Принцип работы стартера люминесцентной лампы

Схема запуска

Когда подключение лампочки произведено, необходимо убедиться в ее правильности и в исправности пускорегулирующих аппаратов. Для проведения тестов нужно иметь мультиметр, при помощи которого можно проверить катодные тела накала.

Разрешенный уровень сопротивления не превышает 10 Ом. Если мультиметр указал сопротивление как бесконечное, то не нужно торопиться выбрасывать лампу. Это устройство еще сохраняет работоспособность, но применять его необходимо в системе холодного запуска. Теперь можно пробовать запустить светильник.

Внимание! В обычных условиях провода стартера разомкнуты, а его конденсатор не позволяет постоянному току проходить. Проще говоря, мультиметр должен показывать достаточно высокое сопротивление, которое может быть больше 100 Ом

Схема поджига люминесцентной лампы

В заключении нужно отметить, что схема люминесцентной лампы достаточно тяжелая, которая не под силу обычному человеку. Но существует множество вариантов, благодаря которым работа значительно упрощается

Важно помнить о том, что детей нельзя допускать к этому виду деятельности. При монтаже светильника нужно обесточить все помещение

Для чего нужен стартер и дроссель в схемах включения люминесцентных ламп

Основными элементами схемы включения люминесцентной лампы с электромагнитным ПРА являются дроссель и стартер. Стартер это миниатюрная неоновая лампа, один или оба электрода которой выполнены из биметалла. При возникновении тлеющего разряда внутри стартера биметаллический электрод нагревается и, затем изгибаясь, накоротко смыкается со вторым электродом.

После подачи напряжения на схему ток через люминесцентную лампу не течет, так как газовый промежуток внутри лампы это изолятор, и для пробоя его нужно напряжение, превышающее напряжение питающей сети. Поэтому загорается только лампочка стартера, напряжение зажигания которой ниже сетевого. Ток величиной 20 — 50 мА течет по дросселю, электродам люминесцентной лампы, неоновой лампе стартера.

Стартер состоит стеклянного баллона, наполненного инертным газом. В баллон впаяны металлический неподвижный и биметаллический электроды, имеющие выводы, проходящие через цоколи. Баллон заключен в металлический или пластмассовый корпус с отверстием в верхней части.

Схема устройства стартера тлеющего разряда: 1 — выводы, 2 — металлический подвижный электрод, 3 — стеклянный баллон, 4 — биметаллический электрод, 6 — цоколь

Стартеры для включения люминесцентных ламп в сеть выпускаются на напряжение 110 и 220 В.

Под воздействием тока электроды стартера разогреваются и замыкаются. После замыкания по цепи течет ток, превышающий в 1,5 раза номинальный ток лампы. Величина этого тока ограничена в основном сопротивлением дросселя, так как электроды стартера замкнуты, а электроды ламп имеют незначительное сопротивление.

Элементы схемы с дросселем и стартером: 1 — зажимы сетевого напряжения; 2 — дроссель; 3, 5 — катоды лампы, 4 — трубка, 6, 7 — электроды стартера, 8 — стартер.

За 1 — 2 с электроды лампы разогреваются до 800 — 900 °С, вследствие этого увеличивается электронная эмиссия и облегчается пробой газового промежутка. Электроды стартера остывают, так как разряда в нем нет.

При остывании стартера электроды возвращаются в исходное состояние и разрывают цепь. В момент разрыва цепи стартером возникает э. д. с. самоиндукции в дросселе, величина которой пропорциональна индуктивности дросселя и скорости изменения тока в момент разрыва цепи. Образовавшееся за счет э. д. с. самоиндукции повышенное напряжение (700 — 1000 В) импульсом прикладывается к лампе, подготовленной к зажиганию (электроды разогреты). Происходит пробой, и лампа начинает светиться.

К стартеру, который включен параллельно лампе, прикладывается приблизительно половина напряжения сети. Этой величины недостаточно для пробоя неоновой лампочки, поэтому она больше не зажигается. Весь период зажигания длится меньше 10 с.

Рассмотрение процесса зажигания лампы позволяет уточнить назначение основных элементов схемы.

Стартер выполняет две важные функции:

1) замыкает накоротко цепь для того, чтобы повышенным током разогреть электроды лампы и облегчить зажигание,

2) разрывает после разогрева электродов лампы электрическую цепь и тем самым вызывает импульс повышенного напряжения, обеспечивающего пробой газового промежутка.

Дроссель выполняет три функции:

1) ограничивает ток при замыкании электродов стартера,

2) генерирует импульс напряжения для пробоя лампы за счет э. д. с. самоиндукции в момент размыкания электродов стартера,

3) стабилизирует горение дугового разряда после зажигания.

