Все об электродвижущей силе

Электромагнитная индукция (самоиндукция)

Начнем с электромагнитной индукции. Это явление описывает закон электромагнитной индукции Фарадея. Физический смысл этого явления состоит в способности электромагнитного поля наводить ЭДС в находящемся рядом проводнике. При этом или поле должно изменяться, например, по величине и направлению векторов, или перемещаться относительно проводника, или должен двигаться проводник относительно этого поля. На концах проводника в этом случае возникает разность потенциалов.

Есть и другое похожее по смыслу явление — взаимоиндукция. Оно заключается в том, что изменение направления и силы тока одной катушки индуцирует ЭДС на выводах расположенной рядом катушки, широко применяется в различных областях техники, включая электрику и электронику. Оно лежит в основе работы трансформаторов, где магнитный поток одной обмотки наводит ток и напряжение во второй.

В электрике физический эффект под названием ЭДС используется при изготовлении специальных преобразователей переменного тока, обеспечивающих получение нужных значений действующих величин (тока и напряжения). Благодаря явлениям индукции и самоиндукции инженерам удалось разработать множество электротехнических устройств: от обычной катушки индуктивности (дросселя) и вплоть до трансформатора.

Понятие взаимоиндукции касается только переменного тока, при протекании которого в контуре или проводнике меняется магнитный поток.

Для электрического тока постоянной направленности характерны другие проявления этой силы, такие, например, как разность потенциалов на полюсах гальванического элемента, о чем мы расскажем далее.

Электродвигатели и генераторы

Тот же электромагнитный эффект наблюдается в конструкции асинхронного или синхронного электродвигателя, основной элемент которых — это индуктивные катушки. О его работе доступным языком рассказывается во многих учебных пособиях, относящихся к предмету под названием «Электротехника». Для понимания сути происходящих процессов достаточно вспомнить, что ЭДС индукции наводится при перемещении проводника внутри другого поля.

По упомянутому выше закону электромагнитной индукции, в обмотке якоря двигателя во время работы наводится встречная ЭДС, которую часто называют «противо-ЭДС», потому что при работе двигателя она направлена навстречу приложенному напряжению. Это же объясняет резкое возрастание тока, потребляемого двигателем при повышении нагрузки или заклинивании вала, а также пусковые токи. Для электрического двигателя все условия появления разности потенциалов налицо – принудительное изменение магнитного поля ее катушек приводит к появлению вращающего момента на оси ротора.

В другом электротехническом устройстве – генераторе, все обстоит точно так же, но происходящие в нем процессы имеют обратную направленность. Через обмотки ротора пропускают электрический ток, вокруг них возникает магнитное поле (могут использоваться постоянные магниты). При вращении ротора поле, в свою очередь, наводит ЭДС в обмотках статора — с которых снимают ток нагрузки.

Еще немного теории

При проектировании таких схем учитываются распределение токов и падение напряжения на отдельных элементах. Для расчета распределения первого параметра применяется известный из физики второй закон Кирхгофа — сумма падений напряжений (с учетом знака) на всех ветвях замкнутого контура, равна алгебраической сумме ЭДС ветвей этого контура), а для определения их величин используют закон Ома для участка цепи или закон Ома для полной цепи, формула которого приведена ниже:

I=E/(R+r),

где E – ЭДС, R – сопротивление нагрузки, r – сопротивление источника питания.

Внутреннее сопротивление источника питания — это сопротивление обмоток генераторов и трансформаторов, которое зависит от сечения провода, которым они намотаны и его длины, а также внутреннее сопротивление гальванических элементов, которое зависит от состояния анода, катода и электролита.

При проведении расчетов обязательно учитывается внутреннее сопротивление источника питания, рассматриваемое как параллельное подключение к схеме

При более точном подходе, учитывающем большие значения рабочих токов, принимается во внимание сопротивление каждого соединительного проводника

Химическая электродвижущая сила

Химическая электродвижущая сила наличествует в аккумуляторах, гальванических батареях при протекании коррозионных процессов. В зависимости от того, на каком именно принципе построена работа того или иного источника питания, они именуются либо аккумуляторами, либо гальваническими элементами.

Одной из основных отличительных характеристик гальванических элементов является то, что эти источники тока являются, так сказать, одноразовыми. При их функционировании те активные вещества, благодаря которым выделяется электрическая энергия, в результате протекания химических реакций распадаются практически полностью. Именно поэтому если гальванический элемент разряжен полностью, то в качестве источника тока использовать его далее невозможно.

