Параллельное соединение светодиодов

Как различить светодиоды 3 Вт и 1 Вт

При включении чипов на полную мощность Вы вряд ли сможете отличить 1 Вт и 3 Вт по свету. Глаз не воспримет слишком яркое свечение.

Можно использовать черную коробку, по отдельности включать светодиоды и смотреть, какой образец даст больший световой эффект. Вместо коробки можно использовать черный лист. Это пример, но смысл понятен, думаю.

Если у Вас есть два диода, не понятного происхождения, то определить какой из них 3 Вт, а какой 1 Вт можно следующим способом: подключаем оба к источнику питания и подаем на них 3,5 В. При этом начальное значение тока должны быть в пределах 350мА. Посмотрим на графическую зависимость яркости от тока.

Зависимости светодиодов 1 и 3 Вт от тока

1
of 2

График зависимости 1 Вт диода

График зависимости 3 Вт диода

При увеличении начального напряжения в 3,5 В яркость 1 Вт диода еще немного увеличится и практически остановится, если дальше повышать напряжение (ток). В случае, если у Вас 3 Вт диод, то при увеличении напряжения от 3,5 В ток будет расти, а согласно графику, приведенному выше, мы видим, что яркость будет постепенно увеличиваться до момента, пока ток не достигнет 700 мА.

График зависимости тока от напряжения 1 и 3 Вт светодиодов

1
of 2

Зависимость тока от напряжения 1 Вт

Зависимость тока от напряжения 3 Вт диода

Т.е. визуально мы можем определить любой светодиод 1 Вт или 3 Вт если подав на него ток 350 мА будем постепенно увеличивать его. Увеличение яркости от 350 мА говорит о том, что перед нами 3 Вт диод. Незначительное увеличение яркости от 350 до 700 мА говорит о том, что перед нами 1 Вт диод.

Другой способ определить где 3 Вт или 1 Вт мощный светодиод — нагрев. Здесь простая физика. При тех же 350 мА 1 Вт светодиод будет нагреваться быстро. И в руке его держать Вы не сможете. 3 Вт же светодиод при том же токе можно достаточно долго держать в руке без заметных неприятных ощущений. Естественно, что это побочный способ определения где какой диод. Но имеет право на существование.

Ну и последний способ — отличить светодиоды по размеру кристалла. Чтобы наверняка это делать, стоит приобрести USB микроскоп . Это бюджетный вариант и достаточно качественный, с необходимыми гаджетами. можно посмотреть много микроскопов различной ценовой категории. Вообще USB микроскоп интересная штуковина и пригодится дома не один раз. Далее используя калибровочную линейку и предустановленную программу можно легко замерить размеры кристалла. С ним мы точно можем сказать, какой размер кристалла установлен. Однако и этот способ не даст нам точного понятия где какой диод

Но беря во внимание, что чем больше кристалл, тем больше мощность — соответственно можно сделать вывод для себя

Мощные диоды 1 Вт имеют размеры 30х30mil. Кристаллы в 3 Вт диодах — 45х45mil. Это, конечно идеальные размеры.

Если у Вас нет микроскопа, а хочется узнать размеры, то можно воспользоваться подручными средствами. Подадим на светодиоды очень маленький ток. Кристаллы начнут еле-еле светиться.

Слева мы видим, что размер кристалла на порядок больше. Именно этот светодиод был приобретен на Aliexpress. Тот образец, что был приобретен в офф-лайн магазине явно 1 Вт, не смотря на то, что продавался с заявленной мощностью — 3Вт. В принципе, мне хватило одного взгляда на кристалл через микроскоп и понять где какой диод будет. Но для себя любимого я проверил свечение по первому способу (увеличение тока) и визуальный вывод был подтвержден.

Ну вот и все. Вот такими нехитрыми способами теперь Вы можете спокойно проверить, сравнить и различить 3 Вт мощные светодиоды от 1 Вт. Но, чтобы этим не заниматься постоянно, стоит приобретать светодиодную продукцию в проверенных магазинах и площадках.

Как правильно подключать?

При параллельном соединении светодиодов нужно пользоваться ограничительным резистором для каждого из диодов, как изображено на рисунке ниже. Это даёт возможность установить ток для каждого из элементов электрический схемы.

