Электрический заряд

Введение

С электричеством вы сталкиваетесь постоянно. Вы видели молнию, вы освещаете комнату с помощью электрической лампочки, электрообогреватель выделяет тепло – все эти явления связаны с движением электрического заряда. С неподвижным электрическим зарядом вы тоже сталкивались, когда после расчесывания получали наэлектризованные волосы. Они разлетаются в разные стороны. Электрические заряды находятся без преувеличения везде, из них состоит любое вещество! На этом уроке мы выясним то, что нам известно про заряды. Как известно, в природе встречаются заряды двух типов – положительные и отрицательные. Разноименные заряды притягиваются, одноименные – отталкиваются. Это взаимодействие происходит на любом расстоянии. Как же они тогда взаимодействуют? Для этого существует электрическое поле. Вокруг каждого заряда существует такое поле и если в него попадает еще один заряд, то он начинает «чувствовать» это поле: на него начинают действовать силы притяжения или отталкивания соответственно.

В природе есть много ненаблюдаемого. Например, мы не видим ветер, но видим, как он раскачивает ветви деревьев. Мы не видим температуру, но мы видим, как нагретые тела расширяются. По расширению, например, ртути в термометре, мы можем температуру измерять (см. рис. 1).

Рис. 1. Расширение ртути

Т. е. мы наблюдаем проявление чего-то и на основе этих наблюдений судим о том, чего непосредственно не наблюдаем. Заряд мы тоже изучаем по его проявлению. Мы не видим заряды, но наблюдаем их взаимодействие. Один заряд действует на другой на расстоянии через электрическое поле. Поле заряда – это пространство, где на другие заряды будет действовать сила.

Взаимодействие тел через поле нам уже знакомо. Тело, обладающее массой, создает вокруг себя поле – гравитационное, которое проявляется в действии на другое тело, обладающее массой. Их взаимодействие подчиняется закону всемирного тяготения (см. рис. 2).

Рис. 2. Взаимодействие массивных тел

Закон всемирного тяготения

Вокруг тела, обладающего массой, возникает гравитационное поле. Посредством этого поля массы взаимодействуют, притягиваются. Сила их притяжения пропорциональна величине каждой из масс и обратно пропорциональна квадрату расстояния между ними (см. рис. 3):

– константа, гравитационная постоянная, равна .

Рис. 3. Закон всемирного тяготения

Квадрат расстояния встречается во многих физических формулах, так что это позволяет говорить о законе, связывающем величину эффекта с квадратом расстояния от источника воздействия:

Эта пропорциональность справедлива для гравитационного, электрического, магнитного действия, силы звука, света, радиации, распространяющихся от источника. Связано это, конечно, с тем, что площадь поверхности сферы распространения эффекта увеличивается пропорционально квадрату расстояния (см. рис. 4). Это будет выглядеть естественным, если вспомнить, что площадь сферы пропорциональна квадрату радиуса:

и тогда понятно, что сила действия от источника вдали от него должна распределяться по сфере всё большего радиуса.

Рис. 4. Площадь сферы распространения эффекта увеличивается с увеличением радиуса сферы

Итак, электрические заряды взаимодействуют через электрическое поле, которое они вокруг себя создают.

Определение поперечного сечения проводов или кабелей по условию допустимой потери напряжения

Выбор поперечного сечения проводников в кабельной сети должен производиться по допускаемой потере напряжения, которая устанавливается с таким расчетом, чтобы отклонения напряжения для всего присоединенного к этой сети электрооборудования не выходили за пределы допустимого.

Номинальные напряжения на выходе систем электроснабжения (по ГОСТу 21128-83):

Согласно ГОСТу 13109-97:

  • Нормально допустимое значение установившегося отклонения напряжения — ±5.
  • Предельно допустимое значение установившегося отклонения напряжения — ±10.

Активное и индуктивное сопротивление линии

Активное сопротивление линии (Ом/км) равно:

Значение индуктивного сопротивления проводников Расчет сети по потере напряжения без учета индуктивного сопротивления проводов допустим в следующих случаях:

  • для сети постоянного тока;
  • переменного тока при cosφ = 1
  • для сетей, выполненных кабелями или изолированными проводами, проложенными в трубах на роликах или изоляторах, если их сечении не превосходят величин, указанных в таблице ниже.