ЭДС и циркуляция вектора напряженности электрического поля

Рассмотрим случай, когда электрический ток течет по тонкому проводу. Направление тока совпадает с направлением оси провода (рис.1). Что обеспечивается соответствующим распределением зарядов на поверхностях проводников или там, где действуют сторонние силы.

Рисунок 1. Электрический ток в тонком проводе. Автор24 — интернет-биржа студенческих работ

Площадь поперечного сечения провода будем считать равным $S$, в разных местах провода она может отличаться. Поскольку наш провод мы считаем тонким, то плотность тока ($\vec j$) считаем одинаковой для всех точек поперечного сечения проводника. Сквозь поперечное сечение провода за единицу времени будет проходить заряд:

$\frac{\Delta q}{\Delta t}=I=jS\, \left( 1 \right)$.

где $I$ — сила тока. При постоянной силе тока, в результате сохранения заряда, величина $I$ будет одной и той же по всей длине провода. Положим, что в проводе (рис.1) работают сторонние силы, например, имеется гальванический элемент ($G$). Запишем дифференциальную форму закона Ома в виде:

$\vec{E}+\vec{E}_{st}=\frac{\vec{j}}{\lambda }=\frac{I}{\lambda S}\vec{i}\left( 2 \right)$,

где $\vec{i}$– единичный вектор, указывающий направление течения тока; λ – коэффициент проводимости.

Умножим полученное выражение (2) на элемент длины провода ($dl$) и возьмем интеграл по участку проводника от точки 1 до точки 2 (рис.1), считая силу тока неизменной:

$\int\limits_1^2 \vec{E} d\vec{l}+\int\limits_1^2 {\vec{E}_{st}d\vec{l}}=I\int\limits_1^2 \frac{d\vec{l}}{\lambda S} \left( 3 \right)$.

Поскольку электрическое поле является потенциальным, то имеем:

$\int\limits_1^2 \vec{E} d\vec{l}=\varphi_{1}-\varphi_{2}\left( 4 \right)$.

$\varphi_{1}-\varphi_{2}$ – разность потенциалов.

Второй интеграл отличен от нуля внутри источника тока, где E ⃗_st≠0. Данный интеграл не зависит от положения начальной и конечной точки 1 и 2. Необходимо только, чтобы данные точки были вне источника тока. Так как поле сторонних сил потенциально там, где действуют эти силы, интеграл не зависит от пути интегрирования в элементе. Это означает, что данный интеграл – это параметр, который характеризует свойства источника тока. Такую величину называют электродвижущей силой элемента:

$Ɛ=\int\limits_1^2 {\vec{E}_{st}d\vec{l}} =\int\limits_3^4{\vec{E}_{st}d\vec{l}} \left( 5 \right)$.

Электродвижущая сила (ЭДС) больше нуля, если направление пересечения пути 1-2 дает от катода к аноду и является отрицательной в ином случае.

Интеграл в правой части выражения (3) – это характеристика проводника, сопротивление:

$R=\int\limits_1^2 \frac{d\vec{l}}{\lambda S} \left( 6 \right)$.

Используя сказанное выше, запишем закон Ома в интегральной форме:

$\varphi_{1}-\varphi_{2}+Ɛ=IR\, \left( 7 \right)$,

где $R$ – сопротивление всего участка цепи, включая источник тока.

Если цепь является замкнутой, то закон Ома предстанет в виде:

$Ɛ=IR\, \left( 8 \right)$.

$R$ — полное сопротивление всей цепи.

Допустим, что $\varphi_{a}$ – потенциал анода источника;$\varphi_{k}$ – потенциал катода; $R_e$ — сопротивление всего внешнего участка цепи, тогда:

$\varphi_{a}-\varphi_{k}=IR_{e}\left( 9 \right)$.

Сравнив выражение (8) и (9) запишем:

$\frac{\varphi_{a}-\varphi_{k}}{Ɛ}=\frac{R_{e}}{R}=\frac{R_{e}}{R_{e}+r}\left( 10 \right)$.

где $r$ — внутреннее сопротивление источника.

Выражение (10) означает, что $\varphi_{a}-\varphi_{k}$ меньше, чем ЭДС. В предельном случае, когда $R_{e}\to \infty $. получим:

$\varphi_{a}-\varphi_{k}=Ɛ\left( 11 \right)$.

Электродвижущую силу можно определить как разность потенциалов полюсов разомкнутого источника.

ЭДС с точки зрения гидравлики

Думаю, вам уже знакома водонапорная башня из прошлой статьи про напряжение

Допустим, что башня полностью заполнена водой. Снизу башни мы просверлили отверстие и врезали туда трубу, по которой вода бежит к вам домой.

