Схема светодиодной гирлянды
Сетевое переменное напряжение через резисторы и диодный мост, уже в выпрямленном виде и сглаженное через конденсатор, подается на питающий контроллер.
При этом данное напряжение поступает через кнопку, разомкнутую в нормальном состоянии. Когда вы ее замыкаете, происходит переключение режимов контроллера.
Контроллер в свою очередь управляет тиристорами. Их число зависит от количества каналов подсветки. И уже после тиристоров выходное питание идет непосредственно на светодиоды в гирлянде.
Чем больше таких выходов, тем разнообразнее цветовых расцветок может иметь изделие. Если их всего два, это означает, что только две части (или половинки) гирлянды будут работать в различных режимах — одни лампочки тухнуть, другие загораться и т.д.
Фактически эти две линейки диодов будут подключены по двум каналам последовательно. Соединяться они будут между собой в конечной точке — последнем светодиоде.
Если вас по какой-то причине раздражает мигание гирлянды и вы захотите, чтобы она ровно светилась только одним цветом, достаточно на обратной стороне платы, с помощью пайки закоротить катод и анод тиристора.
Чем более дорогая гирлянда у вас в распоряжении, тем больше отходящих каналов и проводков будут уходить от платы управления.
При этом, если проследить по дорожкам платы, один из выводов сетевого напряжения, всегда подается напрямую на конечный светодиод гирлянды, минуя все элементы схемы.
Как подключить светодиод
Обеспечение работоспособности излучающих свет диодов, предполагает не только наличие источника питания, но и строгого соблюдения схемы подключения.
К 1,5 В
Показатели рабочего напряжения светоизлучающих диодов, как правило, превышают 1,5 В, поэтому сверх яркие светодиоды нуждаются в источнике питания не менее 3,2-3,4 В. При подключении применяется преобразователь напряжения в виде блокинг-генератора на резисторе, транзисторе и трансформаторе.
Запитываем светодиод к 1,5 ватт
Использование упрощенной схемы, лишенной стабилизатора, позволяет обеспечивать непрерывную работоспособность светоизлучающих диодов до снижения напряжения в элементе питания до показателей 0,8 В.
К 5 В
Подключение светодиода к элементу питания с номинальными токовыми показателями на уровне 5 В предполагает подсоединение резистора, имеющего сопротивление в пределах 100-200 Ом.
Параллельное подключение светодиодов
Если подключение в 5 вольт необходимо для установки пары диодов, то в электрическую цепь последовательным способом включается резистор ограничительного типа с сопротивлением не более 100 Ом.
К 9 В
Батарейка типа «Крона» обладает относительно небольшой емкостью, поэтому такой источник питания очень редко применяется для подключения достаточно мощных светодиодов. Согласно максимальному току, не превышающему 30-40 мА, чаще всего осуществляется последовательное подсоединение трёх светоизлучающих диодов, имеющих рабочий ток 20 мА.
К 12 В
Стандартный алгоритм подключения диодов к элементу питания на 12 В включает в себя определение типа блока, нахождение номинального тока, напряжения и потребляемой мощности, а также подсоединение к выводам с обязательным соблюдением полярности. В этом случае резистор размещается на любом участке электрической цепи.
Контакты на участках подсоединения излучающих свет диодов надежно запаиваются, а после штатной проверки работоспособности — изолируются специальной лентой.
К 220 В
При использовании источников питания 220 В, в обязательном порядке ограничивается ток, который будет протекать через световой диод, что предотвратит перегрев и выход светоизлучающего прибора из строя. Также необходимо понизить уровень обратного светодиодного напряжения с целью предупреждения пробоя.
Схема подключения светодиодов к 220 вольт
Ограничение уровня тока в условиях переменного напряжения осуществляется резисторами, конденсаторами или катушками индуктивности. Питание диода при постоянном напряжении предполагает использование исключительно резисторов.
