Введение
Современные комплексы радиоэлектронной аппаратуры (РЭА) работают в сложной электромагнитной обстановке, обусловленной, в том числе, необеспеченностью отдельных показателей качества электроэнергии. Это вызвано ростом удельных характеристик устройств, имеющих низкий коэффициент мощности и работающих по резкопеременным графикам нагрузки. Особо осложняет электромагнитную обстановку работа электроприемников, генерирующих высшие гармонические составляющие (ВГС), с уровнем электромагнитной совместимости, выходящим за рамки диапазонов, определенных ГОСТ 32144-2013
Перечисленное приводит к неконтролируемым изменениям величины и формы напряжения в точках присоединения потребителей. Ухудшение качества электроэнергии напрямую влияет на снижение срока службы РЭА, является наиболее вероятной причиной ее отказов и выхода из строя, приводит к увеличению потерь энергии во всех элементах системы электроснабжения и, соответственно, влечет к увеличению расхода топливных ресурсов.
Определение гармоник
График сигнала, который изменяется по синусоидальному закону, имеет вид:
Но это значительно отличается от реальной формы напряжения в электрической сети:
Эти зазубрины и всплески и вызваны гармониками. Мы попытаемся рассказать об этом явлении простыми словами. Изображенный выше график можно представить как сумму сигналов различной частоты и величины. Если всё это сложить, то в результате получится именно такой сигнал. Пример и результат сложения сигналов изображен на графике ниже:
Гармоники различают по номерам, где первая гармоника — это та составляющая, у которой самая большая величина. Однако такое описание слишком кратко. Поэтому давайте приведем формулу определения величины гармоники. Это возможно при гармоническом анализе и разложении в ряд Фурье:
Из этой формулы можно выделить и величины частот и фаз гармонических составляющих электрической сети и любого другого синусоидального сигнала.
Нагрев и дополнительные потери в трансформаторах и электрических машинах
Дополнительные потери, вызывающие перегрев трансформаторов при наличии высших гармоник, возникают из-за скин-эффекта в меди обмотки (увеличение активного сопротивления обмотки с ростов частоты), а также увеличением потерь на гистерезис и вихревые токи в магнитопроводе трансформатора.
В электрических машинах, кроме аналогичных потерь в статоре (потери в меди и магнитопроводе), из-за значительной разнице в скоростях вращающихся магнитных полей, создаваемых высшими гармониками, и скоростью вращения ротора возникают дополнительные потери в демпферных обмотках ротора и магнитопроводе электрической машины .
Невозможно предотвратить, но можно обезопасить
Гармоники действительно невозможно уничтожить. Более того, высокочастотные гармоники легко распространяются через силовые кабели и антенны, через индукцию возникают в соседних цепях. Однако можно защитить энергосистему от вредоносного действия гармоник. Для этого гармоники направляются в отдельные колебательные контуры, в которых на определенной частоте реактивное сопротивление близко к нулю. Для сложных систем понадобится несколько таких контуров, но они обеспечат сокращение гармоник до безопасного уровня. При этом регулярный мониторинг качества электроэнергии позволит своевременно выявить гармоники.
Если вам нужна профессиональная консультация по диагностике электрооборудования, просто отправьте нам сообщение!
Способы защиты от высших гармоник для частотных преобразователей
Преобразователи частоты содержат инверторы и ШИМ-модуляторы, которые являются источниками искажения напряжения в сети. Это отрицательно сказывается как на работе электродвигателей, так и на качестве электроэнергии в сети. Для защиты от этого явления используют различные фильтры.
Эти устройства устанавливают во входной и выходной цепях преобразователей частоты. Для защиты от искажений формы напряжения и тока применяют:
- Сетевые дроссели. Эти устройства защищают от импульсных перепадов напряжения, несимметричной нагрузке, продлевают срок службы конденсаторов звена постоянного тока.
- Электромагнитные фильтры. Устанавливаются во входной силовой цепи преобразователя. Защищают сеть от гармоник, генерируемых инвертором ПЧ.
- Синусные и dU/dt фильтры. Эти устройства устанавливают в частотно-регулируемом приводе с возможностью рекупации электроэнергии, в цепях электрических машин с частыми пусками, отключениями и реверсами, при использовании для подключения неэкранирумых кабелей.