Схема импульсного зажигания люминесцентной лампы в работе:

Как работает экономка

Внешний облик ламп дневного света может быть различным. Несмотря на это они имеют одинаковый принцип работы, который реализуется благодаря следующим элементам, которые обычно содержит схема прибора:

  • электродов;
  • люминофор – специальное люминесцентное покрытие;
  • стеклянная колба с инертным газом и парами ртути внутри.

Строение люминесцентной лампочки

Такая лампа дневного света представляет собой газоразрядное устройство с герметичной стеклянной колбой. Газовая смесь внутри колбы подобрана таким образом, чтобы снижать затраты энергии, необходимые на поддержку процесса ионизации.

Для этого на электроды люминесцентной лампы подается на электроды напряжение конкретной величины. Они расположены в противоположных сторонах стеклянной колбы. Каждый электрод имеет два контакта, которые соединяются с источником тока. Таким образом происходит обогрев пространства вблизи электродов. Фактическая схема подключения данного источника света состоит из серии последовательных действий:

  • нагрев электродов;
  • далее на них осуществляется подача высоковольтного импульса;
  • в электроцепи поддерживается оптимальное напряжение для создания тлеющего разряда.

В результате этого в колбе образуется ультрафиолетовое невидимое свечение, которое, проходя через люминофор, становится видимым для человеческого глаза. Чтобы поддерживать напряжение для создания тлеющего разряда, схема работы люминесцентных ламп предполагает подключение следующих приспособлений:

дросселя. Он выступает в роли балласта и предназначен для ограничения силы тока, текущего по прибору, до оптимального уровня;

Дроссель для люминесцентных лампочек

стартера. Он предназначен для защиты лампы дневного света от перегрева. При этом он регулирует накал электродов.

Очень часто причиной поломки экономок является выход из строя электронной начинки балласта или перегорания стартера. Чтобы этого избежать, можно не использовать в подключении перегорающие детали.

Стандартная схема соединения

Стандартная схема, применяемая для подключения люминесцентных ламп, может быть видоизменена (идти без дросселя). Это позволит минимизировать рис выхода из строя осветительного прибора.

Вариант включения без балласта

Как мы выяснили, балласт в устройстве лампы дневного света играет важную роль. При этом на сегодняшний день существует схема, при которой можно избежать включение данного элемента, который очень часто выходит из строя. Можно избежать включения, как балласта, так и стартера.

Как видим, данная схема не содержит нить накала. При этом питание ламп/трубки здесь будет осуществляться через диодный мост, который и будет создавать повышенное постоянное напряжение. Но в такой ситуации необходимо помнить о том, что при данном способе питания осветительное изделие может потемнеть с одной стороны. В реализации приведенная выше схема достаточно проста. Ее можно реализовать при помощи старых компонентов. Для такого типа подключения можно использовать следующие элементы:

  • трубка/источник света мощностью 18 Вт;
  • сборка GBU 408. Она будет выступать в роли диодного моста;

конденсаторы с рабочим напряжением не превышающего 1000 В, имеющие емкость 2 и 3 нФ.

Необходимо помнить о том, что подбор диодов для диодного моста, а также конденсаторов необходимо осуществляться с запасом по напряжении. Осветительный прибор, собранный таким образом будет давать свечение немного меньшее по яркости, чем при использовании стандартного варианта подключения с использованием дросселя и стартера.

Целесообразность использования конденсатора

Схема предполагает необходимость последовательного соединения дросселя и лампы, а стартер подключается к источнику света параллельно. Дополнительно к тому, пусковое устройство параллельно соединено с конденсатором.

Схема подключения газоразрядных лампочек:

На рисунке стартер обозначен как Ст, рассматриваемый конденсатор – С1, лампа – Л, дроссель – Д. Данный вариант не подходит для ЭПРА (электронный пускорегулирующий аппарат). Задача конденсатора С1 заключается в снижении уровня помех в процессе замыкания/размыкания контактов пускового элемента.

Схема устройства стартера

Строение данного прибора несложное:

На рисунке показана схема работы стартеров. Основные элементы: 1 – контакты, 2 – неподвижный электрод, 3 – стеклянная колба, 4 – подвижный электрод с биметаллической пластиной, 5 – цоколь неоновой лампы.

Как долго служит стартер?

В теории считается, что продолжительность работы стартеров эквивалентна сроку функционирования лампы. Со временем интенсивность напряжения тлеющего разряда внутри неоновой колбы заметно снижается.