Формулы расчёта сечения проводников при заданной величине потери напряжения

Трёхфазная линия переменного тока:

Двухпроводная линия переменного или постоянного тока:

Где γ — удельная проводимость материала проводов, м/(Ом×мм2);

Uн — номинальное напряжение сети, кВ (для трехфазной сети Uн — междуфазное напряжение);

∆Uдоп — допустимая потеря напряжения в линии, сечение которой определяется, %.

F — сечение проводников, мм2;

∑P∙L=P1∙L1+P2∙L2+…— сумма произведений нагрузок, протекающих по участкам линии, на длину этих участков; нагрузки должны выражаться в киловаттах, длины в метрах;

∑Iа∙L= Iа1 ∙L1+ Iа2 ∙L2+…— сумма произведений проходящих по участкам активных составляющих токов на длины участков;

Токи должны выражаться в амперах, длины — в метрах.

Активные составляющие тока (А) определяются умножением величин токов на величины коэффициентов мощности Iа = I∙ cos ɸ.

Закон сохранения электрического заряда

Основная статья: Закон сохранения электрического заряда

Электрический заряд замкнутой системы сохраняется во времени и квантуется — изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны — вследствие явления ионизации атомов или молекул, ионы — за счёт явления электролитической диссоциации и др. Однако, если система электрически изолирована, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда сохраняется.

Закон сохранения электрического заряда — один из основополагающих законов физики. Он был впервые экспериментально подтверждён в 1843 году английским учёным Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.

Закон сохранения заряда и калибровочная инвариантность[ | код]

Симметрия в физике
Преобразование Соответствующаяинвариантность Соответствующийзаконсохранения
Трансляции времени Однородностьвремени …энергии
⊠ C, P, CP и T-симметрии Изотропностьвремени …чётности
Трансляции пространства Однородностьпространства …импульса
↺ Вращения пространства Изотропностьпространства …моментаимпульса
⇆ Группа Лоренца (бусты) ОтносительностьЛоренц-ковариантность …движенияцентра масс
~ Калибровочное преобразование Калибровочная инвариантность …заряда

Физическая теория утверждает, что каждый закон сохранения основан на соответствующем фундаментальном принципе симметрии. Со свойствами симметрий пространства-времени связаны законы сохранения энергии, импульса и момента импульса. Законы сохранения электрического, барионного и лептонного зарядов связаны не со свойствами пространства-времени, а с симметрией физических законов относительно фазовых преобразований в абстрактном пространстве квантовомеханических операторов и векторов состояний. Заряженные поля в квантовой теории поля описываются комплексной волновой функциейϕ(x)=|ϕ(x)|eiψ(x){\displaystyle \phi (x)=|\phi (x)|e^{i\psi (x)}}, где x — пространственно-временная координата. Частицам с противоположными зарядами соответствуют функции поля, различающиеся знаком фазы ψ{\displaystyle \psi }, которую можно считать угловой координатой в некотором фиктивном двумерном «зарядовом пространстве». Закон сохранения заряда является следствием инвариантности лагранжиана относительно глобального калибровочного преобразования типа ϕ′=eiαQϕ{\displaystyle \phi ‘=e^{i\alpha Q}\phi }, где Q — заряд частицы, описываемой полем ϕ{\displaystyle \phi }, а α{\displaystyle \alpha } — произвольное вещественное число, являющееся параметром и не зависящее от пространственно-временных координат частицы. Такие преобразования не меняют модуля функции, поэтому они называются унитарными U(1).

Элементарные частицы

Что же происходит с телами при электризации? Представьте себе два одинаковых металлических шара, но только один из них заряжен отрицательно, а другой не заряжен (см. рис. 10).

Рис. 10. Заряженный и незаряженный шары

Известно, что все тела состоят из атомов, а те, в свою очередь, состоят из протонов, нейтронов, электронов (см. рис. 11).