Схема параллельного соединения светодиодов

Ниже схема НЕ правильного подключения резистора в цепь.

Так подключать не правильно

При параллельном подключении светодиодов и любых других потребителей, напряжение на их выводах будет равным. С одной стороны это хорошо, но не для диодов. Каждый светодиод, даже набор взятый из одной партии, имеет небольшой технологический разброс параметров. Напряжение, необходимое для достижения номинального тока, может незначительно отличаться в пределах десятых долей вольта.

Выше вы видели вольт-амперную характеристику прибора и легко сделаете вывод, что незначительное превышение номинального напряжения ведет к лавинообразному росту тока и перегреву. Некоторые предлагают исключить и резистор из этой схемы, такое соединение светодиодов самое неудачное!

Общий ток в цепи равен сумме токов в каждой из ветвей параллельной цепи. Если выбирать, как соединять светодиоды для работы в цепи с повышенным напряжением (6 и более вольт), лучше использовать последовательное соединение.

Методы подключения

Простейшим методом подключения светильника к сети на 220 В является использование гасящего сопротивления, расположенного последовательно светодиоду. Напряжение постоянно изменяется, амплитудное значение может достигать 310 В. Данная величина должна обязательно учитываться при расчетах сопротивления.

Также следует обеспечить защиту диода от обратного напряжения, равного прямому. Рассмотрим основные способы.

Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более)

В данном случае правильно подключить к схеме выпрямительный диод 1N4007, обратное напряжение которого составляет 1000 В. Если будет изменена полярность и напряжение пойдет в обратном направлении, то оно будет сглажено выпрямительным диодом, защищающим светодиод от пробоя.

Шунтирование светодиода обычным диодом

Этот способ подразумевает использование простого маломощного полупроводника, подключаемого по встречно-параллельному курсу со светодиодом. Обратное напряжение будет воздействовать на гасящее сопротивление, поскольку диод включен в прямом направлении.

Встречно-параллельное подключение двух светодиодов

Способ схож с предыдущим методом, за исключением того, что светодиоды будут гореть только на своем отрезке синусоиды, обеспечивая друг для друга защиту от пробоя.

Существенным недостатком подключения светодиодов к сети 220 В через гасящий резистор является то, что на сопротивлении выделяется огромная мощность.

Рассмотрим пример. Предположим, что используется гасящий резистор сопротивлением 24 кОм при подключении светодиодов к сети 220 В с выходящим током 9 мА. Рассчитаем мощность на гасящем сопротивлении: 9*9*24=1944 мВт (около 2 Вт). Таким образом, чтобы обеспечить оптимальную эксплуатацию, нужно взять резистор мощностью не ниже 3 Вт.

Когда используется несколько led-диодов, потребляющих ток большего значения, то мощность будет расти пропорционально квадрату выходного тока, из-за чего использовать гасящий резистор будет просто нецелесообразно. В случае применения сопротивления меньшей мощности, чем требуется по регламенту, резистор быстро выйдет из строя и произойдет короткое замыкание.

Поэтому роль токоограничивающего элемента должен играть конденсатор, на котором не рассеивается мощность, поскольку сопротивление является реактивным.

В простейшей схеме подключения светодиодного осветительного прибора через конденсатор наблюдается следующая картина: после прекращения питания в конденсаторе сохраняется остаточный заряд – источник угрозы для безопасности человека, который должен разряжаться с помощью сопротивления. Второй резистор требуется при включении питания для защиты схемы от тока, идущего через конденсатор. Выпрямительный диод служит для защиты led-диода от обратного напряжения. Выбирайте конденсатор неполярного типа, рассчитанный для эксплуатации в сети с напряжением не ниже 400 В.

Категорически запрещено использовать полярные конденсаторы в сети переменного тока, поскольку проходящий в обратном направлении ток приведет к разрушению конструкции.

Для расчета нужной емкости конденсатора используют эмпирическую формулу, где производное 4,45 и тока, проходящего через светодиоды, нужно разделить на разницу между амплитудной величиной тока (указана выше – 310 В) и падением напряжения на светодиоде после прямого прохождения.

Например, если нужно подключить led-диод с падением напряжения 3 В и током 9 мА, то по формуле выше емкость конденсатора будет равна 0,13 мкФ. На данную величину в большей степени влияет сила тока, меньшей – падение напряжения.

