Передача электроэнергии на расстояние

Устройство

Общий принцип работы прост: для вращения турбины используется энергия воды. Чем больше турбина, тем сильнее должен быть напор воды. Отчасти он достигается перепадом высоты.

Фото: схема работы ГЭС

Чтобы обеспечить нужный перепад, строится плотина. Этим решается еще одна задача: создается водохранилище, запасы воды в котором позволяют не зависеть от колебаний объема реки в зависимости от времени года. Водохранилище перед плотиной называется верхним бьефом, вода, которая прошла через плотину, образует нижний бьеф. Разность высот между бьефами влияет на напор Н.

Комплекс сооружений ГЭС состоит из:

  • плотины;
  • непосредственно электростанции;
  • шлюзов для забора воды и пропуска судов.

Фото: вид на Саяно-Шушенскую ГЭС сверху

Вода приводит в движение гидротурбины, которые вращают синхронные гидрогенераторы. Формула мощности проста: прямая зависимость от напора H и расхода жидкости Q: P = H*Q.

Получается, чем круче перепад высот и чем больше поток воды, тем мощнее станция.

Самая высокая в мире плотина – 305 метров. Она находится на Цзиньпинской ГЭС на реке Ялунцзян в западной части провинции Сычуань на Юго-Западе Китая. Ее мощность − 3,6 ГВт.

Преимущество использования газопоршневых электростанций в индивидуальном хозяйстве

Автономные газогенераторы вызывают большой интерес и у индивидуальных предпринимателей, и у жителей частных секторов, коттеджей и небольших агломераций. На практике газовые электростанции полностью оправдывают свое применение, а их окупаемость достижима во вполне обозримые сроки. Единственным минусом можно назвать необходимость серьезных капиталовложений, кроме того, существуют следующие нюансы:

  1. Преимущественно используются газопоршневые установки.
  2. Срок окупаемости тем ниже, чем выше действительная мощность станции.
  3. Для установки требуется отдельный земельный участок.
  4. В случае коллективного пользования необходима развитая инфраструктура.
  5. Работа установок невозможна без квалифицированного обслуживания.

Автономные газовые электростанции и ТЭЦ можно разделить на три группы.

Сети для передачи электрической энергии

Транспортировку выработанной энергии осуществляет сетевая инфраструктура, представляющая собой совокупность разного рода электроустановок. Базовая структура передачи электроэнергии потребителям включает трансформаторы, преобразователи и подстанции. Но ведущее место в ней занимают линии электропередач, которые непосредственно связывают электростанции, промежуточные установки и потребителей. При этом и сети могут различаться между собой – в частности, по назначению:

  • Общественные сети. Снабжают бытовые, промышленные, сельскохозяйственные и транспортные объекты.
  • Сетевые коммуникации для автономного энергообеспечения. Обеспечивают питание автономных и мобильных объектов, к которым относятся самолеты, суда, энергонезависимые станции и т. п.
  • Сети для энергоснабжения объектов, выполняющих отдельные технологические операции. На том же производственном объекте помимо основного снабжения электричеством может предусматриваться линия для поддержания работоспособности конкретного оборудования, конвейера, инженерной установки и т. д.
  • Контактные линии энергоснабжения. Сети, предназначенные для доставки электроэнергии напрямую движущимся транспортным средствам. Это касается трамваев, локомотивов, троллейбусов и др.

Особенности подключения к сетям ЛЭП

Без электричества сейчас трудно представить комфортабельное жилье. Благодаря ему жилище освещается, обогревается, выполняется готовка пищи, и нагрев воды. Вот только далеко не всегда есть возможность обеспечить электричеством жилье, особенно если дом находится далеко от города.

Многим владельцам загородных домов и дачных участков, особенно если они находятся далеко от цивилизации, приходится решать вопрос с энергообеспечением дома.

Самым распространенным решением является подключение дома к сетям ЛЭП, однако они далеко не везде имеются или же ближайшая линия находится на приличном удалении от дома.

В таком случае обеспечение электричеством дома может оказаться очень дорогим удовольствием. Ведь придется согласовывать вопросы по поставкам этого источника энергии с соответствующими органами, оплачивать установку подстанции и опор ЛЭП для подведения к дому.