Нередко при этом электроды пускового устройства замыкаются, когда лампа находится во включенном состоянии. Это еще одна причина, объясняющая, почему электронный пускорегулирующий аппарат (ЭПРА) лучше, чем ЭмПРА.

Обзор производителей

Многие известные марки, под которыми выпускается разнотипная светотехническая продукция (светильник, лампа и прочее), занимаются производством и стартеров (код по ОКПД 31.50.42.190).

Импортных комплектующих — лампы, дросселя, стартера и конденсатора

Одни из наиболее надежных производителей: Philips, Osram, Sylvania, General Electric. Их стоимость несколько выше, но зато светильник с газоразрядным осветительным элементом будут функционировать более эффективно.

Схема подключения предусматривает также установку конденсатора, посредством которого частично сглаживаются возникающие во время функционирования помехи. Если со временем отмечаются некоторые проблемы при эксплуатации светильника с газоразрядной лампочкой, стартер необходимо сразу заменить, так как несвоевременное замыкание и размыкание контактов приближает окончание службы осветительного элемента.

{SOURCE}

Устройство

Конструкция люминесцентной лампы состоит из:

  • прозрачной вытянутой трубки;
  • двух цоколей с двумя электродами;
  • стартер, начинающий работать от розжига;
  • электромагнитный дроссель;
  • конденсатор от сети.

Колба лампочки производится из кварцевого стекла. В начале работы на производстве из колбы выкачивают воздух и создают вакуумную среду, а потом она наполняется смесью инертного газа с добавлением ртути. Последняя должна быть в газообразном состоянии, потому что внутри высокое давление.

Превращение в световой луч

Поверхность колбы изнутри покрывается фосфоресцирующим веществом, оно перерабатывает энергию ультрафиолетового света в видимый человеческому глазу луч.

К концам электродов лампочки подсоединяется переменное напряжение сети. Нити из вольфрама покрываются тяжелым металлом, который во время работы испускает электроны. В основном используются цезий, барий, талий. Дроссель похож на катушку, у которой высокая величина магнитной проницаемости.

Электрод

Наружной частью электрод спаивается с цоколем. Из сосуда начинают обильное откачивание всего воздуха с помощью штенгеля, который находится в одной из ножек c электродами. Далее начинается наполнение вакуумной среды инертными газами c добавками ртути.

На определенные виды электродов обязательно напыляют активирующее вещество, например оксид бария, талия или кальция.

Стандартный цоколь

Атом ртути

В люминесцентную лампу добавляют немного ртути, которая превращается в пар во время розжига разряда, и некоторую часть аргона, которая помогает повышению срока эксплуатации изделия и улучшению условий для оживления атомов ртути.

При включении устройства к сети подается электрический разряд, оживляющий работу паров ртути. Тонкая пленка люминофора активизируется под воздействием света паров ртути.

Стеклянная трубка

Трубка из стекла может иметь различный диаметр. Сила светового потока может быть разной, это зависит от мощности люминесцентной лампы. Для ее правильной работы необходим стартер дроссельного вида.

Внимание! Температура в трубке не должна быть свыше 55 градусов. Поэтому данную лампу нельзя применять в промышленных горячих цехах

Классическая электросхема

Люминофор

Самой главной частью люминесцентного устройства будет слой люминофора. КПД люминофоров— соотношение величины излучаемых квантов к величине, поглощённых по большей степени, зависит от качества сырья, используемого при производстве люминофора.

Электронный балласт

Недостатки схемы ЭмПРА вызвали необходимость поиска более оптимального способа подключения. В ходе изысканий был изобретен способ с участием электронного балласта. В данном случае используется не сетевая частота (50 Гц), а высокие частоты (20 – 60 кГц). Удается избавиться от вредного для глаз мигания света.

Внешне электронный балласт — это блок с выведенными наружу клеммами. Внутренняя часть устройства содержит печатную плату, на основе которой можно собрать всю схему. Блок малогабаритен, благодаря чему помещается в корпусе даже небольшого прибора освещения. Включение осуществляется гораздо быстрее по сравнению со стандартом ЭмПРА. Работа устройства не доставляет акустического дискомфорта. Данный способ подключения называется бесстартерным.

Разобраться в принципе функционирования устройства такого типа не сложно, поскольку на его обратной стороне есть схема. На ней показано количество ламп для подключения и поясняющие надписи. Имеется информация о мощности лампочек и других технических параметрах устройства.

Подключение осуществляется следующим образом:

  1. Первый и второй контакт соединяют с парой ламповых контактов.
  2. Третий и четвертый контакты направляют на оставшуюся пару.
  3. На вход подают электропитание.