Рис. 11. Атом

Протоны заряжены положительно, электроны – отрицательно. Будем называть их элементарными зарядами, то есть неделимыми. Так вот, в большинстве случаев в атоме количество протонов равняется количеству электронов и получается, что они полностью компенсируют друг друга и в целом атом нейтрален

Важно понимать, что в атоме заряды никуда не исчезают, там по-прежнему есть положительные и отрицательные частицы, просто их действие на далекие предметы полностью компенсируется (см. рис

12).

Рис. 12. Действие частиц компенсировано

А вот в шаре, заряженном отрицательно, электронов больше, чем протонов, поэтому в целом в теле количество отрицательных элементарных зарядов больше, чем количество положительных элементарных зарядов, и тело заряжено отрицательно (см. рис. 13).

Рис. 13. Количество электронов в заряженном шаре

Заряд макроскопического тела (состоящего из большого количества атомов) – это величина, показывающая разность между положительными и отрицательными зарядами в теле. Если это количество одинаково, то заряд нулевой. Величина элементарного заряда известна и равна . Соответственно, заряд протона договорились считать положительным , а заряд электрона – отрицательным .

Что же происходит при трении тел друг о друга, например пластика о шерсть? Электроны с внешних оболочек атомов, входящих в состав шерсти, «перепрыгивают» на пластмассу (см. рис. 14).

Рис. 14. Движение электронов при трении

Получается, что в шерсти становится меньше отрицательных электронов и она заряжается положительно, а пластмасса – отрицательно, так как в ней появляется избыточное количество электронов. Можно даже сказать: если при контакте заряд одного тела увеличивается, то у другого уменьшается.

Что касается искр между людьми, то это происходит, если хотя бы один человек «заряжен» (допустим, человек ходил по шерстяному ковру, при трении подошвами по нему), и если другой человек не заряжен также, то заряд будет перетекать с одного человека на другого, иногда это перетекание может быть даже по воздуху, в таком случае и появляется искра. Стоит отметить, что искра появляется только благодаря движению электронов, протоны находятся в ядрах атомов, они менее подвижны и не могут покидать атомов отличие от электронов.

Зарядить тело можно и без контакта – через влияние электрическим полем. Представьте себе незаряженный шар, к которому подносят положительно заряженную палочку – разноименные заряды притягиваются, поэтому электроны, которые были в шаре, притянутся к положительно заряженной палочке и скопятся в той части шара, которая ближе к ней (см. рис. 15).

Рис. 15. Влияние положительно заряженной палочки на электроны

Почему незаряженные частицы фольги притягиваются к заряженной расческе?

Оказывается, незаряженный кусочек фольги будет притягиваться к заряженной расческе. Как же так? В целом кусочек фольги электрически нейтрален. Давайте посмотрим, что произойдет, если мы поднесем отрицательно заряженную расческу к кусочку фольги – отрицательно заряженная расческа притягивает к себе положительный заряд и отталкивает отрицательный. Поэтому электроны отодвинутся дальше от границы, а сторона, которая находится ближе к расческе, будет заряжена положительно (см. рис. 16) и притяжение будет сильнее, чем отталкивание, потому что положительная часть фольги находится ближе к расческе.

Рис. 16. Расположение электронов в фольге при поднесении расчески

История[ | ]

Майкл Фарадей за опытами в своей лаборатории Бенджамин Франклин проводит свой знаменитый опыт с летающим змеем, в котором доказывает, что молния — это электричество. Ещё в глубокой древности было известно, что янтарь (др.-греч. ἤλεκτρον — электрон

), потёртый о шерсть, притягивает лёгкие предметы. А уже в конце XVI века английский врач Уильям Гильберт назвал тела, способные после натирания притягивать лёгкие предметы,наэлектризованными .

В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Один образуется при трении стекла о шёлк, а другой — смолы о шерсть. Поэтому Дюфе назвал заряды «стеклянным» и «смоляным» соответственно. Понятие о положительном и отрицательном заряде ввёл Бенджамин Франклин.

В начале XX века американский физик Роберт Милликен опытным путём показал, что электрический заряд дискретен

, то есть заряд любого тела составляет целое кратное от элементарного электрического заряда.