И особенно неприятно то, что приобретаемое оборудование, причем за немалые деньги (подстанция, провода, опоры) перейдут на баланс местных энергосетей, то есть владельцем всего будут являться они, а владельцу дома еще придется и платить за поставки электроэнергии.

Поэтому такой вариант для многих может стать нецелесообразным, достаточно хлопотным и дорогостоящим.

Принципиальная схема снабжения и распределения электрической энергии

Контроль распределения электроэнергии и ее передачу от источника к приемнику третьей категории в черте города легче всего осуществлять, применяя радиальную тупиковую схему. Однако такая схема обладает одним существенным недостатком, который заключается в том, что при выходе одного любого элемента системы из строя без электроэнергии будут оставаться все приемники, подключенные к такой схеме. Так будет продолжаться до тех пор, пока не будет заменен поврежденный участок цепи. Из-за данного недостатка применять такую схему включения не рекомендуется.

Если говорить о схеме подключения и распределения энергии для приемников второй и третьей категории, то здесь можно использовать кольцевую принципиальную схему. При таком подключении, если произойдет сбой в работе одной из линии электропередачи, можно восстановить электроснабжение всех приемников, подключенных к такой сети в ручном режиме, если отключить питание от основного источника и запустить резервный. Кольцевая схема отличается от радиальной тем, что у нее имеются специальные участки, на которых в отключенном режиме находятся разъединители или же выключатели. При повреждении основного источника питания их можно включить, чтобы восстановить подачу, но уже от резервной линии. Также это будет служить хорошим преимуществом в том случае, если на основной линии необходимо провести какие-либо ремонтные работы. Перерыв в электроснабжении такой линии допускается на срок около двух часов. Этого времени хватает для того, чтобы отключить поврежденный основной источник питания и подключить к сети резервный, чтобы он осуществлял распределение электроэнергии.

Есть еще более надежный способ подключения и распределения энергии – это схема с параллельным включением двух питающих линий или же введение автоматического подключения резервного источника. При наличии такой схемы поврежденная линия будет отключаться от общей системы распределения при помощи двух выключателей, расположенных с каждого конца линии. Снабжение же электричеством в таком случае будет осуществляться во все еще бесперебойном режиме, но уже по второй линии. Такая схема актуальна для приемников второй категории.

Теплофикационные электростанции — теплоэлектроцентрали (ТЭЦ)

Этот вид электростанций предназначен для централизованного снабжения промышленных предприятий и городов электроэнергией и теплом. Являясь, как и КЭС, тепловыми электростанциями, они отличаются от последних использованием тепла «отработавшего» в турбинах пара для нужд промышленного производства, а также для отопления, кондиционирования воздуха и горячего водоснабжения. При такой комбинированной выработке электроэнергии и тепла достигается значительная экономия топлива по сравнению с раздельным энергоснабжением, т.е. выработкой электроэнергии на КЭС и получением тепла от местных котельных. Поэтому ТЭЦ получили широкое распространение в районах (городах) с большим потреблением тепла и электроэнергии. В целом на ТЭЦ производится около 25% всей электроэнергии, вырабатываемой в России.

Рис.4. Особенности технологической схемы ТЭЦ
1 — сетевой насос; 2 — сетевой подогреватель

Особенности технологической схемы ТЭЦ показаны на рис.4. Части схемы, которые по своей структуре подобны таковым для КЭС, здесь не указаны. Основное отличие заключается в специфике пароводяного контура и способе выдачи электроэнергии.

Специфика электрической части ТЭЦ определяется расположением электростанции вблизи центров электрических нагрузок. В этих условиях часть мощности может выдаваться в местную сеть непосредственно на генераторном напряжении. С этой целью на электростанции создается обычно генераторное распределительное устройство (ГРУ). Избыток мощности выдается, как и в случае КЭС, в энергосистему на повышенном напряжении.

Существенной особенностью ТЭЦ является также повышенная мощность теплового оборудования по сравнению с электрической мощностью электростанции. Это обстоятельство предопределяет больший относительный расход электроэнергии на собственные нужды, чем на КЭС.

Размещение ТЭЦ преимущественно в крупных промышленных центрах, повышенная мощность теплового оборудования в сравнении с электрическим повышают требования к охране окружающей среды. Так, для уменьшения выбросов ТЭЦ целесообразно, где это возможно, использовать в первую очередь газообразное или жидкое топливо, а также высококачественные угли.

