Что такое фильтр нижних частот: руководство по основам пассивных rc фильтров

ВВЕДЕНИЕ

В наше время высоких технологий всё более распространёнными становятся нелинейные нагрузки (частотные преобразователи, инверторы, системы бесперебойного питания, импульсные источники питания, люминесцентные и светодиодные лампы и т.п.). Из-за таких изменений в структуре нагрузки основной темой в этом десятилетии стали качество электроэнергии и снижение уровня гармоник. Проблемы, вызываемые гармониками, такие как перегрев трансформаторов и вращающихся машин, перегрузка проводников нейтрали, выход из строя конденсаторных батарей и т.п., приводят к повышению эксплуатационных расходов и также могут привести к снижению качества продукции и производительности труда. Кроме того, изменения в структуре генерации электроэнергии в сторону использования энергии ветра и солнечных батарей, которые тоже генерируют гармоники, также приводят к тому, что применение фильтров гармоник становится всё более важным для обеспечения стабильного энергоснабжения с приемлемым качеством электроэнергии.

Снизить уровень гармоник можно с использованием пассивных фильтров (составленных из конденсаторов, реакторов и резисторов) или активных фильтров (генерирующих гармоники в противофазе к гармоникам искажений и за счёт этого их уничтожающих)

Хотя основные принципы работы активных фильтров были выработаны ещё в 1970-е годы, они стали привлекать к себе повышенное внимание в последние несколько лет, потому что появилась возможность использования биполярных транзисторов с изолированным затвором (IGBT) и цифровых сигнальных процессоров (ЦСП). При этом разница в стоимости между активными и пассивными фильтрами становится не такой большой, как в прошлом

В этой статье сравниваются преимущества и недостатки активных и пассивных технологий фильтрации. Рассматриваются пассивные и активные решения для снижения уровня гармоник и стабилизации сети, направленные на решение проблем, которые возникают в современных областях применения и имеют тенденцию к возникновению в будущем.

Электромагнитная совместимость частотных преобразователей

Электромагнитная совместимость технических средств — это нормальная (с требуемым качеством) работоспособность технического оборудования в реальной окружающей обстановке несмотря на непреднамеренное воздействие электромагнитных помех и способность не создавать недопустимых помех другой технике.

Все модели векторных преобразователей частоты оснащаются сетевыми фильтрами, чем обеспечивается необходимый уровень ЭМС. Фильтры допускается не применять в диапазоне до 30 кВт. Все преобразователи частоты большей мощности снабжаются встроенными фильтрами по умолчанию. Встроенный фильтр даёт возможность доводить до минимума наводки и помехи в электронной технике.

Частота раздела

Тут самое время задуматься о частоте раздела. Обычно частота раздела выбирается на ровных горизонтальных участках, вдали от резонансов и завалов, стараясь обойти внезапные неравномерности как потенциальные источники искажений… А если вспомнить что существует фаза, о которой мало известно, а если известно, то векторно ачх на бумажке не сложишь, а из-за кривизны фаз даже на идеально ровной ачх что-то вылезет, что-то провалится в большей или меньшей степени. Также надо помнить что может дать сам динамик, особенно ВЧ, скажем не надо заставлять дюймовый купольник играть от двух, а тем более одного килогерца, даже если он способен их отыграть по АЧХ.

Итак, смотрим какие уникальные динамики нам достались. Высокочастотник начинает валить с 1,3 кгц, значит ниже его пускать нельзя. С другой стороны низкочастотник пытается играть по самые 10 кгц, с переменным успехом. Однако здравый смысл подсказывает, что выше килогерца его пускать плохая затея. И что спрашивается делать, если рабочие диапазоны динамиков не пересекаются?