При выборе фильтра необходимо убедиться, что конкретная модель преобразователя частоты совместима с типом защитного устройства. Эта информация указана в технической документации ПЧ. Компания «Данфосс» выпускает несколько линеек частотных преобразователей со встроенными фильтрами высших гармоник. Это избавляет от необходимости рассчитывать характеристики устройств и расходов на покупку дополнительного оборудования.
FAQ по гармоникам
Что такое гармоники?
Гармоники – это синусоидальные волны суммирующиеся с фундаментальной. Гармоники – есть продолжительные возмущения или искажения в электрической сети, имеющие различные источники и проявления такие как импульсы, перекосы фаз, броски и провалы, которые могут быть категоризованы как переходные возмущения.
Основной частотой 50 Гц(т.е. 1-я гармоника = 50 Гц 5-я гармоника = 250 Гц). Любая комплексная форма синусоиды может быть разложена на составляющие частоты, таким образом комплексная синусоида есть сумма определенного числа четных или нечетных гармоник с меньшими или большими величинами.
Когда возникают гармоники?
Гармонические искажения возникают при работе нелинейных потребителей тока (в том числе частотных преобразователей).
Какие гармоники не появляются от работы ПЧ?
При работе от преобразователя частоты не появляются четные гармоники.
Чем опасны гармоники по току?
Гармонические искажения тока вызывают перегрев силового трансформатора, повышенное потребление реактивной мощности, увеличение потерь в меди силовых проводов и трансформатора. Они являются причиной появления гармоник по напряжению.
Чем опасны гармоники по напряжению?
Наличие гармонических искажений по напряжению приводят к выходу из строя оборудования.
Как бороться с гармониками?
Гармонические искажения можно уменьшать при помощи входных фильтров. Например, в серии VLT HVAC Basic FC 101 имеется встроенный фильтр гармоник на звене постоянного тока.
Резонансные явления на частотах высших гармоник
При наличии высших гармоник в электрических цепях со сосредоточенными и распределенными параметрами, какими могут быть представлены блоки, узлы и распределительные сети системы электропитания, возникает опасность появления резонансных явлений. При возникновении резонансного или близкого к нему режима на какой-либо высшей гармонике тока или напряжения эта составляющая оказывается больше, чем амплитудное значение первой гармоники тока (напряжения) на тех же участках цепи. Это отрицательным образом может отразиться на работоспособности отдельных элементов и узлов системы.
Определение гармоник
График сигнала, который изменяется по синусоидальному закону, имеет вид:
Но это значительно отличается от реальной формы напряжения в электрической сети:
Эти зазубрины и всплески и вызваны гармониками. Мы попытаемся рассказать об этом явлении простыми словами. Изображенный выше график можно представить как сумму сигналов различной частоты и величины. Если всё это сложить, то в результате получится именно такой сигнал. Пример и результат сложения сигналов изображен на графике ниже:
Гармоники различают по номерам, где первая гармоника — это та составляющая, у которой самая большая величина. Однако такое описание слишком кратко. Поэтому давайте приведем формулу определения величины гармоники. Это возможно при гармоническом анализе и разложении в ряд Фурье:
Из этой формулы можно выделить и величины частот и фаз гармонических составляющих электрической сети и любого другого синусоидального сигнала.
Падения напряжения в распределительной сети
Большинство ИБП способно питать нагрузки с высоким значением коэффициента амплитуды, причем коэффициент искажения синусоидальности напряжения не превышает 3-6 %. Однако это уровень искажений напряжения, получаемый при замерах на выходных клеммах самих ИБП, но не в местах подключения нагрузки.
Следует учитывать, что форма тока из-за высокого процентного содержания высших гармоник будет сильно отличаться от синусоидальной. Формы токов для однофазного (рис. 1) и трехфазного (рис. 2) выпрямителей характеризуются определенным процентным содержанием нечетных высокочастотных гармоник (таблица 1). Соответствующие спектры таких токов приведены на рис. 3.