Сосед захотел полить огурцы, вы решили помыть автомобиль, мать затеяла стирку и вуаля! Поток воды стал меньше и меньше, и вскоре совсем иссяк… Что случилось? Закончилась вода в башне…

Время, которое потребуется, чтобы опустошить башню, зависит от емкости самой башни, а также от того, сколько потребителей будут пользоваться водой.

Все то же самое можно сказать и про радиоэлемент конденсатор:

Допустим мы его зарядили от батарейки 1,5 вольта и он принял заряд. Нарисуем заряженный конденсатор вот так:

Но как только мы цепляем к нему нагрузку (пусть нагрузкой будет светодиод) с помощью замыкания ключа S, в первые доли секунд светодиод будет светиться ярко, а потом тихонько угасать… и пока полностью не потухнет. Время угасания светодиода будет зависеть от емкости конденсатора, а также от того, какую нагрузку мы цепляем к заряженному конденсатору.

Как я уже сказал, это равносильно простой наполненной башне и потребителям, которые пользуются водой.

Но почему тогда в наших башнях вода никогда не заканчивается? Да потому что работает насос подачи воды! А откуда этот насос берет воду? Из скважины, которая пробурена для добычи подземных вод. Иногда ее еще называют артезианской.

Как только башня полностью наполнится водой, насос выключается. В наших водобашнях насос всегда поддерживает максимальный уровень воды.

Итак, давайте вспомним, что такое напряжение? По аналогии с гидравликой – это уровень воды в водобашне. Полная башня – это максимальный уровень воды, значит максимальное напряжение. Нет в башне воды – напряжение ноль.

Неэлектростатический характер ЭДС

Внутри источника ЭДС ток течёт в направлении, противоположном нормальному. Это невозможно без дополнительной силы неэлектростатической природы, преодолевающей силу электрического отталкивания

Как показано на рисунке, электрический ток, нормальное направление которого — от «плюса» к «минусу», внутри источника ЭДС (например, внутри гальванического элемента) течёт в противоположном направлении. Направление от «плюса» к «минусу» совпадает с направлением электростатической силы, действующей на положительные заряды. Поэтому для того, чтобы заставить ток течь в противоположном направлении, необходима дополнительная сила неэлектростатической природы (центробежная сила, сила Лоренца, силы химической природы, сила со стороны вихревого электрического поля) которая бы преодолевала силу со стороны электростатического поля. Диссипативные силы, хотя и противодействуют электростатическому полю, не могут заставить ток течь в противоположном направлении, поэтому они не входят в состав сторонних сил, работа которых используется в определении ЭДС.

Что такое ЭДС: объяснение простыми словами

Под ЭДС понимается удельная работа сторонних сил по перемещению единичного заряда в контуре электрической цепи. Это понятие в электричестве предполагает множество физических толкований, относящихся к различным областям технических знаний. В электротехнике — это удельная работа сторонних сил, появляющаяся в индуктивных обмотках при наведении в них переменного поля. В химии она означает разность потенциалов, возникающее при электролизе, а также при реакциях, сопровождающихся разделением электрических зарядов.

В физике она соответствует электродвижущей силе, создаваемой на концах электрической термопары, например. Чтобы объяснить суть ЭДС простыми словами – потребуется рассмотреть каждый из вариантов ее трактовки. Прежде чем перейти к основной части статьи отметим, что ЭДС и напряжение очень близкие по смыслу понятия, но всё же несколько отличаются. Если сказать кратко, то ЭДС — на источнике питания без нагрузки, а когда к нему подключают нагрузку — это уже напряжение. Потому что количество вольт на ИП под нагрузкой почти всегда несколько меньше, чем без неё. Это связано с наличием внутреннего сопротивления таких источников питания, как трансформаторы и гальванические элементы.

Электродвижущая сила (эдс), физическая величина, характеризующая действие сторонних (непотенциальных) сил в источниках постоянного или переменного тока; в замкнутом проводящем контуре равна работе этих сил по перемещению единичного положительного заряда вдоль контура. Если через Eстр обозначить напряжённость поля сторонних сил, то эдс в замкнутом контуре (L) равна , где dl — элемент длины контура. Потенциальные силы электростатического (или стационарного) поля не могут поддерживать постоянный ток в цепи, т. к. работа этих сил на замкнутом пути равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — нагреванием проводников.

