом будет избыточный положительный заряд. Если палочку убрать, то стрелка электрометра вернётся в ноль.
Для того чтобы на электрометре остался заряд, его нужно заземлить, т.е. соединить с Землёй. Это можно сделать, если коснуться шара электрометра рукой. Тогда электроны, стремясь уйти как можно дальше, переместятся с электрометра в землю. Если теперь убрать руку и палочку, то стрелка покажет, что электрометр заряжен. На нём останется избыточный положительный заряд. Аналогично электрометр может приобрести отрицательный заряд, если поднести к нему положительно заряженную палочку. В этом случае при заземлении на электрометре будет избыток электронов.
Проводники и диэлектрики
В рассмотренном выше опыте электрические заряды перемещались по электрометру. По эбонитовой палочке они не перемещались, в противном случае при касании её рукой она бы разряжалась. Из этого следует, что существуют вещества, по которым заряды могут перемещаться, и вещества, по которым заряды не могут перемещаться.
Первый класс веществ называют проводниками. Хорошими проводниками являются металлы. Это связано с тем, что в металлах существуют электроны, слабо связанные с ядром атома и имеющие возможность свободно перемещаться. Если поместить проводник в электрическое поле так, как это было в рассмотренном опыте с электрометром, то произойдёт разделение зарядов. Электрическое поле в проводниках создаётся и поддерживается источником тока.
Второй класс веществ называют диэлектриками. К ним относятся эбонит, стекло, пластмассы и пр. В диэлектрике нет свободных зарядов. Если внести диэлектрик в электрическое поле, то нейтральный атом в нём примет определённую ориентацию, однако никакого перемещения зарядов не произойдет.
Схема «Проводники и диэлектрики»
Конспект урока «Электрическое поле. Проводники и диэлектрики».
Следующая тема: «Постоянный электрический ток».
Обнаружение электрического поля
Мы попытались вам рассказать все важные определения и условия существования электрического поля простым языком. Давайте разбираться, как его обнаружить. Магнитное обнаружить легко – с помощью компаса.
Электрическое поле мы можем обнаружить в быту. Все мы знаем, что если потереть пластиковую линейку об волосы, то мелкие бумажки начнут к ней притягиваться. Это и есть действие электрического поля. Когда вы снимаете шерстяной свитер, слышите треск и видите искорки – это оно же.
Другим способом обнаружить ЭП – поместить в него пробный заряд. Действующее поле отклонит его. Это применяется в ЭЛТ мониторах и, соответственно, лучевых трубках осциллографа, об этом поговорим позже.
Что такое проводники и диэлектрики
Проводники это вещества, имеющие в своей структуре массу свободных электрических зарядов, способных перемещаться под воздействием внешней силы по всему объёму материала.
К группе проводников в электростатическом поле относят металлы и их соединения, некоторые виды электротехнического угля, растворы солей (кислот, щелочей), ионизированные газы.
Лучшим проводящим материалом считается металл, например, золото, платина, медь, алюминий. К неметаллическим веществам, проводящим ток, относится углерод.
Проводник
Диэлектрики – вещества, противоположные по своим свойствам проводникам. При отсутствии нагревания заряженные частицы в нейтральном атоме тесно взаимосвязаны и не могут осуществлять движения в объеме материала. В связи с этим электрический ток в непроводнике протекать не может.
Диэлектрик
К материалам, непроводящим электрический ток, относят: керамику, резину, бумагу, стекло, фарфор, смолу, сухую древесину. Лучшим диэлектриком считается газ. Качества диэлектриков зависят от температуры и влажности среды, в которой они находятся.
Проводники и диэлектрики активно используют в электротехнической области. Пример – материалом, из которого производят провода (кабели), служат проводники, изготовленные из металла. Изолирующие оболочки для них производят из диэлектриков – полимеров.
Свойства материалов
Лучшими считаются проводники, сырьем для производства которых послужило серебро, золото или платина. Повсеместное их использование ограничивается только большой стоимостью материала. Такие изделия нашли применение в оборонной и космической промышленности
В этих сферах важно обеспечение самого высокого качества оборудования, независимо от его стоимости
Гораздо шире область применения медных и алюминиевых материалов. Невысокая стоимость и отличные проводящие качества позволили использовать их во многих отраслях хозяйствования.