Размещение основного оборудования станций данного типа, особенно для блочных ТЭЦ, соответствует таковому для КЭС. Особенности имеют лишь те станции, у которых предусматривается большая выдача электроэнергии с генераторного распределительного устройства местному потребителю. В этом случае для ГРУ предусматривается специальное здание, размещаемое вдоль стены машинного зала (рис.5).

Рис.5. Вариант размещения основного оборудованияна площадке ТЭЦ с отдельным зданием ГРУ
1 — дымовые трубы; 2 — главный корпус; 3 — многоамперные токопроводы;
4 — здание ГРУ; 5 — трансформатор связи; 6 — ОРУ;
7 — градирни (склад топлива для ТЭЦ не показан)

Пропускная способность линий электропередач

Напряжение в конце линии неизбежно ниже, чем в её начале. Вольтаж теряется на сопротивлении проводов ЛЭП. Именно эта разница напряжений уходит впустую на обогрев вселенной.

Такая проблема приводит к тому, что невозможно создать линию электропередач бесконечной длины и передать по ней неограниченную мощность. Поэтому введено понятие – пропускная способность ЛЭП. Данная характеристика в первую очередь зависит от длины линии, металла, из которого сделаны её провода и их сечения. Потери в меди менее ощутимы, чем у алюминия. Пропускная способность линии тем выше, чем толще её провода.

Маршрут транспортировки электричества

Итак, как мы уже сказали, начальной точкой является электрическая станция, которая, собственно, и генерирует электроэнергию. На сегодняшний день основными видами электростанций являются гидро- (ГЭС), тепло- (ТЭС) и атомные (АЭС). Помимо этого бывают солнечные, ветровые и геотермальные эл. станции.

Далее от источника электричество передается к потребителям, которые могут находиться на дальних расстояниях. Чтобы осуществить передачу электроэнергии, нужно повысить напряжение с помощью повышающих трансформаторов (напряжение могут повысить вплоть до 1150 кВ, в зависимости от расстояния).

Почему электроэнергия передается при повышенном напряжении? Все очень просто. Вспомним формулу электрической мощности — P=UI, тогда если передавать энергию к потребителю, то чем выше напряжение на линии электропередач — тем меньше ток в проводах, при той же потребляемой мощности. Благодаря этому можно строить ЛЭП с большим напряжением, уменьшив сечение проводов, по сравнению с ЛЭП с низшим напряжением. Значит и сократятся расходы на строительство — чем тоньше провода, тем они дешевле.

Соответственно от станции электричество передается на повышающий трансформатор (при необходимости), а после этого с помощью ЛЭП осуществляется передача электроэнергии на ЦРП (центрально распределительные подстанции). Последние, в свою очередь, находятся в городах или в близком расстоянии от них. На ЦРП происходит понижение напряжения до 220 или же 110 кВ, откуда электроэнергия передается к подстанциям.

Далее напряжение еще раз понижают (уже до 6-10 кВ) и происходит распределение электрической энергии по трансформаторным пунктам, именуемым также ТП. К трансформаторным пунктам электричество может передаваться не по ЛЭП, а подземной кабельной линией, т.к. в городских условиях это будет более целесообразно. Дело в том, что стоимость полосы отчуждения в городах достаточно высокая и более выгодно будет прокопать траншею и заложить кабель в ней, нежели занимать место на поверхности.

От трансформаторных пунктов электроэнергия передается к многоэтажным домам, постройкам частного сектора, гаражному кооперативу и т.д

Обращаем ваше внимание на то, что на ТП напряжение еще раз понижается, уже до привычных нам 0,4 кВ (сеть 380 вольт)

Если кратко рассмотреть маршрут передачи электроэнергии от источника к потребителям, то он выглядит следующим образом: электростанция (к примеру, 10 кВ) – повышающая трансформаторная подстанция (от 110 до 1150 кв) – ЛЭП – понижающая трансформаторная подстанция – ТП (10-0,4 кВ) – жилые дома.

Вот таким способом электричество передается по проводам в наш дом. Как вы видите, схема передачи и распределения электроэнергии к потребителям не слишком сложная, все зависит от того, насколько большое расстояние.