Характеристики
Перед расчётом схемы подключения светодиодов убедитесь в их параметрах и качестве. Китайцы очень часто обманывают, подсовывая LED с другими параметрами или с более низкой мощностью. Особенно хорошо у китайцев получается обманывать на SMD 5630 и SMD5730, общеизвестная мощность у них 0,5W. Цифры 5630 и 5730 обозначают только размер корпуса, например, 5,7мм на 3,0мм.
Пользуясь этим они устанавливают в стандартный корпус кристалл на 0,07W – 0,1W и затем продают их как с мощностью 0,5W. То есть световой поток будет в 5 раз меньше, чем вы ожидали. Хорошим примером будут светодиодные лампы кукурузы, которые просто утыканы маломощными LED в количестве от 20 до 130 штук. За счёт такого внешнего вида, кукуруза в глазах покупателя кажется мощнее, чем диодная лампа с 10 диодами, аналогичного энергопотребления.
Так же они изготавливают копии общеизвестных производителей особенно Cree и Philips. На настоящие КРИ и Флипсы они похожи только внешне, технические характеристики хуже на 30-40%.
Конструктивное разнообразие
Как упоминалось ранее, существует масса вариантов конструкции уличного электромеханического замка. По способу монтажа они делятся на накладные и врезные. Последние устанавливаются в пространство между полотнами калитки. Остальные – крепятся на внутреннюю сторону створки.
Беспроводные замки на калитку, к примеру, не потребуют даже подключения питающего кабеля. Необходимая для работы энергия обеспечивается индивидуальными элементами питания.
Кроме того замки делятся по типу приведения запорного механизма в действие. Выделяют такие типы:
- Магнитные.
- Моторные.
- Соленоидные.
- Электрозащелки.
Каждый тип обладает своими особенностями и подходящим сценарием применения.
Магнитные
Электрические функции наиболее распространённого типа электромеханических замков реализованы за счет работы электромагнита. Они оснащаются двухкомпонентным ригелем. Одна его часть работает как защелка, которая в закрытом положении упирается в косяк и взводит пружину основного ригеля.
В момент подачи напряжения встроенные в корпус электромагниты притягивают стопор основного ригеля, и дверь отпирается. Механизмы кнопки на внутренней стороне и цилиндр на наружной также приводят в действие затвор основного ригеля. Производятся модели с блокировкой кнопки и без нее.
Моторные
Ригели моторных электромеханических замков приводятся в движение при помощи компактного электродвигателя. Они, как правило, фиксируются упорами в закрытом или открытом положении. Такая особенность увеличивает надежность замка за счет того, что закрытый ригель сложнее отжать.
С другой стороны – использование электродвигателя не позволяет отпирать калитку моментально. Между подачей сигнала и изменением положения ригеля проходит некоторое время. Некоторые модели позволяют программировать задержку, что можно использовать для устройства удаленного управления замком, скажем, от входной двери дома.
Соленоидные
Принцип действия базируется на соленоиде. Сердечник, который выступает в роли ригеля, перемещается при помощи полей индуктивности. В зависимости от полярности катушки, размешенной в корпусе замка, ригель запирает или отпирает конструкцию, на которой смонтирован замок.
В некоторых моделях сердечник присоединяется к рычагам, которые перемещают ригели. Также существуют варианты, оснащенные дополнительными механизмами отпирания и запирания (кнопки, цилиндры и прочие). Использование соленоидов позволяет делать такие замки компактными.
Электрозащелки
Это особый класс устройств, которые косвенно относятся к электромеханическим замкам. Электрозащелки монтируются в неподвижную часть двери. Внешне они походят на ответную часть магнитных замков с некоторыми модификациями.
На подвижной створке устанавливается статичный ригель. В закрытом положении калитки он заходит за подвижную деталь защелки. В зависимости от типа устройства она закрыта или открыта при подаче электричества. Нормально открытые модели подходят для объектов, где в течение продолжительного времени нет нужды в запирании.
Фиксатор электромагнитной защелки на калитке может быть нормально открытым или нормально закрытым. Подходящий тип следует выбирать в зависимости от потребностей пользователя.