Тут есть два варианта: если спады имеют адекватную крутизну, то лучше всего сводить в ямку, особенно если ямка получается широкой. В случае же нашем, когда спады круты как обрывы, надо держатся подальше от самого крутого из них. Чаще всего это может случится с высокочастотником, им всегда тяжко работать у нижней границы диапазона, поэтому им целесообразнее облегчить жизнь возлагая воспроизведение нижней части диапазона на НЧ динамик, который отыграет хоть плохо, но не нагадит. Поэтому ограничиваем диапазон участком от 1,5 кгц до 2,2 кгц.

Фазировка динамиков

На этом сведение подходит в концу. Остается только определиться с фазировкой динамиков. Тут есть как минимум три способа: на слух, по форме АЧХ и по фазовому сдвигу на частоте раздела. Если у динамиков АЧХ и ФЧХ в меру линейная, и фильтр фазу на разделе сильно не накручивает, то при смене правильной фазы на неправильную на частоте раздела появится глубокий провал, пропустить его сложно. В таком случае стоит подгонять фазу по по ее сдвигу. Сделать это можно осциллографом подавая на горизонтальную развертку сигнал с усилителя, а на вертикальное отклонение с микрофона.

Подают на вход усилителя синус с частотой раздела и не меняя взаимного расположения микрофона и колонки переключают ВЧ и НЧ динамики. По одинаковости фигур Лиссажу делается вывод о равенстве фаз излучателей. Этот метод хорошо подходит для фильтров первого порядка. С кривизной наших динамиков этот метод себя не оправдывает, поэтому сравниваем АЧХ при разной фазировке.

Второй вариант заметно хуже. Однако и первый не предел мечтаний, но так как двигать индуктивности катушек не просто, а ковыряться дальше уже лень, то все было оставлено как есть.

Расчет амплитудно-частотной характеристики фильтра

Мы можем рассчитать теоретическое поведение фильтра нижних частот, используя частотно-зависимую версию типового расчета делителя напряжения. Выходное напряжение резистивного делителя напряжения выражается следующим образом:

Рисунок 9 – Резистивный делитель напряжения

\

RC фильтр использует эквивалентную структуру, но вместо R2 у нас конденсатор. Сначала мы заменим R2 (в числителе) на реактивное сопротивление конденсатора (XC). Далее нам нужно рассчитать величину полного сопротивления и поместить его в знаменатель. Таким образом, мы имеем

\

Реактивное сопротивление конденсатора указывает величину противодействия протеканию тока, но, в отличие от активного сопротивления, величина противодействия зависит от частоты сигнала, проходящего через конденсатор. Таким образом, мы должны рассчитать реактивное сопротивление на определенной частоте, и формула, которую мы используем для этого, следующая:

\

В приведенном выше примере схемы R ≈ 160 Ом, и C = 10 нФ. Предположим, что амплитуда Vвх равна 1 В, поэтому мы можем просто удалить Vвх из расчетов. Сначала давайте рассчитаем амплитуду Vвых на частоте необходимой нам синусоиды:

\

\

Амплитуда необходимого нам синусоидального сигнала практически не изменяется. Это хорошо, поскольку мы намеревались сохранить синусоидальный сигнал при подавлении шума. Этот результат неудивителен, поскольку мы выбрали частоту среза (100 кГц), которая намного выше частоты синусоидального сигнала (5 кГц).

Теперь посмотрим, насколько успешно фильтр ослабит шумовую составляющую.

\

\

Амплитуда шума составляет всего около 20% от первоначального значения.

Полосовые резонансные фильтры

Полосовые резонансные частотные фильтры – предназначены для выделения, или режекции (вырезания) определённой полосы частот. Резонансные частотные фильтры могут состоять из одного, двух, или трех колебательных контуров, настроенных на определённую частоту. Резонансные фильтры обладают наиболее крутым подъёмом (или спадом) АЧХ, по сравнению с другими (не резонансными) фильтрами. Полосовые резонансные частотные фильтры могут быть одноэлементными — с одним контуром, Г-образными – с двумя контурами, Т и П-образными – с тремя контурами, многозвенными – с четырьмя и более контурами.