Наглядно увидеть, как электрическая энергия поступает в города и доходит до жилого сектора, вы можете на картинке ниже:

Более подробно об этом вопросе рассказывают эксперты:

Как электричество поступает от источника к потребителю

Виды деятельности в электроэнергетике

Электрические компании занимаются бесперебойной доставкой электричества каждому потребителю. В энергетической сфере уровень занятости превышает этот показатель некоторых ведущих отраслей народного хозяйства государства.

Оперативно-диспетчерское управление

ОДУ играет важнейшую роль в перераспределении энергопотоков в обстановке изменяющегося уровня потребления. Диспетчерские службы направлены на то, чтобы передавать электрический ток от производителя потребителю в безаварийном режиме. В случае каких-либо аварий или сбоев в линиях электропередач ОДУ выполняют обязанности оперативного штаба по быстрому устранению этих недостатков.

Энергосбыт

В тарифах на оплату за потребление электричества включены расходы на прибыль энергокомпаний. За правильностью и своевременностью оплаты за потреблённые услуги следит служба – Энергосбыт. От неё зависит финансовое обеспечение всей энергосистемы страны. К неплательщикам применяются штрафные санкции, вплоть до отключения электроснабжения потребителя.

Энергосистема – кровеносная система единого организма государства. Производство электроэнергии является стратегической сферой безопасности существования и развития экономики страны.

Физика

Производство электрической энергии

В настоящее время в нашей стране большая часть электроэнергии производится на мощных электростанциях, на которых в электрическую энергию преобразуется какой-либо другой вид энергии.

В зависимости от вида энергии, которая преобразуется в электрическую, различают три основных типа электростанций: тепловые, гидро- и атомные электростанции.

На тепловых электростанциях источником энергии служит топливо: уголь, газ, нефть, мазут, горючие сланцы. Роторы электрических генераторов приводятся во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания. Наиболее экономичными являются крупные тепловые паротурбинные электростанции (ТЭС).

На тепловых паротурбинных электростанциях (рис. 3.35) в паровых котлах 1 химическая энергия топлива превращается в энергию пара 2. В турбинах 3 энергия пара преобразуется в механическую, а затем в генераторе 4, имеющем общий вал с турбиной, превращается в электрическую. От генератора энергия направляется на шины распределительного устройства станции. Отработанный пар из турбины поступает в конденсатор 5, который охлаждается проточной водой 6, и конденсат 7 в виде горячей дистиллированной воды возвращается в котел. Такие станции принято называть тепловыми конденсационными станциями.

Рис. 3.35

Тепловые конденсационные электростанции большой мощности обычно располагаются недалеко от источников топлива и крупных водоемов.

Коэффициент полезного действия ТЭС достигает 40%. Причем большая часть энергии теряется вместе с горячим отработанным паром. Специальные тепловые электростанции, так называемые теплоэлектроцентрали (ТЭЦ), позволяют значительную часть энергии отработавшего пара использовать для отопления и технологических процессов в промышленных предприятиях, а также для бытовых нужд (отопление, горячее водоснабжение). В результате КПД ТЭЦ достигает 60—70%. В настояш;ее время в нашей стране ТЭЦ дают около 40% всей производимой электроэнергии.

На гидроэлектростанциях (ГЭС) энергия движущейся воды в гидротурбине превращается в механическую, а затем в генераторе преобразуется в электрическую (рис. 3.36. Цифрами обозначены: 1 — генератор; 2 — трансформатор; 3 — турбина; 4 — лопатки направляющего аппарата). Мощность станции зависит от создаваемой плотиной разности уровней воды (напора) и от массы воды, проходящей через турбины в секунду (расхода воды). Гидроэлектростанции дают около 20% всей вырабатываемой в нашей стране электроэнергии.

Рис. 3.36

На атомных электростанциях (АЭС) технология производства электрической энергии почти такая же, как и на ТЭС. Разница состоит в том, что на АЭС энергию для преобразования воды в пар дает ядерный реактор.

Кроме мощных электростанций, находящихся в районах сосредоточения энергетических ресурсов (полноводные реки, природные запасы энергии в виде дешевых углей, торфа и т. д.), имеется группа станций местного значения. Они располагаются в непосредственной близости к потребителям. К ним относятся ТЭЦ, станции промышленных предприятий, городские, сельскохозяйственные, ветровые, передвижные и т. д.