Устранение неисправностей
Учитывая все особенности китайской продукции, для исправления поломки не понадобится много времени. Но в будущем все-таки лучше проверять праздничные атрибуты заранее, чтобы неприятные сюрпризы не заставали врасплох накануне праздника.
Перед началом ремонта необходимо убедиться, что изделие отключено от сети. А также нужно заранее подготовить необходимые материалы — изоленту, мультиметр, кусачки, нож и другие (конкретнее можно будет сказать после диагностики повреждения).
Соединение проводов
Разрыв провода найти довольно просто. Необходимо тщательно просмотреть гирлянду по всей ее длине, соблюдая аккуратность, чтобы не добавить новых повреждений. Если провод оторвался от лампочки с одной стороны, можно не мучиться с пайкой и отсоединить его и с другого контакта, а потом просто скрутить два конца вместе. При общем количестве в 100−500 лампочек отсутствие одной останется незамеченным. И хотя напряжение на остальные элементы возрастет, так как в последовательной цепи оно делится поровну, разница все же будет незначительной и на ускорение износа деталей гирлянды не повлияет.
Чтобы соединить два конца, надо сперва их зачистить от изоляции. Вот тут может быть проблема. Дело в том что провод имеет несколько очень тонких жил, которые практически впаяны в изоляцию
Счищать ножом нужно очень осторожно, чтобы не повредить их, хотя все равно одна-две обязательно оторвутся или срежутся. Но это не критично, без них гирлянда тоже будет отлично работать
Замена лампочки
Перегоревший светодиод можно вычислить при помощи мультиметра. Замену ему можно как купить отдельно, так и снять со старой нерабочей гирлянды, если такая имеется. После этого новая деталь припаивается на свободное место, а контакты изолируются.
Если провода и лампочки проверены, все исправно, а гирлянда до сих пор не работает или работает некорректно, то проблема в блоке управления. Возможно, там отломились контакты или пришла в негодность какая-то деталь. При отсутствии предохранителя — в самых дешевых моделях — детали могли перегореть при скачках напряжения.
Ремонт микросхемы
В любом случае необходимо проверить все детали мультиметром. При выходе из строя какой-то из них можно поступить двумя способами:
- Подыскать в магазинах или интернете замену. Чтобы правильно подобрать деталь, нужно посмотреть маркировку на корпусе и купить соответствующую или аналогичную.
- Собрать всю схему самостоятельно. Это предпочтительнее, так как своими руками можно спаять качественное изделие, которое сможет прослужить гораздо дольше китайского конвейерного продукта. Правда, этот вариант уже гораздо сложнее и для людей, не занимающихся электроникой, не подойдет.
Схема гирлянды на светодиодах выглядит примерно так. Ее можно усовершенствовать, а можно упростить. Но легче, конечно, купить новую гирлянду, если есть такая возможность.
Как правильно подключать светодиоды
Подключение светодиода возможно только к постоянному электротоку. У каждого источника света этого типа есть инструкция по подключению. Если она затерялась, по производителю можно найти данные в сети интернет и узнать, как правильно подключить конкретные лампочки.
Последовательность сборки:
- определение технических характеристик;
- составление схемы;
- вычисление вольтажа всей цепочки;
- подбор блока питания (драйвера);
- расчет резистора (если питание от напряжения);
- определение полярности диодов;
- пайка схемы;
- подключение блока (драйвера);
- подключение к электросети.
Если схема работает, нужно измерить электроток и потребление энергии. При слишком большом значении тока требуется коррекция.
Чтобы не подключать систему охлаждения, лучше покупать лампочки с мощностью 1-3 В на подложке.
Параллельное подключение
Если подключить LED-лампочки параллельно, напряжение на всех равное, общая сила тока – сумма токов лед-ламп. Их характеристики отличаются даже если они принадлежат к одной партии.
Если подключить к схеме одно сопротивление, на каждый чип будет подаваться ток с различным номиналом, один будет светиться слишком ярко, другой на 60-70% от номинального значения. Это значит, что при параллельном подключении каждому диоду требуется отдельное сопротивление.