На рисунке представлена схема Т-образного полосового резонансного фильтра, предназначенного для выделения определённой частоты. Состоит он из трёх колебательных контуров. CL и CL – последовательные колебательные контуры, на резонансной частоте имеют малое сопротивление протекающему току, а на других частотах наоборот – большое. Параллельный контур CL наоборот, имеет большое сопротивление на резонансной частоте, обладая малым сопротивлением на других частотах. Для расширения ширины полосы пропускания такого фильтра, уменьшают добротность контуров, изменяя конструкцию катушек индуктивности, расстраивая контура «вправо, влево» на частоту, немного отличающуюся от центральной резонансной, параллельно контуру CL подключают резистор.

На следующем рисунке представлена схема Т-образного режекторного резонансного фильтра, предназначенного для подавления определённой частоты. Он, как и предыдущий фильтр состоит из трёх колебательных контуров, но принцип выделения частот у такого фильтра другой. CL и CL – параллельные колебательные контуры, на резонансной частоте имеют большое сопротивление протекающему току, а на других частотах – маленькое. Параллельный контур CL наоборот, имеет малое сопротивление на резонансной частоте, обладая большим сопротивлением на других частотах. Таким образом, если предыдущий фильтр резонансную частоту выделяет, а остальные частоты подавляет, то этот фильтр, беспрепятственно пропускает все частоты, кроме резонансной частоты.

Порядок расчёта полосовых резонансных фильтров основан всё на том же делителе напряжения, где в качестве единичного элемента выступает LC контур с его характеристическим сопротивлением. Как рассчитывается колебательный контур, определяются его резонансная частота, добротность и характеристическое (волновое) сопротивление вы можете найти в статье Колебательный контур.

Звучание системы

И конечно же надо сказать про звук. Стало лучше, сцена получилась очень недурственная. Кривизна АЧХ особо не слышна, даже наоборот, подъем на середине поддает детальности, верхов как ни странно хватает. Был замечен интересный эффект на басу. Как можно заметить по АЧХ на сотне герц большой подъем, а за ним завал, разумеется качающего баса нет, но есть мид бас. К примеру партия гитары кажется немного просаженным, а нижний бас, партия бас гитары, переходит как бы в слышимую область и читается очень четко, создается впечатление наличия того самого низкого баса.

Конечно ящики маловаты, и порой слышно подбубнивание, для устранения этого эффекта в каждую колонку было добавлено по 30 грамм натуральней шерсти. В целом данная акустика играет тепло и мягко даже без лампового усилителя, сохраняя в звуке строгость и точность камня, а вот с теплой лампой получается перебор мягкости. Все же им нужен усилитель по-строже — триод или двухтакт, но это тема для следующих экспериментов. Специально для сайта Радиосхемы — SecreTUseR.

   Обсудить статью ФИЛЬТР ДЛЯ АКУСТИКИ

Практическая работа

Плавно переходим от теории к практике. Достались мне винтажные колонки под названием Kompaktbox B 9251. И первое что было сделано — произведено прослушивание.

С холодным камнем звук был в среднем не плох, а если говорить конкретно, то местами хороший, а местами как попало. С теплой лампой играть вообще отказались. На основе этих наблюдений был сделан вывод о наличии глубоко зарытого потенциала. Вскрытие показало, что немецкие инженеры решили обойтись одним единственным конденсатором последовательно с ВЧ головкой. Измерение АЧХ дало страшную картину

На рисунке АЧХ одной колонки, кривая с глубокой дыркой на 6 кгц из-за плохого контакта разъема, на нее внимание не обращать. АЧХ отдельно ВЧ и НЧ приведены ниже