Эмпирическая формула может использоваться при расчетах емкости конденсатора для сети частотой 50 Гц, поскольку в остальных случаях коэффициент 4,45 требует перерасчета.

А нужно ли менять люминесцентные лампочки на LED-лампы?

На сегодняшний день можно уверенно сказать, что LED-лампочки любого форм-фактора практически по всем показателям превосходят люминесцентные аналоги. Причём светодиодные технологии продолжают прогрессировать, а значит, изделия на их основе будут ещё более совершенными в будущем. В подтверждение сказанного ниже приведена сравнительная характеристика двух видов трубчатых ламп.

Люминесцентные лампы Т8:

  • наработка на отказ составляет порядка 2000 ч. и зависит от количества включений, но не более 2000 циклов;
  • свет распространяется во все стороны, в связи с чем они нуждаются в отражателе;
  • постепенное увеличение яркости в момент включения;
  • пускорегулирующий аппарат (ПРА) служит источником сетевых помех;
  • деградация защитного слоя со снижением светового потока на 30%;
  • стеклянная колба и пары ртути внутри неё требуют бережного отношения и утилизации.

Светодиодные лампы Т8:

срок службы не менее 10 тыс. ч. и не зависит от частоты вкл./выкл.;
имеют направленный световой поток;
мгновенно включаются на полную яркость;
драйвер не оказывает влияния на электросеть;
потеря яркости не превышает 10% за 10 тыс. часов;
имеют значительно меньшую мощность электропотребления;
полностью экологически безопасны.

Кроме того, светодиодные лампы Т8 обладают вдвое большей светоотдачей при равном энергопотреблении, реже выходят из строя и имеют гарантию от производителя. Возможность размещения внутри колбы разного количества светодиодов позволяет добиться оптимального уровня освещённости. Это означает, что взамен люминесцентной лампы Т8-G13-600 мм на 18 Вт можно установить светодиодную лампу такой же длины на 9, 18 или 24 Вт.

Взвесив все «За» и «Против», можно сделать вывод, что переделка люминесцентного светильника под светодиодную лампочку полностью оправдана, как с технической, так и с экономической точки зрения.

Как подключить светодиод к 220в

LED driver на 100вт и 50вт

Для подключения светодиода к сети 220В в схеме используют специализированные источники питания , которые могут называться светодиодный драйвер,  источник тока, блок питания, стабилизатор. Его основными характеристиками являются силатока в Амперах и мощность. Драйвер может иметь фиксированный ток на выходе или настраиваемый. Если вы собираете осветительный прибор своими руками, то с регулятором будет удобней.

Как правило лед чипы подключаются к драйверу последовательно, что гарантирует одинаковый ток через каждый элемент электрической цепи. Недостатком такой схемы будет выход из строя всей цепи, если 1 ЛЕД сгорит.

Схема драйвера для светодиодов может быть различной, от простой на гасящем конденсаторе до современной, с коэффициентом пульсаций светового потока близкой к 0%.

Последовательное соединение

Классический пример такой конструкции, это светодиодная лампа на 220. Для модернизации старых светильников иногда использую начинку от лампочки. Пластинку с LED элементами ставлю на теплоотвод внутри светильника и рядом размещаю стабилизатор. Такая модернизация актуальна при апгрейде нестандартных люминисцентных ламп.

Теперь подключить светодиод к 220 стало просто, сложней определить коэффициент пульсаций светового потока. Если драйвер некачественный и плохо справляется с нагрузкой, свет будет мерцать с частотой 100 Герц. Реакция на эти пульсации индивидуальна у каждого человека. Чаще всего  приводит к головным болям, усталости глаз и большому списку других негативных последствий.

Расчет резистора светодиода (по формулам)

При расчете вычисляют две величины:

  • Сопротивление (номинал) резистора;
  • рассеиваемую им мощность P.