Рис.1. Форма тока однофазного выпрямителя
Рис.2. Форма тока трехфазного выпрямителя
а) |
б) |
Рис.3. Спектры входных токов выпрямителей: а) однофазного, б) трехфазного
Таблица 1. Спектральный состав тока на входе ИБП (пример — при 100% нагрузке для ИБП без входного фильтра и корректора коэффициента мощности)
N гармоники, n |
однофазный ИБП, In / I1 (%) |
трехфазный ИБП, In / I1 (%) |
1 |
100 |
100 |
3 |
65,7 |
— |
5 |
37,7 |
33 |
7 |
12,7 |
2,7 |
9 |
4,4 |
— |
11 |
5,3 |
7,3 |
13 |
2,5 |
1,6 |
15 |
1,9 |
— |
17 |
1,8 |
2,6 |
Полное сопротивление распределительной сети имеет в значительной степени индуктивный характер. Поэтому при очень высоком содержании гармоник токов соответствующее падение напряжения на кабелях и проводах становится намного выше предельно допустимых значений , и в типичных распределительных системах с кабельными трассами длиной более 100 метров может происходить сильное искажение напряжения на нагрузке. Примером таких искажений может служить графики тока и напряжения на входе однофазного выпрямителя в зависимости от величины относительной реактивной составляющей сопротивления входного фидера или внутреннего сопротивления источника питания выпрямителя (рис. 4) .
Рис.4. Формы напряжения и тока на входе бестрансформаторного однофазного выпрямителя в зависимости от относительной реактивной составляющей сопротивления входного фидера
Сложные формы волны
Обратите внимание, что красные формы волны, приведенные выше, являются фактическими формами сигналов, видимыми нагрузкой, из-за гармонического содержания, добавляемого к основной частоте. Основной сигнал также можно назвать сигналом 1й гармоники. Поэтому вторая гармоника имеет частоту, в два раза превышающую частоту основной, третья гармоника имеет частоту, в три раза превышающую основную, а четвертая гармоника имеет частоту, в четыре раза превышающую основную, как показано в левом столбце
Основной сигнал также можно назвать сигналом 1й гармоники. Поэтому вторая гармоника имеет частоту, в два раза превышающую частоту основной, третья гармоника имеет частоту, в три раза превышающую основную, а четвертая гармоника имеет частоту, в четыре раза превышающую основную, как показано в левом столбце.
Правый столбец показывает сложную форму волны, сгенерированную в результате эффекта между добавлением основной формы волны и форм гармонических колебаний на разных частотах гармоник
Обратите внимание, что форма результирующего сложного сигнала будет зависеть не только от количества и амплитуды присутствующих частот гармоник, но также и от соотношения фаз между основной или базовой частотой и отдельными частотами гармоник
Мы можем видеть, что сложная волна состоит из основной формы волны плюс гармоники, каждая из которых имеет свое пиковое значение и фазовый угол. Например, если основная частота задана как: E = V MAX (2πƒt) или V MAX (ωt) , значения гармоник будут заданы:
Для второй гармоники:
Е 2 = V 2max (2 * 2πƒt) = V 2max (4πƒt) = V 2max (2ωt)
Для третьей гармоники:
E 3 = V 3max (3 * 2πƒt) = V 3max (6πƒt), = V 3max (3ωt)
Для четвертой гармоники:
E 4 = V 4max (4 * 2πƒt) = V 4max (8πƒt), = V 4max (4ωt)
и так далее.
Тогда уравнение, данное для значения сложной формы волны, будет иметь вид:
Гармоники обычно классифицируются по их названию и частоте, например, 2- й гармонике основной частоты при 100 Гц, а также по их последовательности. Гармоническая последовательность относится к векторному вращению гармонических напряжений и токов по отношению к основной форме волны в сбалансированной 3-фазной 4-проводной системе.
Гармоника прямой последовательности (4-й, 7-й, 10-й,…) будет вращаться в том же направлении (вперед), что и основная частота. Тогда как гармоника обратной последовательности (2-й, 5-й, 8-й,…) вращается в противоположном направлении (обратном направлении) основной частоты.
Как правило, гармоники прямой последовательности нежелательны, поскольку они ответственны за перегрев проводников, линий электропередач и трансформаторов из-за добавления сигналов.
С другой стороны, гармоники обратной последовательности циркулируют между фазами, создавая дополнительные проблемы с двигателями, поскольку противоположное вращение вектора ослабляет вращательное магнитное поле, необходимое для двигателей, и особенно асинхронных двигателей, заставляя их создавать меньший механический крутящий момент.