Т — образные фильтры высоких и низких частот

Т- образные фильтры высоких и низких частот, это те же Г- образные фильтры, к которым добавляется ещё один элемент. Таким образом, они рассчитываются так же как делитель напряжения, состоящий из двух элементов с нелинейной АЧХ. А после, к расчётному значению суммируется значение реактивного сопротивления третьего элемента. Другой, менее точный способ расчёта Т-образного фильтра начинается с расчёта Г-образного фильтра, после чего, значение «первого» рассчитанного элемента Г-образного фильтра увеличивается, или уменьшается в два раза – «распределяется» на два элемента Т-образного фильтра. Если это конденсатор, то значение ёмкости конденсаторов в Т-фильтре увеличивается в два раза, а если это резистор или дроссель, то значение сопротивления, или индуктивности катушек уменьшается в два раза. Преобразование фильтров показано на рисунках. Особенность Т-образных фильтров заключается в том, что они по сравнению с Г-образными, своим выходным сопротивлением оказывают меньшее шунтирующее действие на радио цепи, стоящие за фильтром.

Преобразование Г-образного RC фильтра высоких частот, в Т-образный RC фильтр высоких частотПреобразование Г-образного RC фильтра низких частот, в Т-образный RC фильтр низких частотПреобразование Г-образного RL фильтра высоких частот, в Т-образный RL фильтр высоких частотПреобразование Г-образного RL фильтра низких частот, в Т-образный RL фильтр низких частотПреобразование Г-образного LС фильтра высоких частот, в Т-образный LС фильтр высоких частотПреобразование Г-образного LС фильтра низких частот, в Т-образный LС фильтр низких частот

П – образный фильтр

П-образные фильтры, это те же Г- образные фильтры, к которым добавляется ещё один элемент впереди фильтра. Всё, что было написано для Т-образных фильтров справедливо для П-образных. Как и в случае с Т-образными фильтрами, для расчёта П-образных используют формулы делителя напряжения, с добавлением дополнительного шунтирующего сопротивления первого элемента фильтра. Другой, менее точный способ расчёта П-образного фильтра начинается с расчёта Г-образного фильтра, после чего, значение «последнего» рассчитанного элемента Г-образного фильтра увеличивается, или уменьшается в два раза – «распределяется» на два элемента П-образного фильтра. В противоположность Т-образному фильтру, если это конденсатор, то значение ёмкости конденсаторов в П-фильтре уменьшается в два раза, а если это резистор или дроссель, то значение сопротивления, или индуктивности катушек увеличивается в два раза.

Как правило, одноэлементные фильтры применяют в акустических системах. Фильтры верхних частот обычно делают Т-образными, а фильтры нижних частот П-образными. Фильтры средних частот, как правило, делают Г-образными, их двух конденсаторов.

ПОСОБЫ СНИЖЕНИЯ УРОВНЯ ГАРМОНИК

Возможные способы ослабления гармоник – это, например, увеличение тока короткого замыкания сети (снижение импеданса сети), ограничение производительности / количества одновременно работающих источников гармоник, сбалансированное подключение однофазных нагрузок к трём фазам и применение оборудования с большей пульсностью (к примеру, использование 12– или 18-пульсного частотного преобразователя вместо 6-пульсного). Однако наиболее распространёнными решениями являются использование пассивного фильтра, состоящего из комбинации конденсаторов, индуктивностей и сопротивлений (RC, RL , LC, LCQ и других), а также получающих всё более широкое распространение активных фильтров. Также применяются гибридные решения (комбинации активных и пассивных фильтров).

При использовании пассивного резонансного фильтра его схема настраивается на определённую частоту, то есть резонансные частоты последовательного фильтра очень близки к частотам имеющихся гармоник. При проектировании резонансного фильтра большое значение имеет тщательный анализ нагрузки и качества электроэнергии, также очень важна величина импеданса сети (рисунок 2).

Рис. 2. Зависимость импеданса шинопровода системы от частоты

Как показано на рисунке 3, для резонансной фильтрации важна последовательность коммутации, она должна следовать правилу LIFO (последним пришёл – первым вышел), обратное может привести к проблемам.

Рис. 3. Последовательность коммутации резонансных фильтров в соответствии с правилом LIFO

А) Пример: применение резонансного фильтра

На приведённом ниже реальном примере (рисунки 4, 5) показан резонансный фильтр для 5-й и 7-й гармоник. Он установлен в торговом центре в Китае.