Источники напряжения, питающие LED, имеют разное выходное напряжение. Для того чтобы выполнить подбор резистора для светодиода нужно знать напряжение источника (Uист), рабочее падение напряжения на диоде и его номинальный ток. Формула для расчета выглядит следующим образом:

R = (Uист — Uн) / Iн

При вычитании из напряжения источника номинальное падение напряжения на светодиоде – мы получаем падение напряжения на резисторе. Разделив получившееся значение на ток мы, по закону Ома, получаем номинал токоограничивающего резистора. Подставляем напряжение, выраженное в вольтах, ток – в амперах и получаем номинал, выраженный в омах.

Электрическую мощность, рассеиваемую на гасящем сопротивлении, вычисляют по следующей формуле:

P = (Iн)2 ⋅ R

Исходя из полученного значения, выбирается мощность балластного резистора. Для надежной работы устройства она должна быть выше расчетного значения. Разберем пример расчета.

Пример расчета резистора для светодиода 12 В

Рассчитаем сопротивление для LED, питающегося от источника постоянного напряжения 12В.

Допустим в нашем распоряжении имеется популярный сверхяркий SMD 2835 (2.8мм x 3.5мм) с рабочим током 150мА и падением напряжения 3,2В. SMD 2835 имеет электрическую мощность 0,5 ватта. Подставим исходные значения в формулу.

R = (12 — 3,2) / 0,15 ≈ 60

Получаем, что подойдет гасящий резистор сопротивлением 60 Ом. Ближайшее значение из стандартного ряда Е24 – 62 ома. Таким образом, для выбранного нами светодиода можно применить балласт сопротивлением 62Ом.

Теперь вычислим рассеиваемую мощность на сопротивлении.

P = (0,15)2 ⋅ 62 ≈ 1,4

На выбранном нами сопротивлении будет рассеиваться почти полтора ватта электрической мощности. Значит, для наших целей можно применить резистор с максимально допустимой рассеиваемой мощностью 2Вт.

Осталось купить резистор с подходящим номиналом. Если же у вас есть старые платы, с которх можно выпаять детали, то по цветовой маркировке можно выполнить подбор резистора. Воспользуйтесь формой ниже.

На заметку! В приведенном выше примере на токоограничительном сопротивлении рассеивается почти в три раза больше энергии, чем на светодиоде. Это означает, что с учетом световой отдачи LED, КПД нашей конструкции меньше 25%.

Чтобы снизить потери энергии лучше применить источник с более низким напряжением. Например, для питания можно применить преобразователь постоянного напряжения AC/AC 12/5 вольт. Даже с учетом КПД преобразователя потери будут значительно меньше.

Параллельное соединение

Довольно часто требуется подключить несколько диодов к одному источнику. Теоретически, для питания нескольких параллельно соединенных LED, можно применить один токоограничивающий резистор. При этом формулы будут иметь следующий вид:

R = (Uист — Uн) / (n ⋅ Iн)

P = (n ⋅ Iн)2 ⋅ R

Где n – количество параллельно включенных ЛЕДов.

Почему нельзя использовать один резистор для нескольких параллельных диодов

Даже в «китайских» изделиях производители для каждого светодиода устанавливают отдельный токоограничивающий резистор. Дело в том, что в случае общего балласта для нескольких LED многократно возрастает вероятность выхода из строя светоизлучающих диодов.

В случае обрыва одного из полупроводников, его ток перераспределится через оставшиеся LED. Рассеиваемая на них мощность увеличится и они начнут интенсивно нагреваться. Вследствие перегрева следующий диод выйдет из строя и дальше процесс примет лавинообразный характер.

Пример правильного подключения резистора

Можно ли обойтись без резисторов?

Действительно, в некоторых случаях можно не использовать токоограничивающий резистор. Рассмотренный нами светодиод можно напрямую запитать от двух батареек 1,5В. Так как его рабочее напряжение составляет 3,2В, то протекающий через него ток будет меньше номинального и балласт ему не потребуется. Конечно, при таком питании светодиод не будет выдавать полный световой поток.

Иногда в цепях переменного тока в качестве токоограничивающих элементов вместо резисторов применяют конденсаторы (подробнее про расчет конденсатора). В качестве примера можно привести выключатели с подсветкой, в которых конденсаторы являются «безваттными» сопротивлениями.

Применение параллельного соединения светодиодов

Схема параллельного подключения с двумя выводами позволяет реализовывать двухцветное свечение лампочек, если используются два кристалла разного цвета. Цвет меняется при изменении полюсов источника (изменение направления тока). Широкое применение такая схема находит в двухцветных индикаторах.