Использование электроэнергии

Главным потребителем электроэнергии в нашей стране является промышленность, на долю которой приходится около 70% производимой электроэнергии. На фабриках и заводах, в шахтах и рудниках электродвигатели приводят в движение станки и различные механизмы. Около трети электроэнергии, потребляемой промышленностью, используется для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и т. п.).

Исключительно важное значение имеет применение электрической энергии в сельском хозяйстве. Здесь электроэнергия используется для освещения, приведения в действие различных машин, а также аппаратов, применяемых для механической дойки, стрижки овец, пастеризации молока, приготовления кормов, на птицеводческих фермах и т

д. и т. п.

Современное строительство немыслимо без использования электроэнергии, прежде всего, для приведения в действие подъемных механизмов и для электросварки.

Крупным потребителем электрической энергии является транспорт: железнодорожный и городской (метро, троллейбус, трамвай).

Без электроэнергии не будет работать телефонная и телеграфная связь, радио,телевидение.

Электрическая энергия используется в автоматике и вычислительной технике. О применении электроэнергии для освещения жилищ, предприятий, учреждений, уличного освещения, а также в быту (электроплиты, холодильники, стиральные мап1ины, пылесосы, электробритвы и другие электробытовые приборы) знает каждый.

Схемы передачи

На первый взгляд полная схема передачи электроэнергии от вращающейся турбины до розетки квартиры может показаться сложной и запутанной, но если посмотреть на схему, то все становится на свои места.

Структурная схема электроснабжения

Стоит обратить внимание, что если в городе нет промышленных предприятий, то подстанции для промышленного объекта и всей представленной для нее ветви в реальности не будет. Все остальные объекты электрической инфраструктуры будут присутствовать до изобретения беспроводной передачи

На приведенной выше схеме можно заметить магистральные кабельные линии. Они могут быть двух типов — одиночные и с двухсторонним питанием. Двухсторонние сегодня более распространены, так как одиночные менее надежны, плюс на них тяжело отыскать место повреждения. Таким образом, конечный пользователь всегда снабжен электричеством, и поломки на магистралях ему незаметны.

Схема двухсторонней магистрали

Электричество получают, используя возобновляемые и невозобновляемые источники энергии для вращения турбины. Турбина приводит в действие ротор генератора, который и генерирует электричество. Для передачи тока трансформатор увеличивает его напряжение, а перед тем, как пустить его на городскую сеть, напряжение понижают обратно. Таким образом уменьшаются потери и затраты на строительство сетей. После этого электричество подается на городскую подстанцию, которая запитывает районные подстанции, а уже от них прокладываются разветвленные линии конечным потребителям.

Типы генерирующего оборудования автономных электростанций

Тип основного генерационного оборудования влияет на технологические особенности его работы. Общий коэффициент использования топлива, как у газотурбинных установок, так и у газопоршневых, оснащенных системой утилизации тепла, равен примерно 80%.

При этом электрический КПД электростанции на базе газопоршневого двигателя составляет 40-44%, а у газотурбинных установок этот показатель, как правило, равен 30–35%. Если перед заказчиком приоритетной задачей стоит выработка электроэнергии, а тепловая энергия является побочным продуктом или не требуется вообще, то более уместным является использование газопоршневой установки. В этом случае будет потребляться гораздо меньше топлива, чтобы произвести аналогичное количество электроэнергии и, как следствие, у бизнесменов будет явная экономия на платежах за газ, до 30%, в сравнении с газовыми турбинами.

Не существует универсальной формулы, по которой можно выбрать тот или иной тип генерирующего силового оборудования — газопоршневую установку (ГПУ) или газотурбинную (ГТУ). Каждый проект автономного энергоснабжения сугубо индивидуален. Например, при мощности электростанции в 70 МВт, с использованием тепловой энергии, более целесообразны газовые турбины.

При строительстве автономной электростанции действуют следующие ключевые факторы, определяющие выбор основного генерирующего оборудования:

  • характер нагрузок (электрических и тепловых);
  • электрический КПД;
  • удаленность от потенциальных потребителей тепловой энергии;
  • расход топлива;
  • требуемые сроки реализации.

Солнечные панели

Сейчас все большую популярность завоевывают солнечные источники электроэнергии. Суть такого источника проста – имеются полупроводниковые фотоэлементы, в которых при попадании на них солнечных лучей генерируется электрический заряд.

Количество вырабатываемой энергии напрямую зависит от площади фотоэлементов, поэтому они собираются в панели.