Рис. 4. Электрическая схема подключения резонансного фильтра в торговом центре в Китае

Результаты анализа фильтра показаны на рисунке 5. Можно увидеть, что не только уменьшены токи 5-й и 7-й гармоник, но также снизились гармонические искажения напряжения с 4,8% до 1,8%. Также увеличилось значение коэффициента мощности с 0,92 до 0,99.

      РЕЗОНАНСНЫЕ ФИЛЬТРЫ Результат/уменьшение
Без фильтра 1 фильтр 5-й гармоники (1) вкл. 2-й фильтр 5-й гармоники (2) вкл. Фильтр 7-й гармоники (3) вкл.
11:09:30 11:10:00 11:11:00 11:11:30
Активная мощность, кВт P 1489 1494 1497 1506  
Реактивная мощность, квар Q 641 364 188 190 70,36%
Полная мощность, кВА S 1621 1538 1509 1518 6,35%
Напряжение, В U 234 235,567 237,075 238,867 2,08%
Действ. значение тока, А Irms 2266 2109 2050 2078 8,30%
Коэффициент нелинейных искажений THD-V 4,78% 3,04% 2,79% 1,78% 62,82%
Напряжение 5-й гармоники HRU5 3,83% 0,89% 0,81% 0,94% 75,38%
Напряжение 7-й гармоники HRU7 1,77% 2,32% 2,15% 0,89% 49,49%
Напряжение 11-й гармоники HRU11 1,40% 0,89% 0,86% 0,62% 56,00%
Коэффициент нелинейных искажений тока THD-I 17,68% 394,51 A 9,92% 208,25 A 9,93% 202,51 A 6,56% 135,94 A 65,54%
Ток 5-й гармоники HRI5 16,21% 361,71 A 3,85% 80,82 A 4,31% 87,90 A 5,12% 106,17 A 70,65%
Ток 7-й гармоники HRI7 4,68% 104,43 A 8,16% 171,19 A 7,99% 163,03 A 2,75% 56,98 A 45,44%
Ток 11-й гармоники HRI11 3,38% 75,47 A 2,30% 48,31 A 1,87% 38,23 A 1,13% 23,33 A 69,09%
Ток основной частоты I1 2231 2099 2040 2074 7,07%
Коэффициент мощности PF 0,92 0,97 0,99 0,99  

Рис. 5. Результаты применения резонансного фильтра в торговом центре в Китае

B) Преимущества и недостатки пассивных фильтров

Как собрать фильтр низких частот

Инструкция, как правильно сделать фильтр низких частот полезна для многих. В радиотехнике всегда требуется изготавливать фильтры разной высотности. И сделать самостоятельно фильтр низких частот не так уж сложно.

Вот, что нужно для изготовления фильтра низких частот:

  • Разнообразные детали для припаиваня к печатной плате.
  • Стеклотекстролит для печатной платы.
  • Источник тока.
  • Паяльник простой.

Далее распечатываем рисунок дорожек для платы и переносим его на нашу заготовку.

Если дорожки получаются не четкими, их следует дорисовать, используя лак. После того, как все перенесено, необходимо очистить плату при помощи специального раствора.

Создать раствор можно из лимонной кислоты и перекиси водорода. Их смешивают в пропорции 1:3 соответственно. Для более быстрого действия раствора туда добавляется катализатор — соль на кончике ножа.

Как только готов раствор, в него помещается плата и выжидается время до полной очистки. Медь, которая осталась на поверхности дорожек должна полностью раствориться. По окончании очистки платы необходимо ополоснуть ее под проточной водой.

По окончании процесса можно начать припаивать детали. Для того, чтобы сделать все точно, обратитесь к видео мастер-классу по припаиванию деталей.

Таким образом, вы заметили, насколько просто самостоятельно создать фильтр низких частот. По такому же принципу вы можете самостоятельно придумать схему изготовления и фильтра высокой частотности.