Если два кристалла разного цвета соединить параллельно в одном корпусе и подключить к ним импульсный модулятор, то можно менять цвет в широком диапазоне. Особенно много тонов генерируется при сочетании зеленого и красного цвета светодиодов.

Как видно на схеме, к каждому кристаллу подключен свой резистор. Катод в таком соединении общий, а вся система подключена к управляющему устройству – микроконтроллеру.

В современных праздничных гирляндах иногда применяется смешанный тип соединения, в котором несколько последовательных рядов соединяются параллельно. Это позволяет гирлянде светиться, даже если несколько светодиодных источников выйдут из строя.

При создании подсветки в помещении тоже могут применять параллельное соединение. Смешанные схемы используются при конструкции многих индикаторных электроприборов и для подсвечивающих устройств.

Вариант №1 » последовательное включение светодиода и резистора.

Итак, первым вариантом все же будет схема, где последовательно к светодиоду подключается обычный резистор с нужным сопротивлением. Величину сопротивления можно вычислить по закону ома. Допустим у нас светодиод, рассчитанный на напряжение 3 вольта и потребляющий 9 миллиампер. Напряжение питания (220 В) разделится между резистором и светодиодом. Если на светодиоде осядет 3 вольта, то на резисторе осядет около 217 вольт. Ток в последовательных цепях во всех точках одинаковый (в нашем случае он будет равен 9 мА). И чтобы узнать сопротивление резистора мы 217 вольт делим на 9 миллиампер и получаем 24 килоома (24000 ом).

Теоретически эта схема подключения светодиода к сети 220 вольт рабочая, но практически она скорее всего сгорит сразу при включении. Почему это так. Дело в том, что большинство обычных светодиодов рассчитаны на напряжение питания (при прямом своем включении, то есть плюс светодиода к плюсу источника питания и минус светодиода к минусу источника питания), где-то в пределах от 2,5 до 4,5 вольта. При прямом включении на светодиоде будет его рабочее напряжение (пусть 3 вольта), а излишек (217 вольт) осядет на резисторе. Обратное напряжение у светодиодов не такое уж и высокое (где-то около 30 вольт). И когда обратная полуволна переменного напряжения подается на светодиод, то светодиод просто выйдет из строя из-за слишком большого обратного напряжения, поданного на него. Напомню, что полупроводники при обратном включении имеют очень большое внутреннее сопротивление (гораздо большее чем стоящий в цепи резистор). Следовательно все сетевое напряжение осядет именно на светодиоде.

Как подключить светодиод к 220в через резистор

Светодиоды пропускают через себя ток в одном направлении. При переменном напряжении его направление меняется 2 раза за период, то есть в одном случае ток протекает через диод, а в ином — нет. Так как ток протекает в половине случаев, для определения среднего значения тока, который проходит через диод, нужно разделить U пополам.
Соответственно, U = 110В.
Допустим, собственное сопротивление у диода: 1,7 Ом.

Ток, проходящий через диод:
I=U/ ULED
110/1,7=65А.

Высокий ток, пройдя через полупроводник, сожжёт его, поэтому нужно использовать дополнительный прибор с сопротивлением, чтобы он, по принципу рассеивания, уменьшал количество тока, подаваемого на диод.

Использование встречно-параллельного соединения диодов с резистором:

После соединения пересчитайте ёмкость конденсатора, потому что на светодиодах должно увеличиться напряжение.

Какой резистор нужен для светодиода на 12 вольт

12-вольтовая система — стандартная в автомобиле. В подключении LED-элемента к 12 вольтовой системе нет ничего сложного

Важно правильно провести расчёты сопротивления диода через токоограничивающий резистор.
Перед началом вычислений надо узнать характеристики имеющихся светодиодов: падение напряжения и требуемый им ток.
Сопротивление резистора рассчитывается по формуле:
R = U/I

1 светодиод
ULED = 3.3 Вольт
ILED = 0,02А
При таком внутреннем сопротивлении диода, он будет отлично работать в системе, напряжение которой ограничивается значением 3,3 Вольт.
Возьмём напряжение с запасом, так как скачки бывают до максимального значения 14,5.
Максимально возможное напряжение отличается от допустимого для исправной работы светящегося элемента на 11,2 Вольта. Значит, перед включением диода, нужно снизить подаваемый ему ток на это значение.