Другой набор специальных гармоник, называемых «тройками» (кратными трем), имеют нулевую последовательность вращения. Тройки — это кратные третьей гармоники (3-й, 6-й, 9-й, …) и т.д., отсюда и их название, и поэтому они смещены на ноль градусов. Гармоники нулевой последовательности циркулируют между фазой и нейтралью или землей.
В отличие от гармонических токов прямой и обратной последовательностей, которые взаимно компенсируют друг друга, гармоники третьего порядка не компенсируются. Вместо этого сложите арифметически в общем нейтральном проводе, который подвергается воздействию токов всех трех фаз.
В результате амплитуда тока в нейтральном проводе из-за этих тройных гармоник может быть в 3 раза больше амплитуды фазового тока на основной частоте, что делает его менее эффективным и перегретым.
Затем мы можем суммировать эффекты последовательности, кратные основной частоте 50 Гц:
Название | Основная | Вторая | Третья | Четвертая | Пятая | Шестая | Седьмая | Восьмая | Девятая |
Частота, Гц | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
Последовательность | + | — | + | — | + | — |
Обратите внимание, что та же самая гармоническая последовательность также применяется к основным сигналам 60 Гц
Последовательность | Вращение | Гармонический эффект |
+ | Вперед | Чрезмерный эффект нагрева |
— | Обратный ход | Проблемы с крутящим моментом двигателя |
Нет | Добавляет напряжения и / или токи в нейтральный провод, вызывая нагрев |
ПОСОБЫ СНИЖЕНИЯ УРОВНЯ ГАРМОНИК
Возможные способы ослабления гармоник – это, например, увеличение тока короткого замыкания сети (снижение импеданса сети), ограничение производительности / количества одновременно работающих источников гармоник, сбалансированное подключение однофазных нагрузок к трём фазам и применение оборудования с большей пульсностью (к примеру, использование 12– или 18-пульсного частотного преобразователя вместо 6-пульсного). Однако наиболее распространёнными решениями являются использование пассивного фильтра, состоящего из комбинации конденсаторов, индуктивностей и сопротивлений (RC, RL , LC, LCQ и других), а также получающих всё более широкое распространение активных фильтров. Также применяются гибридные решения (комбинации активных и пассивных фильтров).
При использовании пассивного резонансного фильтра его схема настраивается на определённую частоту, то есть резонансные частоты последовательного фильтра очень близки к частотам имеющихся гармоник. При проектировании резонансного фильтра большое значение имеет тщательный анализ нагрузки и качества электроэнергии, также очень важна величина импеданса сети (рисунок 2).
Рис. 2. Зависимость импеданса шинопровода системы от частоты
Как показано на рисунке 3, для резонансной фильтрации важна последовательность коммутации, она должна следовать правилу LIFO (последним пришёл – первым вышел), обратное может привести к проблемам.
Рис. 3. Последовательность коммутации резонансных фильтров в соответствии с правилом LIFO
А) Пример: применение резонансного фильтра
На приведённом ниже реальном примере (рисунки 4, 5) показан резонансный фильтр для 5-й и 7-й гармоник. Он установлен в торговом центре в Китае.
Рис. 4. Электрическая схема подключения резонансного фильтра в торговом центре в Китае
Результаты анализа фильтра показаны на рисунке 5. Можно увидеть, что не только уменьшены токи 5-й и 7-й гармоник, но также снизились гармонические искажения напряжения с 4,8% до 1,8%. Также увеличилось значение коэффициента мощности с 0,92 до 0,99.