Использование умножителей напряжения

Данный вариант позволяет подключать люминесцентную лампу без применения электромагнитного баланса. Используется обычно для увеличения периода эксплуатации лампочек. Схема подключения сгоревших ламп дает возможность работать источникам света еще какое-то время при условии, что их мощность не более 20 – 40 Вт. Нити накала допускаются как пригодные для работы, так и перегоревшие. В любом случае выводы нитей необходимо закоротить.

В результате выпрямления напряжение увеличивается в два раза, поэтому лампочка включается почти мгновенно. Конденсаторы C1 и С2 подбираются исходя из рабочего напряжения 600 Вольт. Недостаток конденсаторов состоит в их больших размерах. В качестве конденсаторов С3 и С4 отдают предпочтение слюдяным устройствам на 1000 Вольт.

Люминесцентные лампы несовместимы с постоянным током. Очень скоро ртути в устройстве накапливается столько, что свет становится ощутимо слабее. Чтобы восстановить яркость свечения, меняют полярность путем переворачивания лампочки. Как вариант, можно установить переключатель, чтобы каждый раз не снимать лампу.

Подключение без стартера

Метод с использованием стартера сопряжен с длительным разогревом лампочки. К тому же эту деталь необходимо часто менять. Обойтись без стартера позволяет схема, где подогрев электродов осуществляется с помощью старых трансформаторных обмоток. Трансформатор выступает в роли балласта.

На лампочках, используемых без стартера, должна быть надпись RS (быстрый старт). Источник света с запуском через стартер не подходит, так как его проводники долго греются, а спирали быстро сгорают.

Последовательное подключение двух лампочек

В данном случае необходимо соединить две люминесцентные лампы с одним балластом. Все устройства подключают последовательным образом.

Для проведения электромонтажных работ понадобятся такие детали:

  • индукционный дроссель;
  • стартеры (2 единицы);
  • люминесцентные лампочки.

Подключение выполняется в следующем порядке:

  1. Присоединяем к каждой лампочке стартеры. Соединение выполняем параллельно. Место соединения — штыревой вход на торцах прибора освещения.
  2. Свободные контакты направляем в электрическую сеть. Для соединения используем дроссель.
  3. К контактам источника света присоединяем конденсаторы. Позволят снизить интенсивность помех в сети и компенсировать реактивность мощности.

Разнообразие зажигателей

На сегодняшний день используется несколько типов зажигателей:

тлеющего ряда. Предназначены для лампочек с биметаллическими электродами. Такого рода модели используются наиболее часто, так как они имеют упрощенную конструкцию. Кроме этого им требуется небольшое количество времени для зажигания лампы;

Стартер тлеющего ряда

тепловые. Для них характерно более длительный период зажигания источника света. Но в такой ситуации электроды нагреваются дольше, а это положительным образом сказывается на работоспособности лампочки. Также тепловые зажигатели характеризуются более сложным строением и поэтому потребляют на свою работу больше энергии;

полупроводниковые. Функционируют по принципу ключа. При их нагревании электроды размыкаются, в результате чего в колбе происходит формирование импульса и лампочка включается.

Для того чтобы сделать правильный выбор в пользу той или иной модели, необходимо знать не только принцип их устройства, но и технические характеристики. Рассмотрим наиболее популярные и востребованные варианты стартеров, которые активно используются для активации люминесцентных ламп.

Характеристики и маркировка

Для определения характеристик данных приспособлений, выделяются следующие их основные параметры:

  1. Срок службы устройств. Phillips и Osram занимают лидирующие позиции в данной отрасли во многом благодаря тому, что их товар обладает наилучшими показателями по данному критерию. Данные компании дают гарантии, что пускатели смогут выдержать не менее 6000 повторений процедуры включения, но конкретная цифра определяется зачастую и сторонними факторами, такими как параметры напряжения в питающей электросети и другими.
  2. Рабочий температурный режим, данная характеристика регламентируется соответствующим ГОСТом, который предусматривает диапазон в рамках от +5°C до +55°C. В ряде случаев возникают потребности в подключении источников освещения в иных температурных условиях, для этого необходимо будет приобрести и задействовать в схеме специальные разновидности пускателей, которые стоят значительно дороже.
  3. Затраты времени, которые требуются для полноценного прогрева катодов. Этот показатель также определяет продолжительность периода, на протяжении которого биметаллические электроды будут находиться в замкнутом состоянии. Данная характеристика может значительно различаться у приспособлений, выпущенных разными фирмами-производителями.
  4. Разновидность конденсатора, который был задействован в конструкции пускателя. Отечественные производители зачастую изготавливают данные элементы из фольги, что является устаревшей технологией, но позволяет в значительной степени снизить итоговую цену готового стартера. Допускается возможность эксплуатации пускателя вообще без конденсатора, но срок службы в таком случае значительно снизится, поскольку электроды довольно скоро начнут плавиться.
  5. Номинальное напряжение. Необходимо всегда проверять соответствие данной характеристики, поскольку внедрение пускателя, рассчитанного на 127В, в электросеть на 220В способно вывести из строя всю систему.