Что такое электрический заряд в каких единицах он измеряется

Простое объяснение понятия электрический заряд. Что это за величина, в чем она измеряется и как, собственно, ее измеряют.

В природе не все можно объяснить с точки зрения механики, МКТ и термодинамики, есть и электромагнитные явления, которые воздействуют на тело, при этом не зависят от их массы. Способность тел быть источником электромагнитных полей характеризуется физической скалярной величиной – электрическим зарядом

Его впервые вывели в законе Кулона в 1785 году, но обратили внимание на его существование еще до нашей эры. В этой статье мы простыми словами расскажем о том, что такое электрический заряд и как он измеряется

История открытий

Еще в древности было замечено, что если потереть янтарь о шелковую материю, то камень начнет притягивать к себе легкие предметы. Уильям Гильберт изучал эти опыты до конца XVI века. В отчете о проделанной работе предметы, которые могут притягивать другие тела, назвал наэлектризованными.

Следующие открытия в 1729 году сделал Шарль Дюфе, наблюдая за поведением тел при их трении об разные материи.

Таким образом он доказал существование двух видов зарядов: первые образуются при трении смолы о шерсть, а вторые – при трении стекла о шелк. Следуя логике, он назвал их «смоляными» и «стеклянными».

Шарлем Кулоном, портрет которого изображен ниже, был открыт закон, который впоследствии был назван Законом Кулона. Он описывал взаимодействие двух точечных зарядов. Также смог измерить величину и изобрел для этого крутильные весы, о которых мы расскажем позже.

И уже в начале прошлого века Роберт Милликен, в результате проведенных опытов, доказал их дискретность. Это значит, что заряд каждого тела равен целому кратному элементарного электрического заряда, а элементарным является электрон.

Теоретические сведения

Электрическим зарядом называется способность тел создавать электромагнитное поле. В физике раздел электростатики изучает взаимодействия неподвижных относительно выбранной инерциальной системы отчета зарядов.

В чем выражается взаимодействие

Электрические заряды притягиваются и отталкиваются друг от друга. Это похоже на взаимодействие магнитов. Всем знакомо, что если потереть линейку или шариковую ручку о волосы – она наэлектризуется.

Если в этом состоянии поднести её к бумаге, то она прилипнет к наэлектризованному пластику.

При электризации происходит перераспределение зарядов, так что на одной части тела их становится больше, а на другой меньше.

По этой же причине вас иногда бьёт током шерстяной свитер или другие люди, когда вы их касаетесь.

Вывод: электрические заряды с одним знаком стремятся друг к другу, а с разными – отталкиваются. Они перетекают с одного тела на другое, когда касаются друг друга.

Способы измерения

Существует ряд способов измерения электрического заряда, давайте рассмотрим некоторые из них. Измерительный прибор называется крутильными весами.

Весы Кулона – это крутильные весы его изобретения. Смысл заключается, в том, что в сосуде на кварцевой нити подвешена легкая штанга с двумя шариками на концах, и один неподвижный заряженный шарик. Вторым концом нить закреплена за колпак.

Неподвижный шарик вынимается, для того чтобы сообщить ему заряд, после этого нужно установить его обратно в сосуд. После этого подвешенная на нити часть начнет движение. На сосуде нанесена проградуированная шкала.

Принцип его действия отражен на видео.

Другой прибор для измерения электрического заряда – электроскоп. Он, как и предыдущие, представляет собой стеклянный сосуд с электродом, на котором закреплено два металлических листочка из фольги.

Заряженное тело подносят к верхнему концу электрода, по которому заряд стекает на фольгу, в результате оба листочка окажутся одноименно заряженными и начнут отталкиваться.

Величину заряда определяют по тому, насколько сильно они отклонятся.

Электрометр – еще один измерительный прибор. Состоит из металлического стержня и вращающейся стрелки. При прикосновении к электрометру заряженным телом, заряды стекают по стержню к стрелке, стрелка отклоняется и указывает на шкале определенную величину.