Сперва нужно посчитать сопротивление, необходимое резистору:
R=U/I. R=560 Ом.
Для того, чтобы расчёты были более надёжными, надо вычислить мощность резистора:
P = U * I Мощность — 0,224Вт.
При выборе резистора, необходимо округлять значения в большую сторону и выбирать более мощный вариант.

  • 2 и 3 светодиода
    Рассчитывается аналогичным образом, светодиодное напряжение будет умножаться на количество светящихся элементов
  • От 4 светодиодов
    При подключении больше трёх светодиодов к такой сети не нужен будет резистор, так как напряжение не будет сильно превышать допустимое и светодиоды будут работать исправно.

Инструкция по подключению светодиодов

Как подключить светодиод в свой автомобиль? Какое сопротивление для светодиода нужно подобрать? Нужно ли использовать резисторы?

Ниже расскажем, как должен подключаться диодный модуль:

Процедура подключения светодиодов к 12 вольтной сети начинается с расчета питания. Основным недостатком кластеров является то, что их яркость будет зависеть от изменения количества оборотов двигателя. Если обороты падают, мощность тоже будет снижаться

Учитывайте тот факт, что наиболее оптимальным показателем для хорошего свечения кластеров является параметр 12.5 вольт напряжения — если оно будет ниже, то свечение будет слабым.
Конструкция кластера включает в себя диодный элементы и резистор, который, кстати, является важной составляющей любого кластера. Резисторное устройство, использующееся для погашения лишнего напряжения, ставится из расчета одна штука на три диодных элемента

Так что если вы купили целую ленту для установки в оптику, то скорее всего, вам нужно будет ее обрезать. Причем обрезание должно осуществляться только на определенных отрезках.
Процедура подключения производится последовательным образом. То есть вам нужно будет сначала сделать кластер, подключив по очередь несколько диодов друг к другу, а конца кластера соединяются с бортовой сетью. В качестве примера рассмотрим белые диодные компоненты с мощностью 3.5 вольт. Для обычной бортовой сети на 12 В вам потребуется три диодной лампочки, которые в общей сложности будут потреблять 10.5 вольт. Последовательное подключение означает, что положительный вывод одного компонента следует подключить к отрицательному выводу другого.
Напрямую подключать кластер пока не нужно, последовательным образом соединяется сопротивление, то есть резистор. Нужно учитывать, что сопротивление должно составлять около 100-150 Ом, а параметр мощности резистора должен быть 0.5 Вт (автор видео — канал Авторемонт и тюнинг).

Параллельный способ подключения

Чтобы подключить светодиод к 12 вольтам параллельным способом, выполните следующие действия (рассмотрен пример с диодным элементом на 3.5 вольта и током 20 мА):

  1. Измерьте напряжение на том участке, где будет подключен источник освещения, чтобы удостовериться в том, что соединение будет эффективным. Например, это 13 вольт.
  2. После этого от 13 вольт отнимается 3.5 вольта диода, получается 9.5 вольт. Все замеры делаются по формуле Ома — в нашем случае 20 мА делится на 100, получается 0.02 А.
  3. По этой же формуле производится вычисление сопротивления, для этого 9.5 вольт нужно поделить на 0.02. В результате узнаем, что нам нужен резистор на 475 Ом.
  4. На следующем этапе производится вычисление мощности — это нужно знать для того, чтобы предотвратить перегрев резисторного элемента. По нашим параметрам 9.5 умножается на 0.02 — получаем 0.19 Вт. Для предотвращения возможных сбоев мощность можно взять с запасом.
  5. Далее, при помощи мультиметра осуществляется замер тока на участке между диодным источником освещения и резисторным элементом. После этого на тестере ставится значение 10 ампер, а положительный вывод прибора надо подключить к плюсу аккумулятора, отрицательный вывод — к плюсу лампы.
  6. В конечном итоге на дисплее мультиметра должен появиться показатель в районе 20 мА. В зависимости от источника освещения, а также используемого сопротивления, параметры могут отличаться.