РЕЗОНАНСНЫЕ ФИЛЬТРЫ | Результат/уменьшение | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Без фильтра | 1 фильтр 5-й гармоники (1) вкл. | 2-й фильтр 5-й гармоники (2) вкл. | Фильтр 7-й гармоники (3) вкл. | |||||||
11:09:30 | 11:10:00 | 11:11:00 | 11:11:30 | |||||||
Активная мощность, кВт | P | 1489 | 1494 | 1497 | 1506 | |||||
Реактивная мощность, квар | Q | 641 | 364 | 188 | 190 | 70,36% | ||||
Полная мощность, кВА | S | 1621 | 1538 | 1509 | 1518 | 6,35% | ||||
Напряжение, В | U | 234 | 235,567 | 237,075 | 238,867 | 2,08% | ||||
Действ. значение тока, А | Irms | 2266 | 2109 | 2050 | 2078 | 8,30% | ||||
Коэффициент нелинейных искажений | THD-V | 4,78% | 3,04% | 2,79% | 1,78% | 62,82% | ||||
Напряжение 5-й гармоники | HRU5 | 3,83% | 0,89% | 0,81% | 0,94% | 75,38% | ||||
Напряжение 7-й гармоники | HRU7 | 1,77% | 2,32% | 2,15% | 0,89% | 49,49% | ||||
Напряжение 11-й гармоники | HRU11 | 1,40% | 0,89% | 0,86% | 0,62% | 56,00% | ||||
Коэффициент нелинейных искажений тока | THD-I | 17,68% | 394,51 A | 9,92% | 208,25 A | 9,93% | 202,51 A | 6,56% | 135,94 A | 65,54% |
Ток 5-й гармоники | HRI5 | 16,21% | 361,71 A | 3,85% | 80,82 A | 4,31% | 87,90 A | 5,12% | 106,17 A | 70,65% |
Ток 7-й гармоники | HRI7 | 4,68% | 104,43 A | 8,16% | 171,19 A | 7,99% | 163,03 A | 2,75% | 56,98 A | 45,44% |
Ток 11-й гармоники | HRI11 | 3,38% | 75,47 A | 2,30% | 48,31 A | 1,87% | 38,23 A | 1,13% | 23,33 A | 69,09% |
Ток основной частоты | I1 | 2231 | 2099 | 2040 | 2074 | 7,07% | ||||
Коэффициент мощности | PF | 0,92 | 0,97 | 0,99 | 0,99 |
Рис. 5. Результаты применения резонансного фильтра в торговом центре в Китае
B) Преимущества и недостатки пассивных фильтров
Источники помех
К источникам помех можно отнести целый ряд оборудования, начиная от бытовых приборов, заканчивая мощными промышленными электрическими машинами. Для начала давайте кратко рассмотрим причины их возникновения.
Гармоники в электрической сети переменного тока возникают из-за особенностей электрооборудования, например из-за нелинейности их характеристик, или характера потребления тока.
Например, в трёхфазных сетях в магнитопроводах трансформаторов длины магнитных путей средних и крайних фаз различаются почти в 2 раза, поэтому и токи их намагничивания различаются до полутора раз. Отсюда возникают гармоники в трёхфазных сетях.
Другой источник помех в электротехнике — это электродвигатели, как трёхфазные синхронные и асинхронные, так и однофазные, в том числе и универсальные коллекторные двигатели. Последний тип двигателей используется в большей части бытовой техники, например:
- стиральные машины;
- кухонные комбайны;
- дрели, болгарки, перфораторы и пр.
В результате работы импульсных блоков питания возникают высокочастотные гармоники (помехи) в электрической сети. Чтобы понять как они образуются, нужно иметь сведения об их внутреннем устройстве. Это связано с тем, что ток первичной обмотки ИБП отличается от непрерывного, он протекает только тогда, когда открыт силовой полупроводниковый ключ. А последний открывается и закрывается с частотой выше 20 кГц.
Интересно: Рабочая частота некоторых современных импульсных блоков питания достигает 150 кГц.
Для уменьшения этих гармоник используют фильтры электромагнитных помех, например, синфазный дроссель и конденсаторы. Для улучшения графика потребления тока относительно питающего однофазного напряжения используют активные корректоры коэффициента мощности (рус. ККМ, англ. PFC).
Такие блоки питания установлены в:
- светодиодных лампах;
- ЭПРА для люминесцентных ламп;
- компьютерные блоки питания;
- современные зарядные устройства для мобильных телефонов;
- телевизоры и прочая техника.
Также к этим источникам питания можно отнести и преобразователи частоты.
Причины появления гармоник и их последствия
Гармоники — это искажения (отклонения от заданных параметров) синусоиды колебаний частоты и напряжения, вызванные сторонними факторами. Простая резистивная нагрузка имеет одинаковые формы синусоиды.