Напоследок рекомендуем просмотреть еще одно полезное видео по теме:

Ионизаторы воздуха положительно воздействуют на организм человека: ускоряют процесс доставки кислорода из воздуха к клеткам. Примером такого прибора является люстра Чижевского.

Теперь вы знаете, что такое электрический заряд и как его измеряют.

Материалы по теме:

  • Как перевести ватты в киловатты
  • Закон Джоуля-Ленца простыми словами
  • Что такое статическое электричество

Электризация

Процесс сообщения телу электрического заряда называется электризацией. Часто он происходит при трении тел друг о друга. Например, если потереть эбонитовую палочку о шерсть (см. рис. 5), то и она, и шерсть приобретут электрические заряды (эбонитовая палочка зарядится отрицательно, а шерсть – положительно).

Рис. 5. Заряжание эбонитовой палочки

Проверить это просто: если поднести два наэлектризованных кусочка шерсти друг к другу, то они будут отталкиваться, так как заряжены зарядом одинакового знака (см. рис. 6).

Рис. 6. Оба кусочка шерсти заряжены положительно

Из этого следует вывод, что заряды одного типа отталкиваются. Если расчесывать волосы, то расческа заряжается отрицательно, а волосы – положительно (см. рис. 7).

Рис. 7. Заряжание волос

Собственно, поэтому, после расчесывания, волосы разлетаются в разные стороны (каждый волос заряжен положительно и отталкивается от остальных (см. рис. 8)).

Рис. 8. Каждый волос заряжен положительно

Путем простых опытов мы обнаружили, что существует два типа зарядов, которые взаимодействуют следующим образом: однотипные заряды отталкиваются, разнотипные – притягиваются.

Как определить, какой именно заряд приобретает тело при трении

Мы проводим много опытов с расческами, тканями и палочками, чтобы они приобретали электрический заряд. Одна и та же шерсть заряжается отрицательно при трении о стекло и положительно при трении о полиэтилен. Как можно заранее знать, какой тип заряда приобретает материал? Есть ли какое-то правило? Можно заниматься практическим определением (такие опыты были проведены много раз), и были получены трибоэлектрические ряды некоторых материалов (см. рис. 9), в которых любой взятый материал при трении с материалом, расположенным ниже него в ряду, заряжается положительно, и наоборот. Разные экспериментаторы получали свои ряды, и на рисунке их можно увидеть.

Рис. 9. Трибоэлектрические ряды

Сейчас известно, что носителями двух типов заряда являются элементарные частицы: электрон и протон. Элементарные частицы неделимы, поэтому заряд одной частицы, равный , – это минимальный заряд, обозначается часто или . Эти частицы имеют массу: и для электрона и протона соответственно.

История открытий

Еще в древности было замечено, что если потереть янтарь о шелковую материю, то камень начнет притягивать к себе легкие предметы. Уильям Гильберт изучал эти опыты до конца XVI века. В отчете о проделанной работе предметы, которые могут притягивать другие тела, назвал наэлектризованными.

Следующие открытия в 1729 году сделал Шарль Дюфе, наблюдая за поведением тел при их трении об разные материи. Таким образом он доказал существование двух видов зарядов: первые образуются при трении смолы о шерсть, а вторые – при трении стекла о шелк. Следуя логике, он назвал их «смоляными» и «стеклянными». Бенджамин Франклин также исследовал этот вопрос и ввел понятия положительного и отрицательного заряда. На иллюстрации – Б. Франклин ловит молнию.

Шарлем Кулоном, портрет которого изображен ниже, был открыт закон, который впоследствии был назван Законом Кулона. Он описывал взаимодействие двух точечных зарядов. Также смог измерить величину и изобрел для этого крутильные весы, о которых мы расскажем позже.

И уже в начале прошлого века Роберт Милликен, в результате проведенных опытов, доказал их дискретность. Это значит, что заряд каждого тела равен целому кратному элементарного электрического заряда, а элементарным является электрон.