В диэлектриках повышение температуры может приводить к возникновению свободных электрических зарядов. Это электроны, оторвавшиеся от ядра из-за температурных колебаний. Обычно это небольшое количество свободных зарядов. Но существуют изоляторы, в которых это число достигает существенных размеров. В этом случае изоляционные качества диэлектрика ухудшаются.
Обратите внимание! Надежным считается диэлектрик, если возникающий в нём небольшой ток утечки не мешает работе всей системы. Лучшим диэлектриком считается абсолютный вакуум, а также полностью очищенная вода
Но таковых в природе не найти, а создать их искусственным путём очень сложно. Включение в жидкость любой примеси обеспечивает ей проводящие качества
Лучшим диэлектриком считается абсолютный вакуум, а также полностью очищенная вода. Но таковых в природе не найти, а создать их искусственным путём очень сложно. Включение в жидкость любой примеси обеспечивает ей проводящие качества.
Проводники в электростатическом поле
Проводниками являются металлы, электролиты (растворы, проводящие ток) плазма. В металлах носителями зарядов являются свободные электроны, в электролитах – положительные и отрицательные ионы, в плазме – свободные электроны и ионы.
У большинства металлов практически каждый атом теряет электрон и становится положительным ионом. Например, у меди в 1 м3 свободных электронов 1029. Свободные электроны в металлах находятся в непрерывном беспорядочном движении. Скорость такого движения примерно равна 105 м/с (100 км/с).
Не смотря на наличие внутри тела зарядов (свободных электронов и ионов), электрического поля внутри проводника нет. Отдельные заряженные частицы создают микроскопические поля. Но эти поля внутри проводника в среднем компенсируют друг друга (рис. 1).
Если бы это условие не выполнялось, то свободные заряды, под действием кулоновских сил, пришли бы в движение. Они двигались бы до тех пор, пока действующая на них сила не обратилась бы в нуль.
Поместим незаряженный проводник, например, металл, в однородное электростатическое поле с напряженностью \(~\vec E_0\). На свободные электроны начинают действовать электрические силы \(\vec F\), под действием которых электроны приходят в движение (рис. 2). Продолжая беспорядочное движение, электроны начинают смещаться в сторону действия силы (скорость смещения порядка 0,1 мм/с).
На одной поверхности проводника образуется область с недостатком электронов, на противоположной – с избытком электронов. Это приводит к появлению еще одного электрического поля с напряженностью \( \vec E_{np}\) (рис. 3).
Общая напряженность \( \vec E\) электрического будет равна
Электрическая сила \(F\), действующая на свободные электроны с зарядом q:
По мере смещения электронов, заряд на поверхности увеличивается. Это приводит к увеличению напряженности \(E_{np}\) и уменьшению общей напряженности \(E\) (т.к. \(E = E_0 — E_{np}\)). И в какой-то момент напряженность \(E_{np}\) становится равной напряженности внешнего поля \(E_0\), т.е. \(E_{np} = E_0\), и общая напряженность поля внутри проводника становится равной нулю.
Электрическая сила \(F\) в этот момент также становится равной нулю, электроны перестают смещаться, но беспорядочное движение не прекращается. На поверхности проводника остаются электрические заряды.
Явление возникновения электрических зарядов на поверхности проводника под воздействием электрического поля называется электростатической индукцией, а возникшие заряды – индуцированными.
Доля электронов, которые оказались на поверхности, очень мала. Например, если к медной пластинке толщиной в 1 см приложить напряжение в 1000 В, то эта доля составляет 10–10 % от всех свободных электронов.
Каким бы способом ни был заряжен проводник, внутри него поле отсутствует. Это позволяет использовать заземленные полые проводники со сплошными или сетчатыми стенками для электростатической защиты от внешних электростатических полей. Так, например, для защиты военных складов, служащих для хранения взрывчатых веществ, от удара молнии их окружают заземленной проволочной сетью.
Впервые явление электростатической защиты было обнаружено М.Фарадеем в 1836 году. Он провел интересный опыт. Большая деревянная клетка была оклеена тонкими листами олова, изолирована от земли и сильно заряжена. В клетке находился сам Фарадей с очень чувствительным электроскопом. Несмотря на то, что при приближении к клетке тел, соединенных с землей, проскакивали искры, внутри клетки электрическое поле не обнаруживалось.