Влияние помех на приводное оборудование

В промышленности большая часть электропотребления приходится на вентиляторы, насосы, компрессоры, конвейеры и лебёдки, приводы технологических установок.  Механическая часть всего этого хозяйства приводится в действие асинхронными двигателями переменного тока. Режимное управление работы асинхронных двигателей, включая сокращение потребления ими электроэнергии, осуществляется с помощью специализированных устройств – преобразователей частоты. Польза их заключается в значительном облегчении пусковых режимов и работы непосредственно асинхронных двигателей. Однако иногда частотные преобразователи оказывают и нежелательное влияние на двигатель.

В виду особенной конструкции преобразователя частоты, его напряжение и ток на выходе имеют форму всплеска с огромным числом помех. Выпрямитель преобразовательного устройства, потребляя нелинейный ток, создаёт высшие гармоники, тем самым загрязняя электрическую сеть. Инвертор частотного преобразователя (ШИМ) – генерирует широкий спектр высокочастотных гармоник.

Электропитание обмоток двигателя таким нестандартным током подчас доводит до теплового и электрического пробоя изоляции обмоток двигателя, износу изоляции, увеличению степени акустических шумов работающего мотора, эрозии подшипников. Помимо этого, частотные преобразователи источают помехи в электрической сети, что оказывает отрицательное воздействие на остальное электрооборудование, питающееся от этой же электросети. Для уменьшения неблагоприятного влияния гармонических искажений, создаваемых преобразователем частоты в процессе работы, на электросеть, для двигателя и самого преобразователя частоты используется фильтрация.

Одноэлементные фильтры высоких и низких частот

Как правило, одноэлементные фильтры высоких и низких частот применяют непосредственно в акустических системах мощных усилителей звуковой частоты, для улучшения звучания самих звуковых «колонок».

Они подключаются последовательно с динамическими головками. Во первых, они берегут как динамические головки от мощного электрического сигнала, так и усилитель от низкого сопротивления нагрузки не нагружая его лишними динамиками, на той частоте, которую эти динамики не воспроизводят. Во вторых, они делают воспроизведение приятнее на слух.

Чтобы рассчитать одноэлементный фильтр, необходимо знать реактивное сопротивление катушки динамической головки. Расчёт производится по формулам делителя напряжения, что так же справедливо для Г-образного фильтра. Чаще всего, одноэлементные фильтры подбирают «на слух». Для выделения высоких частот на «пищалке» последовательно с ней устанавливается конденсатор, а для выделения низких частот на низкочастотном динамике (или сабвуфере), последовательно с ним подключается дроссель (катушка индуктивности). Например, при мощностях порядка 20…50 Ватт, на пищалки оптимально использовать конденсатор на 5…20 мкФ, а в качестве дросселя низкочастотного динамика использовать катушку, намотанную медным эмалированным проводом, диаметром 0,3…1,0 мм на бобину от видеокассеты VHS, и содержащую 200…1000 витков. Указаны широкие пределы, потому, как подбор – дело индивидуальное.

Ферритовый фильтр

Ферритовые кольца – это пассивный способ борьбы с синфазными помехами. Когда стоит задуматься о пассивных способах борьбы с помехами? Тогда, когда требуется наличие:

  • любой конструкции, в которой длина проводов как силовых, так и сигнальных большая (от 30–40 см) и при этом нет экранов в виде алюминиевых или карбоновых лучей, экранированного кабеля;
  • длинных слаботочных цепей;
  • мощной передающей аппаратуры (600–800 МВт и более).

Ферритовые кольца фильтра синфазных помех обладают овальной формой для простоты монтажа. Через отверстие в кольце продеваются все три фазные жилы моторного кабеля.

Что такое фильтр?

Фильтр – это схема, которая удаляет или «отфильтровывает» определенный диапазон частотных компонентов. Другими словами, он разделяет спектр сигнала на частотные составляющие, которые будут передаваться дальше, и частотные составляющие, которые будут блокироваться.