Примечания

  1. Или, более точно, 1,602176487(40)⋅10−19 Кл.
  2. Или, более точно, 4,803250(21)⋅10−10 ед СГСЭ.
  3. Обычная для позитрона неустойчивость, связанная с аннигиляцией электрон-позитронной пары, при этом не рассматривается
  4. Но это далеко не единственный способ электризации тел. Электрические заряды могут возникнуть, например, под действием света
  5. Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — С. 16. — 656 с. — ISBN 5-9221-0227-3.
  6. Электрически замкнутая система — это система, у которой через ограничивающую её поверхность не могут проникать электрически заряженные частицы (система, не обменивающаяся зарядами с внешними телами).

Электрическая емкость. Конденсатор

Электрическая емкость (электроемкость) – скалярная физическая величина, характеризующая способность уединенного проводника удерживать электрический заряд.

Обозначение – ​\( C \)​, единица измерения в СИ – фарад (Ф).

Уединенный проводник – это проводник, удаленный от других проводников и заряженных тел.

Фарад – электроемкость такого уединенного проводника, потенциал которого изменяется на 1 В при сообщении ему заряда 1 Кл:

Формула для вычисления электроемкости:

где ​\( q \)​ – заряд проводника, ​\( \varphi \)​ – его потенциал.

Электроемкость зависит от его линейных размеров и геометрической формы. Электроемкость не зависит от материала проводника и его агрегатного состояния. Электроемкость проводника прямо пропорциональна диэлектрической проницаемости среды, в которой он находится.

Конденсатор – это система из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.

Проводники называют обкладками конденсатора. Заряды обкладок конденсатора равны по величине и противоположны по знаку заряда. Электрическое поле сосредоточено между обкладками конденсатора. Конденсаторы используют для накопления электрических зарядов.

Электроемкость конденсатора рассчитывается по формуле:

где ​\( q \)​ – модуль заряда одной из обкладок,
​\( U \)​ – разность потенциалов между обкладками.

Электроемкость конденсатора зависит от линейных размеров и геометрической формы и расстояния между проводниками. Электроемкость конденсатора прямо пропорциональна диэлектрической проницаемости вещества между проводниками.

Плоский конденсатор представляет две параллельные пластины площадью ​\( S \)​, находящиеся на расстоянии ​\( d \)​ друг от друга.

Электроемкость плоского конденсатора:

где ​\( \varepsilon \)​ – диэлектрическая проницаемость вещества между обкладками,\( \varepsilon_0 \) – электрическая постоянная.

На электрической схеме конденсатор обозначается:

Виды конденсаторов:

  • по типу диэлектрика – воздушный, бумажный и т. д.;
  • по форме – плоский, цилиндрический, сферический;
  • по электроемкости – постоянной и переменной емкости.

Конденсаторы можно соединять между собой.

Параллельное соединение конденсаторов

При параллельном соединении конденсаторы соединяются одноименно заряженными обкладками. Напряжения конденсаторов равны:

Общая емкость:

Последовательное соединение конденсаторов

При последовательном соединении конденсаторов соединяют их разноименно заряженные обкладки.

Заряды конденсаторов при таком соединении равны:

Общее напряжение:

Величина, обратная общей емкости:

При таком соединении общая емкость всегда меньше емкостей отдельных конденсаторов.

Важно!
Если конденсатор подключен к источнику тока, то разность потенциалов между его обкладками не изменяется при изменении электроемкости и равна напряжению источника. Если конденсатор заряжен до некоторой разности потенциалов и отключен от источника тока, то его заряд не изменяется при изменении электроемкости

Применение конденсаторов
Конденсаторы используются в радиоэлектронных приборах как накопители заряда, для сглаживания пульсаций в выпрямителях переменного тока.

Закон сохранения электрического заряда[ | ]

Основная статья: Закон сохранения электрического заряда

Совокупный электрический заряд замкнутой системы сохраняется во времени и квантуется — изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны — вследствие явления ионизации атомов или молекул, ионы — за счёт явления электролитической диссоциации и др. Однако, если система электрически изолирована, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда сохраняется.

Закон сохранения электрического заряда — один из основополагающих законов физики. Он был впервые экспериментально подтверждён в 1843 году английским учёным Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.

Adblock
detector