Синусоида колебаний в асинхронном двигателе
В линейных схемах (источник тока и нагрузка – резистор) синусоида идеально симметричная, и разность между синусоидами отсутствует. Однако в эту идеально гармоничную картину в сложных системах неизбежно вносятся помехи и добавляются новые гармоники. В современных реалиях одной из основных причин возникновения «вредоносных» гармоник являются разнообразные твердотельные силовые полупроводниковые устройства. Преобразователи частоты, тиристоры, диоды, устройства плавного пуска, другие элементы энергосистемы создают гармоники. Также источниками гармоник могут быть мощные потребители тока, трансформаторы, сварочное оборудование, системы промышленного освещения, выпрямители.
Теоретически, все нагрузки являются источниками гармоник и передают их в энергосистему. При этом источник энергии производит гармонику одной частоты (ее называют несущей).
Предотвратить это явление невозможно, можно лишь снизить его негативное влияние на оборудование. Если этого не сделать, энергосистема может столкнуться с серьезными проблемами, так как гармоники представляют собой нечто вроде паразитных токов, которые в первую очередь нарушают эффективность энергосистемы.
Так, несинусоидальность напряжения может привести к повышенному нагреву двигателя и созданию моментов вращения, которые приводят к вибрациям. В целом, гармоники способны вызвать повреждение конденсаторов, изоляции и короткие замыкания, перегрев и перегрузку трансформаторов, нарушить работу систем связи, чувствительной электроники и защитных устройств, основанных на измерении сопротивления.
Мониторинг качества электрической энергии и обнаружение гармоник
Присутствие гармоник лучше всего определять по результатам мониторинга качества электроэнергии, а не после аварийных отключений и поломок оборудования.
Мониторинг является обязательной частью безопасного функционирования сложных энергосистем. Современные анализаторы качества электроэнергии позволяют контролировать множество параметров тока, включая гармоники. Например, трехфазные анализаторы PITE 3561 могут выполнять разовые или долговременные (до 40 суток) тесты энергосистемы, выявляя в том числе гармонические искажения каждой из трех фаз.
Анализатор качества электроэнергии PITE-3561-1500A
Подобные анализаторы дают возможность записать диаграмму гармоник, увидеть пиковые и средние значения, чтобы провести анализ и найти источник проблемы. Без подобных приборов невозможно своевременно обнаружить опасные гармоники, особенно в сложных системах со множеством нелинейных потребителей.
Это интересно: Сгорела техника из-за скачка напряжения — что делать и куда звонить
Какие гармоники нужно измерять и устранять?
Чаще всего в трехфазных распределительных сетях встречаются гармоники нечётного порядка. С увеличением частоты амплитуды гармоник обычно снижаются. Гармоники выше 50-го порядка имеют незначительную амплитуду, и дальнейшие измерения не имеют смысла. Достаточно точные результаты измерений получаются при измерении гармоник до 30-го порядка.
Энергоснабжающие компании контролируют содержание 3-й, 5-й, 7-й, 11-й и 13-й гармоник в питающих сетях. В целом, достаточным является устранение гармоник низших порядков (до 13-го). При более тщательном контроле учитываются гармоники до 25-й включительно.zh:检测和减少谐波:为什么?
Что такое гармоники
Гармоники — это нежелательные более высокие частоты, которые накладываются на основную форму волны, создавая искаженную волновую картину.
В цепи переменного тока сопротивление ведет себя точно так же, как в цепи постоянного тока. То есть ток, протекающий через сопротивление, пропорционален напряжению на нем. Это связано с тем, что резистор является линейным устройством, и если приложенное к нему напряжение представляет собой синусоидальную волну, ток, протекающий через него, также является синусоидальной, поэтому разность фаз между двумя синусоидами равна нулю.
Как правило, при работе с переменными напряжениями и токами в электрических цепях предполагается, что они имеют чистую и синусоидальную форму с присутствием только одного значения частоты, называемого «основной частотой», но это не всегда так.
В электрическом или электронном устройстве или цепи, которая имеет вольт-амперную характеристику, которая не является линейной, то есть ток, протекающий через нее, не пропорционален приложенному напряжению. Чередующиеся сигналы, связанные с устройством, будут отличаться в большей или меньшей степени от сигналов идеальной синусоидальной формы. Эти типы сигналов обычно называют несинусоидальными или сложными сигналами.