Панель площадью в 1 м. кв. способна выдать 100 Ватт мощности с напряжением 20-25 В.

Чтобы полностью обеспечить дом электричеством площадь панелей должна быть значительной.

Из положительных качеств такого источника электроэнергии является его долговечность, полная экологичность, бесшумность.

Панели требуют минимум обслуживания, а электроэнергия, выработанная ими, является полностью бесплатной и доступной.

Но есть и недостатки. Для обеспечения электроэнергии в необходимом количестве, площадь панелей может достигать значительных размеров, которые еще нужно и правильно расположить.

Энергия эта непостоянна. В солнечные дни панели будут работать с максимальным выходом, но бывают же и пасмурные дни. Поэтому общее количество выработанной электрической энергии зависит от того, сколько солнечных дней в году в регионе, где располагается дом.

Еще один недостаток, причем весомый – это стоимость панелей. Цена за каждый Ватт выработанной энергии составляет сейчас примерно 1,5 $, то есть только за панели, вырабатывающие 1 кВт электроэнергии, придется выложить 1,5 тыс. долларов. А еще потребуется покупать и остальное оборудование, необходимое для работы системы.

Проблемы подключения к электросети

Чем характерна процедура подключения к сети и получение лимитов на мощность и количество электроэнергии? Каковы российские реалии при подключении к электросетям общего пользования?

Прежде всего, предприниматель столкнется с необходимостью выполнения технических условий сетевой компании, которая будет поставлять ему электроэнергию. Все начнется с заявки в соответствующую территориальную компанию. Заявка рассматривается в законодательно оговоренный срок, и в случае положительного решения между потребителем и энергосбытовой компанией заключается договор.

В зависимости от предполагаемого количества электроэнергии, а также от наличия или отсутствия инфраструктуры передачи электроэнергии — трансформаторных подстанций (ТП), линий электропередач (ЛЭП) или электрокабелей — заказчику придется за свой счет построить ТП либо, в случае нехватки пропускной способности, модернизировать питающие его трансформаторы, высоковольтные ячейки, ЛЭП и т.д.

А после этого безвозмездно передать все оборудование на баланс сетевой компании! Ориентировочная стоимость трансформаторной подстанции высокой степени готовности 6,3/0,4 кВ в зависимости от мощности (до 5 МВт) начинается от 2 млн. рублей. Причем трансформаторные подстанции отличаются друг от друга по составу оборудования и исполнению, невозможно определить её стоимость при отсутствии проектной документации.

Проектная документация на трансформаторной подстанции оплачивается отдельно, как и дополнительные услуги-работы, среди которых:  

  • проекта прокладки сетей,
  • монтаж, наладка и сдача ТП эксплуатирующей организации,
  • шеф-монтаж поставляемого оборудования,
  • техническая поддержка заказчика.

Каждая высоковольтная ячейка обходится в среднем в 600 тысяч рублей. Строительство ЛЭП с напряжением 6,3 кВ обойдется в среднем от 250.000 до 700.000 рублей за 1 км трассы. Прокладка силового кабеля — в зависимости от сложности прокладки, плюс немалая стоимость собственно кабеля.

Кроме прямых затрат на строительство заказчику требуется разработать и согласовать во всех необходимых инстанциях проект, который должен разрабатываться как на новое строительство, так и на модернизацию существующего оборудования.

Отсюда и соответствующие сроки присоединения, которые зависят как напрямую от объема требуемых работ, так и косвенно — от наличия резерва мощности и планов по вводу генерирующих мощностей территориальной компанией.

Официальная стоимость подключения к сетям среднего напряжения от 6 до 20 кВ каждого нового или дополнительного киловатта составляет (в зависимости от региона России) от 10 до 45 тыс. рублей. Стоимость подключения в Москве соответствует верхней границе указанного диапазона, а в центре столицы она достигает 102.000 рублей за 1 кВт!

Пройдя все инстанции, построив всю необходимую сетевую инфраструктуру, разработав и согласовав проекты по строительству и модернизации, заплатив за подключение к энергосети и потратив огромное количество времени и денег на проектировщиков и подрядчиков, предприниматель остается один на один с сетевой компанией. Он абсолютно не застрахован от роста тарифов на электроэнергию, перебоев с ее поставками, а также от ее неудовлетворительного качества энергоснабжения.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.