Если у вас нет большого опыта анализа частотной области, вы можете быть не уверены в том, что представляют собой эти частотные компоненты и как они сосуществуют в сигнале, который не может иметь несколько значений напряжения одновременно. Давайте рассмотрим краткий пример, который поможет прояснить эту концепцию.

Давайте представим, что у нас есть аудиосигнал, который состоит из идеальной синусоидальной волны 5 кГц. Мы знаем, как выглядит синусоида во временной области, а в частотной области мы не увидим ничего, кроме частотного «всплеска» на 5 кГц. Теперь предположим, что мы включили генератор на 500 кГц, который вносит в аудиосигнал высокочастотный шум.

Сигнал, видимый на осциллографе, будет по-прежнему представлять собой только одну последовательность напряжений с одним значением на момент времени, но он будет выглядеть по-другому, поскольку его изменения во временной области теперь должны отражать как синусоидальную волну 5 кГц, так и высокочастотные колебания шума.

Однако в частотной области синусоида и шум являются отдельными частотными компонентами, которые присутствуют одновременно в этом одном сигнале. Синусоидальная волна и шум занимают разные участки представления сигнала в частотной области (как показано на диаграмме ниже), и это означает, что мы можем отфильтровать шум, направив сигнал через схему, которая пропускает низкие частоты и блокирует высокие частоты.

Рисунок 3 – Представление аудиосигнала и высокочастотного шума в частотной области

Порядок фильтра и его добротность

Следующий параметр, с которым надо определиться — это порядок фильтра и его добротность. В данной статье будут рассматриваться два порядка, первый и второй.

  • С первым все просто: есть катушка, есть конденсатор, считаем их параметры под требуемую частоту среза и при надобности корректируем значения до получения желаемой АЧХ, ФЧХ, ИЧХ.
  • Со вторым порядком по-хитрее, там уже две катушки и два конденсатора. От значений номиналов зависит такой параметр как добротность, он определяет крутизну спада АЧХ и в некоторой степени сдвиг фазы. Поскольку влияние фазового сдвига и крутизны  умозрительно не прикинешь, остается просто выбрать в какую сторону думать. А думать тут в сторону низкой добротности, читай больше индуктивности в катушках, меньше емкости в конденсаторах.

Как выбрать порядок. Тут руководствуются уже знакомыми соображениями о том, на что способны излучатели, в особенности высокочастотник. Если большой ход ему противопоказан (как в нашем случае) то предпочтение отдаем второму порядку.

Для полноты картины следует упомянуть, что порядок также определяет степень совместной работы динамиков, но это уже информация для самостоятельного размышления.

Частота среза

Диапазон частот, для которого фильтр не вызывает значительного ослабления, называется полосой пропускания, а диапазон частот, для которых фильтр вызывает существенное ослабление, называется полосой задерживания. Аналоговые фильтры, такие как RC фильтр нижних частот, переходят из полосы пропускания в полосу задерживания всегда постепенно. Это означает, что невозможно идентифицировать одну частоту, на которой фильтр прекращает пропускать сигналы и начинает их блокировать. Однако инженерам нужен способ, чтобы удобно и кратко охарактеризовать амплитудно-частотную характеристику фильтра, и именно здесь в игру вступает понятие частоты среза.

Когда вы посмотрите на график амплитудно-частотной характеристики RC фильтра, вы заметите, что термин «частота среза» не очень точен. Изображение спектра сигнала, «разрезанного» на две половины, одна из которых сохраняется, а другая отбрасывается, неприменимо, поскольку затухание увеличивается постепенно по мере того, как частоты перемещаются от значений ниже частоты среза к значениям выше частоты среза.