Расчет светодиодов — ограничительный резистор в цепи LED-диодов

Расчет светодиодов — LED-диод, это неотъемлимый элемент современной электроники, который используется практически во всех радиоэлектронных устройствах. Принцип его работы следующий: при подачи на него определенного значения постоянного тока, прибор начинает светится.

Существуют светодиоды различных цветов свечения, которое обусловливается применяемым материалом для его изготовления.

Специфика включения светодиодного прибора

Вольт-Амперная характеристика у светодиода аналогична той, которую имеет стандартный диод полупроводникового типа. Вместе с тем, когда в цепи светодиода возрастает напряжение прямой направленности, идущий через него ток стремительно увеличивается. Взять для примера фирменный светодиод зеленого свечения, то если подавать на него прямое напряжение в диапазоне от 1.8v до 2v, ток может увеличиться в пять раз, то есть составит 10мА.

Следовательно, включение светодиода по схеме прямой направленности напряжения, даже при незначительном увеличении напряжения, постоянный ток может повысится до критической величины. А при возрастании тока до пикового значении, чревато выходом из строя светодиода.

Поэтому, что бы предохранить данный полупроводниковый прибор от возможного пробоя, подавать на него напряжение необходимо от стабилизированного источника тока, то есть — драйвера.

В случае, если цепь со стабилизированным напряжением в схеме отсутствует, тогда для защиты светодиода применяется постоянный резистор в качестве ограничивающего ток сопротивления. Такой гасящий резистор включается последовательно в цепь светодиода. Чтобы точно определить номинальное значение такого резистора, нужно воспользоваться ниже приведенной формулой:

Это популярный в радиоэлектронике закон Ома, с помощью которого можно легко определить номинальное значение сопротивления на определенном участке электрического тракта.

В общем, принцип расчета сопротивления такой: определяем требуемую величину рабочего тока прибора — Iсв и номинальное напряжение для его работы — Uсв. При этом нужно учитывать постоянное напряжение, от которого питается вся схема — Uпит, далее уже высчитывается номинальное значение ограничительного сопротивления — Rогр:

Rогр=(Uпит-Uсв)/(Iсв*0,75)

Коэффициент 0,75 в этом случае применяется для сохранения определенного запаса.

Получив номинальное значение сопротивления, теперь необходимо найти наиболее приближенный к нему номинал постоянного резистора.

Теперь нужно определить мощность рассеивания гасящего резистора:

Узнав мощность рассеивания ограничительного резистора, теперь нужно найти компонент с предельно допустимыми параметрами.

Включение светодиодов по параллельной и последовательной схеме

Используя параллельное включение LED-источника, следует помнить, что в случае задействования только одного гасящего сопротивления может привести к его перегреву.

Применяя схему параллельного включения LED-приборов, необходимо в разрыв цепи диода всегда устанавливать свой, персональный резистор ограничения тока. Способ расчета номинальной мощности и сопротивления этого резистора высчитывается аналогичным методом, приведенным выше. Используя схему последовательного включения, цепь желательно составлять из идентичных друг другу приборов.

Помимо этого, нужно взять во внимание то, что действующее в схеме напряжение должно составлять немногим большее значение, чем потребляющее всеми LED-диодами одновременно

Вычисление номинала ограничительного резистора для использования в схеме последовательного соединения, производится таким же образом, как показано выше. Хотя, есть некоторое исключение, состоящее в том, что при подсчете, взамен значения Uсв применяется значение Uсв*N. В приведенном примере буква N означает число соединенных в цепь LED-приборов.

Как подключить к 12 вольтам автомобиля

Подключение светодиодов к бортовой сети автомобиля не имеет существенных отличий от подключения к другим источникам питания. Просто не нужно забывать, что аккумуляторная батарея автомобиля в нормальном состоянии выдает не 12 Вольт, а примерно 14 Вольт.

Еще при подключении надо помнить, что не в каждом автомобиле надежно работает система стабилизации напряжения бортовой сети. Поэтому при расчетах гасящих резисторов лучше принимать напряжение питания равным 15 – 17 вольт. Это несколько снизит яркость свечения, но зато значительно продлит срок службы, так как светодиод будут работать в «щадящем» режиме.

No tags for this post.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.

Adblock
detector