Сторонние силы приводят в движение заряженные частицы внутри источников тока: генераторов, гальванических элементов, аккумуляторов и т. д. Происхождение сторонних сил может быть различным. В генераторах сторонние силы — это силы со стороны вихревого электрического поля, возникающего при изменении магнитного поля со временем, или Лоренца сила, действующая со стороны магнитного поля на электроны в движущемся проводнике; в гальванических элементах и аккумуляторах — это химические силы и т. д. Эдс определяет силу тока в цепи при заданном её сопротивлении (см. Ома закон). Измеряется эдс, как и напряжение, в вольтах.

Что такое ЭДС.

Электродвижущая сила (ЭДС) источника энергии

Для поддержания электрического тока в проводнике требуется внешний источник энергии, создающий все время разность потенциалов между концами этого проводника. Такие источники энергии получили название источников электрической энергии (или источников тока). Источники электрической энергии обладают определенной электродвижущей силой (сокращенно ЭДС), которая создает и длительное время поддерживает разность потенциалов между концами проводника.

Источник электрической энергии производит определенную работу, перемещая электрические заряды по всей замкнутой цепи. За единицу измерения электродвижущей силы принят вольт (сокращенно вольт обозначается буквой В или V — «вэ» латинское). ЭДС источника электрической энергии равна одному вольту, если при перемещении одного кулона электричества по всей замкнутой, цепи источник электрической энергии совершает работу, равную одному джоулю:

Электродвижущая сила (ЭДС) источника энергии.

В практике для измерения ЭДС используются как более крупные, так и более мелкие единицы, а именно:

  • 1 киловольт (кВ, kV), равный 1000 В;
  • 1 милливольт (мВ, mV), равный одной тысячной доле вольта (10-3 В),
  • 1 микровольт (мкВ, μV), равный одной миллионной доле вольта (10-6 В).

Очевидно, что 1 кВ = 1000 В; 1 В = 1000 мВ = 1 000 000 мкВ; 1 мВ= 1000 мкВ.

В настоящее, время существует несколько видов источников электрической энергии. Впервые в качестве источника электрической энергии была использована гальваническая батарея, состоящая из нескольких цинковых и медных кружков, между которыми была проложена кожа, смоченная в подкисленной воде. В гальванической батарее химическая энергия превращалась в электрическую (подробнее об этом будет рассказано в главе XVI). Свое название гальваническая батарея получила по имени итальянского физиолога Луиджи Гальвани (1737—1798), одного из основателей учения об электричестве.

Многочисленные опыты по усовершенствованию и практическому использованию гальванических батарей были проведены русским ученым Василием Владимировичем Петровым. Еще в начале прошлого века он создал самую большую в мире гальваническую батарею и использовал ее для ряда блестящих опытов. Источники электрической энергии, работающие по принципу преобразования химической энергии в электрическую, называются химическими источниками электрической энергии.

Другим основным источником электрической энергий, получившим широкое применение в электротехнике и радиотехнике, является генератор. В генераторах механическая энергия преобразуется в электрическую. У химических источников электрической энергии и у генераторов электродвижущая сила проявляется одинаково, создавая на зажимах источника разность потенциалов и поддерживая ее длительное время.

Эти зажимы называются полюсами источника электрической энергии. Один полюс источника электрической энергии имеет положительный потенциал (недостаток электронов), обозначается знаком плюс ( + ) и называется положительным полюсом.

Другой полюс имеет отрицательный потенциал (избыток электронов), обозначается знаком минус (—) и называется отрицательным полюсом. От источников электрической энергии электрическая энергия передается по проводам к ее потребителям (электрические лампы, электродвигатели, электрические дуги, электронагревательные приборы и т. д.).

Примеры решения задач

К каждой позиции первого столбца подберите соответствующую позицию второго:

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ФОРМУЛЫ
Электродвижущая сила
Сила тока
Сопротивление
Разность потенциалов

Решение: Электродвижущая сила гальванического элемента есть величина, численно равная работе сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому.

Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории перемещения зарядов.

ЭДС определяется по формуле:

Сила тока определяется по формуле:

Сопротивление определяется по формуле:

Разность потенциалов определяется по формуле:

Правильный ответ:

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ ФОРМУЛЫ
Электродвижущая сила
Сила тока
Сопротивление
Разность потенциалов

Часто задаваемые вопросы

Что такое электродвижущая сила?
Это отношение работы сторонних сил при перемещении заряда по замкнутому контуру к абсолютной величине этого заряда.

Что такое электрическая цепь?
Набор устройств, которые соединены проводниками, предназначенный для протекания тока.