Частота среза RC фильтра нижних частот фактически является частотой, на которой амплитуда входного сигнала уменьшается на 3 дБ (это значение было выбрано, поскольку уменьшение амплитуды на 3 дБ соответствует снижению мощности на 50%). Таким образом, частоту среза также называют частотой -3 дБ, и на самом деле это название является более точным и более информативным. Термин полоса пропускания относится к ширине полосы пропускания фильтра, и в случае фильтра нижних частот полоса пропускания равна частоте -3 дБ (как показано на диаграмме ниже).

Рисунок 8 – Данная диаграмма показывает общие особенности амплитудно-частотной характеристики RC фильтра нижних частот. Ширина полосы пропускания равна частоте -3 дБ.

Как объяснялось выше, пропускающее низкие частоты поведение RC фильтра обусловлено взаимодействием между частотно-независимым импедансом резистора и частотно-зависимым импедансом конденсатора. Чтобы определить подробности амплитудно-частотной характеристики фильтра, нам нужно математически проанализировать взаимосвязь между сопротивлением (R) и емкостью (C); мы также можем манипулировать этими значениями, чтобы разработать фильтр, который соответствует точным спецификациям. Частота среза (fср) RC фильтра нижних частот рассчитывается следующим образом:

\

Давайте посмотрим на простой пример. Значения конденсаторов являются более сдерживающими, чем значения резисторов, поэтому мы начнем с распространенного значения емкости (например, 10 нФ), а затем воспользуемся формулой для определения необходимого значения сопротивления. Цель состоит в том, чтобы разработать фильтр, который будет сохранять аудиосигнал 5 кГц и подавлять шум 500 кГц. Мы попробуем частоту среза 100 кГц, а позже в этой статье мы более тщательно проанализируем влияние этого фильтра на обе частотные составляющие.

\

Таким образом, резистор 160 Ом в сочетании с конденсатором 10 нФ даст нам фильтр, который дает амплитудно-частотную характеристику, близкую к необходимой.

Сведение фильтров

Теперь начинается финальный этап — сведение фильтров. Пора намотать катушки… или не намотать? Мотать всегда лень, нет провода, каркасов, конкретных значений индуктивности. В виду этих причин поискав в хламе нашлись пары катушек на 0,8 мкг и 3 мкг — на них и пришлось строить. В крайнем случаи всегда же можно домотать или отмотать лишнее.

По графику видно, что раздел попал в район 1,8 кгц, что вполне вписывается в задуманные границы. Подбором конденсаторов удалось добиться следующего импеданса. На частоте раздела имеется два бугорка, но их высота меньше полу ома — это не критично. Это не конечный его вид, в последствии был несколько увеличен резистор в цепочке Цобеля пищалки.

На приведенных выше картинках АЧХ как самого фильтра, так и АЧХ динамиков с его включением.

Импедансная характеристика динамиков

Когда с примерными параметрами все более или менее ясно, самое время переходить к практике. Снимаем импедансную характеристику динамиков. С целью оценки сопротивления на графике имеется лесенка с шагом в один Ом. Скачек на 110 герцах это переключение с 10 Ом на 20.

Разумеется с такими горбами ни один фильтр нормально, и уж тем более расчетно работать не будет, особенно фильтр НЧ. Фильтру ВЧ этот подъем работать в общем то не мешает, однако как упоминалось ранее такой подъем на конце диапазона приведет к подъему высоких частот, в случае если усилитель имеет высокое сопротивление. Это можно использовать и во благо, оставив подъем небольшим.

Для примерного представления что от чего зависит привожу набор графиков для различных емкостей и сопротивлений. Ступенька начинается с 10 Ом.

Зная минимальное сопротивление НЧ звена, нужно привести к такому же и ВЧ звено. Тут много вариантов как соединить два резистора и цепочку Цобеля, и каждый кто решился на такой отважный шаг как сведение сам способен определить вид подключения и номиналы резисторов, поэтому описывать данную процедуру здесь излишне. Конкретно в данных колонках по результатам предварительного прослушивания решено было оставить родные резисторы на 2,2 ома и цепочку Цобеля параллельно ВЧ динамику.

No tags for this post.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.