Подобные схемы используются редко из-за двух недостатков: большого количества элементов и роста нагрузки при выгорании одной лампочки.
Последовательное подключение
Несколько диодов возможно подключить и последовательно (катод одного припаять к аноду другого). Они должны быть одинаковые, блок питания выбирается с мощностью, соответствующей сумме мощности лампочек.
Ток на все лампочки подается одинаковый, напряжение состоит из суммы падения на каждом диоде. То есть, количество лампочек, которые возможно подключить, ограничено показателями падения напряжения (падение – напряжение, которое использовано для свечения).
У последовательного подключения 2 недостатка:
- если диодов много, у блока питания должен быть большой вольтаж;
- при перегорании одной лампочки перестают светиться все.
От недостатков можно избавиться, если применять смешанное подключение. Диоды делятся на последовательно соединенные группы, которые соединяются параллельно.
При помощи комбинированного подключения производятся светодиодные ленты.
Как включить светодиод в сеть переменного тока
Многих интересует, как подключить светодиод сети 220 В. Подобное возможно, если ток источника света до 20 мА, напряжение не падает более, чем на 2-3 вольта. Если применить формулу расчета драйвера, получается, что сопротивление должно быть 30 кОм.
Резистор будет греться при снижении вольтажа, поэтому важно знать его мощность. Для расчетов используется формула: Р=I2R=U2/R, где:
Для расчетов используется формула: Р=I2R=U2/R, где:
U – разность между напряжением сети и падением напряжения на источнике света.
В результате вычислений получается 2 Вт.
В схему включения светодиода обязательно включение дополнительного диода, защищающего от пробоев в ситуациях, когда на выходах светильника возникнет амплитудное напряжение. Недостаток подобной схемы – большие потери энергии из-за выделения тепла.
Более эффективно другое соединение, в которое кроме диода включается конденсатор. Он обеспечивает падение напряжение до требуемого уровня.
Обе схемы упрощенные. Чаще всего они не нужны, так как в большинство светодиодов встроен драйвер, преобразующий 220 В в постоянный вольтаж в пределах 5-24 В.
Без драйвера к электросети возможно подключить светодиодные ленты 220 В, состоящие из 60-и элементов, укомплектованных выпрямителем. То же самое относится к большим СОВ-диодам, в которых 60 лед-кристаллов соединены последовательно. Китайцы начали выпускать модули, укомплектованные стабилизатором (устанавливается на подложку).
Повреждение светодиода
Если контакты проводов в порядке и вы грешите на один из диодов, как можно проверить его неисправность? И самое главное, как его найти среди всей череды лампочек?
Прежде всего выключаете гирлянду из розетки. Начинаете с последнего диода. На него напрямую с блока управления приходит провод питания.
К этой же ножке припаян отходящий проводник. Он идет на следующую ветку светового канала. Вам же нужно тестировать диод между его двумя проводами питания (вход-выход).
Понадобится мультиметр и его несколько модернизированные щупы.
К кончикам щупов тестера, ниткой плотно приматываете тонкие иголки так, чтобы их острие выступало максимум на 5-8мм.
Сверху все заматываете плотным слоем изоленты.
Так как светодиоды припаяны, то просто вытащить их из лампочки как в обычных гирляндах здесь не получится.
Поэтому придется протыкать изоляцию жил, чтобы добраться до медных жил проводков. Переключаете мультиметр в режим прозвонки диодов.
И начинаете последовательно протыкать питающие провода возле каждого подозрительного диода.
Если у вас гирлянда не 220В, а 12В или 24В, которая подключается вот от такого блока питания:
то исправный светодиод от батарейки мультиметра должен загореться.
Если это подсветка 220V, то сверяете показания мультиметра.
На рабочих элементах они будут примерно одинаковыми, а вот неисправный покажет обрыв.
Метод конечно варварский и повреждающий изоляцию, зато вполне рабочий. Правда уличные гирлянды после таких проколов, лучше вне помещений уже не использовать.