Маркировка данных приспособлений отечественного производства осуществляется в соответствии с принятыми ГОСТами:

  1. Буква «С» обозначает, что данное устройство по своей конструкции является стартером.
  2. Цифры, которые указываются перед «С», например, 60, 90 или 120, являются обозначением мощности ламп, для которых предназначено конкретное приспособление.
  3. Цифры, указанные после маркировки «С», например, 127 или 220, являются обозначением параметров рабочего напряжения.

В качестве наглядного примера можно привести маркировку: 90С-200. Она свидетельствует, что устройство является стартером, предназначенным для ламп дневного света с параметром мощности 90Вт и рабочим напряжением 220В.

При этом, маркировка, используемая большинством зарубежных изготовителей, может значительно отличаться от принятого отечественного образца, чаще всего она осуществляется по следующему принципу:

  1. Обозначения S10, ST111 и FS-U свидетельствуют о том, что пускатель предназначен для ламп с мощностью в диапазоне 4-80Вт и напряжением 220В.
  2. Обозначения S2, FS-2 и ST151 информирует о том, что пускатель предназначен для ламп с мощностью 22Вт или ниже и рабочим напряжением 127В.

Как проводится проверка стартера

При ремонте люминесцентных осветительных приборов часто возникает потребность в отдельной проверке стартера. В конструкции осветительного прибора он представляет собой небольшую и достаточно простую деталь, которая при выходе из строя может принести настоящую головную боль. Поэтому, если у вас имеется нерабочий светильник, работающий на люминесцентных источниках света, то всегда нужно в первую очередь проверить на работоспособность стартера.
Обычно они выходят из строя по причине износа лампы тлеющего разряда или биметаллической пластины. В такой ситуации светильник при запуске может вообще не загореться или во время работы мигать. При этом запустить прибор со второй попытки также не удастся. Это связано с тем, что ему просто не хватает напряжения для запуска лампы.Самым простым способом проверить стартер на работоспособность является его замена на другой аналогичный прибор.
Если поставить в лампу новую деталь и она начнет работать, значит проблема была именно здесь.

Замена стартера на новый

Как видим, здесь можно обойтись вообще без какого-либо измерительного прибора. Но не всегда под рукой имеется запасная деталь той же мощности. Поэтому чаще всего для проверки создают простейшую схему в которой стартер нужно последовательно подключить с лампой накаливания. Питание схемы происходит от сети в 220 В через розетку.

Лучше всего брать лампочки, с небольшой мощностью примерно в 40-60 Вт. Включив в сеть такую схему, можно сразу же вычислить рабочий ли стартер или нет. Если лапочка зажглась, и будет гореть с периодическим отключением на доли секунды, то это сигнализирует о его работоспособности. При этом будет слышен характерный щелчок. Это будут срабатывать его контакты.
В ситуации, когда лампочка не загорается или наоборот, постоянно горит и не моргает, то наша деталь признается нерабочей и подлежит замене.

Также бывают ситуации, когда деталь будет абсолютно исправной, но светильник не работает. В таком случае необходимо искать причину поломки в дросселе или других элементах электросхемы.

Замена лампы

Как и другие источники света, люминесцентные приборы выходят из строя. Единственным выходом будет замена основного элемента.

Замена лампы дневного света

Процесс замены на примере потолочного светильника Армстронг:

Осторожно разбирается светильник. С учетом указанных на корпусе стрелочек колба поворачивается по оси.
Повернув колбу на 90 градусов, можно опустить ее вниз

Контакты сместятся и выйдут через отверстия.
Новую колбу поместить в паз, следя за попаданием контактов в соответствующие отверстия. Установленную трубку повернуть в противоположную сторону. Фиксация сопровождается щелчком.
Включить осветительный прибор и проверить работоспособность.
Собрать корпус и установить рассеивающий плафон.

Если недавно установленная колба снова перегорела, имеет смысл проверить дроссель. Возможно, именно он подает на прибор слишком большое напряжение.

No tags for this post.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.

Adblock
detector