Сложные сигналы генерируются обычными электрическими устройствами, такими как индукторы с железной сердцевиной, переключающие трансформаторы, электронные балласты в люминесцентных лампах и другие такие сильно индуктивные нагрузки, а также формы выходного напряжения и тока генераторов переменного тока, генераторов и других подобных электрических машин. В результате форма волны тока не может быть синусоидальной, даже если форма волны напряжения есть.
Также большинство электронных схем переключения источников питания, таких как выпрямители, кремниевые выпрямители (SCR), силовые транзисторы, преобразователи питания и другие подобные твердотельные переключатели, которые отключают и измельчают источники питания синусоидальной формы волны для управления мощностью двигателя или преобразования синусоидального источника переменного тока в постоянный. Эти переключающие схемы имеют тенденцию потреблять ток только при пиковых значениях источника переменного тока, и, поскольку форма сигнала переключающего тока не является синусоидальной, результирующий ток нагрузки, как говорят, содержит гармоники.
Несинусоидальные сложные формы волны создаются путем «сложения» серии синусоидальных частот, известных как «гармоники». Гармоники — это обобщенный термин, используемый для описания искажения синусоидальной формы волны сигналами разных частот.
Тогда независимо от формы сложную форму волны можно математически разделить на отдельные компоненты, называемые основной частотой и рядом «гармонических частот». Но что мы понимаем под «фундаментальной частотой»?
Это интересно: Изолированная нейтраль — что это такое и где она применяется
Алгоритмы управления активным фильтром гармоник
Основным алгоритмом анализа гармоник и выделения сигнала ошибки для управления фильтром является разложение общего сигнала на высшие гармонические составляющие c использованием быстрого преобразования Фурье и выделение из общего сигнала сигналов основной частоты и высших гармоник.
Анализ входящих аналоговых сигналов
Получение дискретизации сигнала осуществляется встроенным в микроконтроллер АЦП. Чтобы взять дискретизацию за 1 период сигнала с частотой 50Гц, через равные промежутки времени АЦП со всех каналов синхронно снимает выборки (условно, т.к. время взятие одной выборки пренебрежимо мало по отношению к интервалу между точками дискретизации). В качестве триггера АЦП выступает аппаратный таймер контроллера.
Расчет спектра сигнала
Спектр сигнала получается выполнением прямого Дискретного Преобразование Фурье (ДПФ). Для вычисления спектра на микроконтроллере в реальном времени, используется Быстрое Преобразование Фурье БПФ.
Алгоритм быстрого вычисления дискретного преобразования Фурье (ДПФ) позволяет вычислять спектр сигнала за существенно меньшее количество операций. Сложность БПФ , против у ДПФ.
Когда в дискретизации нет целого числа периодов синусоидального сигнала, разрывы, которые образуются в конечных точках выборки, приводят к расширению спектра анализируемого сигнала вследствие появления дополнительных гармоник.
В случаях когда полученная дискретизация содержит не целое количество периодов, краевые точки не будут совпадать. В этом случае спектр полученный применением БПФ, не будет верным, т. к. из-за изменения временного интервала основные гармоники перераспределяются по высшим частотам. Это влечет за собой расчет гармоник, которых на самом деле не содержится в сигнале и которые могут значительно превышать частоту Найквиста.
Из теоремы Котельникова следует, что при дискретизации аналогового сигнала потерь информации не будет только в том случае, если наивысшая частота полезного сигнала равна половине или меньше частоты дискретизации. В противном случае при восстановлении аналогового сигнала будет иметь место наложение спектральных «хвостов» (подмена частот, маскировка частот, алиасинг).
Это выглядит будто амплитуда с одних гармоник растекается по другим. Для минимизации эффекта растекания спектра применяется техника оконного преобразования.
Так как в случае изменения частоты сети период сигнала так же незначительно изменяется необходимо изменение размерности дискретизации, для этого применяется интерполяция сигнала. Для уточнения расчета спектра сигнала, снятую с АЦП дискретизацию необходимо интерполировать по количеству точек и по времени для передачи в расчет ДПФ, так как расчет ДПФ выполняется только на дискретизациях размерности кратной 2.
Так же с помощью интерполяции можно эффективно решать проблему растекания спектра, при условии, что временной интервал дискретизации близок к измеряемому периоду.
Блок управления выполняет следующие операции:
- производит быстрое преобразование Фурье (FFT).