Как звучит закон Ома для полной цепи?
Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Что такое электродвижущая сила

Подробно этот вопрос мы рассмотрели в отдельной статье: https://samelectrik.ru/chto-takoe-eds-obyasnenie-prostymi-slovami.html

Под ЭДС понимается физическая величина, характеризующая работу каких-либо сторонних сил, находящихся в источниках питания постоянного или переменного тока. При этом, если имеется замкнутый контур, то можно сказать, что ЭДС равна работе сил по перемещению положительного заряда к отрицательному по замкнутой цепи. Или простыми словами, ЭДС источника тока представляет работу, необходимую для перемещения единичного заряда между полюсами.

При этом если источник тока имеющего бесконечную мощность, а внутреннее сопротивление будет отсутствовать (позиция А на рисунке), то ЭДС можно рассчитать по закону Ома для участка цепи, т.к. напряжение и электродвижущая сила в этом случае равны.

I=U/R,

где U – напряжение, а в рассмотренном примере — ЭДС.

Однако, реальный источник питания имеет конечное внутреннее сопротивление. Поэтому такой расчет нельзя применять на практике. В этом случае для определения ЭДС пользуются формулой для полной цепи.

I=E/(R+r),

где E (также обозначается как «ԑ») — ЭДС; R – сопротивление нагрузки, r – внутреннее сопротивление источника электропитания, I – ток в цепи.

Однако, эта формула не учитывает сопротивление проводников цепи. При этом необходимо понимать, что внутри источника постоянного тока и во внешней цепи, ток течет в разных направлениях. Разница заключается в том, что внутри элемента он течет от минуса к плюсу, то во внешней цепи от плюса к минусу.

Это наглядно представлено на ниже приведенном рисунке:

При этом электродвижущая сила измеряется вольтметром, в случае, когда нет нагрузки, т.е. источник питания работает в режиме холостого хода.

Чтобы найти ЭДС через напряжение и сопротивление нагрузки нужно найти внутреннее сопротивление источника питания, для этого измеряют напряжение дважды при разных токах нагрузки, после чего находят внутреннее сопротивление. Ниже приведен порядок вычисления по формулам, далее R1, R2 — сопротивление нагрузки для первого и второго измерения соответственно, остальные величины аналогично, U1, U2 – напряжения источника на его зажимах под нагрузкой.

Итак, нам известен ток, тогда он равен:

I1=E/(R1+r)

I2=E/(R2+r)

При этом:

R1=U1/I1

R2=U2/I2

Если подставить в первые уравнения, то:

I1=E/( (U1/I1)+r)

I2=E/( (U2/I2)+r)

Теперь разделим левые и правые части друг на друга:

(I1/I2)= [E/( (U1/I1)+r)]/[E/( (U2/I2)+r)]

После вычисления относительно сопротивления источника тока получим:

r=(U1-U2)/(I1-I2)

Внутреннее сопротивление r:

r= (U1+U2)/I,

где U1, U2 — напряжение на зажимах источника при разном токе нагрузки, I — ток в цепи.

Тогда ЭДС равно:

E=I*(R+r) или E=U1+I1*r

ЭДС гальванического элемента

Гальванический элемент – это источник тока, создающий его из химической энергии. Рассмотрим элемент Даниэля-Якоби, представляющий собой цинковую и медную пластины в соответствующих растворах сульфатов, соединённые между собой электролитом. Если соединить пластины металлическим стержнем, начнётся перераспределение зарядов: свободные электроны будут перемещаться к электроду с менее отрицательным зарядом (медной пластине). То есть возникнет электрический ток. Его работа будет максимальной в том случае, когда процессы на электродах (окисление и восстановление вследствие изменения числа электронов) будут протекать бесконечно медленно.

ЭДС гальванического элемента – максимальная разность потенциалов, возможная в такой ситуации.

Заключение

Давайте подведем итоги и еще раз кратко напомним, что такое ЭДС и в каких единицах СИ выражается эта величина.

  1. ЭДС характеризует работу сторонних сил (химических или физических) неэлектрического происхождения в электрической цепи. Эта сила выполняет работу по переносу электрических зарядов ней.
  2. ЭДС, как и напряжение измеряется в Вольтах.
  3. Отличия ЭДС от напряжения состоят в том, что первое измеряется без нагрузки, а второе с нагрузкой, при этом учитывается и оказывает влияние внутреннее сопротивление источника питания.

И наконец, для закрепления пройденного материала, советую посмотреть еще одно хорошее видео на эту тему:

https://youtube.com/watch?v=YXD4ThltnQo

Материалы по теме:

  • Чем отличается переменный ток от постоянного
  • Что такое электрический заряд
  • Как понизить постоянное и переменное напряжение

Опубликовано:
20.07.2019
Обновлено: 20.07.2019

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.