- производит умножение полученных гармоник на задаваемый коэффициент подавления, полученный результат инвертируется;
- над нормализованными и инвертированными данными производится обратное преобразование Фурье для получения требуемого тока компенсации АФГ;
- требуемый ток АФГ интерполируется под частоту ШИМ;
- интерполируемый под частоту ШИМ требуемый ток преобразуется в задание ШИМ и заносится в генератор ШИМ для формирования сигнала управления силовым модулем. В общем виде задание ШИМ представляется по формуле 1: , (1) где С — коэффициент зависящий от напряжения сети и напряжения на накопителе;y(t) — результат обратного БПФ; — управление активным выпрямителем; — управление генерацией/потреблением реактивной мощности; power — коэффициент обратной связи АФГ.
ЗАКЛЮЧЕНИЕ
На сегодняшний день в составе оборудования энергоснабжающих организаций не предусмотрено средств, обеспечивающих в автоматическом режиме требуемого уровня содержания высших гармонических составляющих и позволяющих симметрировать нагрузки потребителей. В связи с этим обостряется проблема негативного взаимовлияния технических средств.
Отсутствие средств по обеспечению качества электропитания и увеличение доли потребителей с повышенной помехоэмиссией приводят к выходу из строя дорогостоящего оборудования, сбоям в работе оборудования связи и управления, снижению устойчивости работы генераторов автономных энергосистем.
Вышеперечисленное ослабляет энергетическую безопасность потребителей электроэнергии. Предлагается в обязательном порядке включать в состав оборудования потребителей средства для поддержания качества электроэнергии в соответствии с действующими нормативными документами :
- средства компенсации высших гармонических составляющих тока;
- средства быстрой компенсации реактивной мощности емкостного и индуктивного характера;
- средства, устраняющие несимметрию тока, потребляемого от источника энергии;
Главной особенностью разработанного активного фильтра гармоник является направленность на импортозамещение. АФГ от начала до конца, включая программное обеспечение и алгоритмы работы, создан отечественными специалистами на российском предприятии.
Наименование параметра | АФГ | PFQS | MaxSine | StacoSine | ICUVOC 50 | ECOsine Active |
Производитель |
Энергия-Т |
АВВ |
Nokian Capacitors |
Staco Energy Products Co |
Max Fuss GmbH&Co KG |
Schaffner Group |
Страна происхождения |
Россия |
Швеция |
Финляндия |
США |
Германия |
Швейцария |
Номинальный компенсируемый фазный ток, А |
25, 100 |
30, 45, 60, 70, 80, 90, 100 |
25, 50, 100 |
25, 50, 100, 150, 200 |
50 |
30-300 |
Средняя частота коммутации, кГц |
20 |
— |
10 |
20 |
6,6 |
16 |
Компенсируемые гармоники тока |
До 50-й включительно, |
До 50-й включительно |
До 50-й включительно |
До 51-й включительно |
До 31-й |
До 50-й включительно |
Компенсация реактивной мощности по коэффициенту мощности |
до 1,0 включительно |
От 0,6(инд.) до 0,6(емк.) |
до 1,0 включительно |
до 1,0 включительно |
— |
до 1,0 включительно |
Уровень шума, dB |
60 |
— |
60 |
63 |
65 |
65 |
Рассеиваемая мощность, %, не более |
3,0 |
3,0 |
3,0 |
— |
— |
— |
Опция параллельной работы |
Да |
Да |
— |
Да |
Да |
Да |
Температура окружающей среды, °С |
-25/+40 |
-10/+40 |
0/+40 |
0/+40 |
+5/+40 |
0/+40 |
Класс защиты |
IP51 |
IP30 |
IP21 |
IP21 |
IP20 |
IP20 – IP54 |
Размеры, ШхГхВ, мм |
600×335 x805 (25А) |
588х326 х795 (30А) |
600х600 х1200 (50А) |
409х389 х880 (50А) |
400х480 х480 |
360×590 x290 (50А) |
Вес, кг |
57 |
130 |
150 (50А) |
154 (50А) |
49 |
70 (50А) |
АФГ на этапе опытной эксплуатации и подготовки серийного производства успешно функционировали в составе систем электроснабжения, включая автономные, улучшая показатели качества электроэнергии в точке их подключения.