Импульсный стабилизатор напряжения

Плюсы и минусы

Тиристорные стабилизаторы напряжения обладают рядом преимуществ по сравнению с устройствами релейного типа, основными из которых являются:

  • более высокая скорость переключения ступеней, т.е. тиристоров по сравнению с электромеханическими реле. Благодаря этому качеству тиристорные приборы быстрее реагируют на изменение напряжения;
  • стабилизаторы с электронными ключами не имеют механических контактов и движущихся частей, что обеспечивает их бОльшую искробезопасность (не абсолютную!) и более длительный эксплуатационный ресурс.

Общим недостатком всех регуляторов ступенчатого типа, переключающих отводы вторичной обмотки автотрансформатора (и релейных в том числе), является неизбежность наличия определённой погрешности регулирования. Проблема заключается в следующем. СтабЭксперт.ру напоминает, что проектировщики при создании оборудования этого типа всегда ищут компромисс между пределами регулирования напряжения и погрешностью этого самого регулирования.

Предел регулирования зависит от количества витков между крайними выводами обмотки, подключаемыми к нагрузке контактами реле или электронными ключами. Точность же стабилизации определяется числом витков одной секции, составляющей ступень регулирования. Таким образом, при большом диапазоне регулирования получить низкую погрешность можно, если разделить этот диапазон на большое количество ступеней с малым числом витков. Однако стабилизатор с большим числом отводов обмотки автотрансформатора и ключевых элементов становится тяжёлым, громоздким и дорогим.

Устройство и основные узлы

В быту часто используют недорогие однофазные стабилизаторы. Наряду с ними, существуют более совершенные приборы, оснащённые цифровым дисплеем. Все модели имеют одно и то же принципиальное устройство. Конструкция ЭМС состоит из нескольких основных узлов:

  • автотрансформатор;
  • щёточный узел;
  • сервопривод;
  • блок электроники.

Автотрансформатор

Основное устройство стабилизатора занимает самое большое пространство внутри прибора. Его мощность может достигать нескольких десятков кВт. Автотрансформаторы не имеют раздельных первичных и вторичных обмоток. Они представляют собой тороидальные катушки изолированных проводов.

Щёточный узел

Токосъёмники имеют вид щёток, которые контактируют с оголёнными витками катушки автотрансформатора. Щеточный узел состоит из двух и более графитовых брусочков, в которые впаяны медные провода. Графит обладает высокой износостойкостью и способностью к скольжению, не создавая трения о витки катушки. Благодаря этому, щёточный узел стабилизатора может прослужить без замены щёток несколько лет. В мощных ЭМС токосъёмник сделан в виде графитовых роликов.

Обратите внимание! Графитовые элементы обладают низким сопротивлением. Несмотря на это, щётки часто перегреваются, что ведёт к быстрому их износу

Чтобы щётки равномерно изнашивались, не создавая перепадов рельефа контактной поверхности, их делают в виде колёсиков. Оголённые витки трансформатора в тех местах, где щётки редко бывают, могут покрываться оксидной плёнкой. В результате резкого изменения уровня напряжения в сети щётки попадают на эти участки. Возрастает высокое переходное сопротивление, что сопровождается обильным тепловыделением. Для отвода излишнего тепла щёточные узлы снабжены дюралевыми радиаторами.

Сервопривод

Устройство состоит из соосного с катушкой шагового двигателя со щёточным узлом. Электромотор обладает высокооборотным валом. Его мощность позволяет преодолевать усилие прижимных пружин щёточного узла. Чем больше мощность ЭМС, тем больше контактная площадь токосъёмника. Следовательно, сервопривод должен преодолевать высокое трение щеток об обмотку автотрансформатора.

Блоки электроники

Электронная схема осуществляет управление сервоприводом. Чутко реагируя на изменения напряжения входного тока, электронный блок подаёт команды электродвигателю, который перемещает щёточный узел в нужное место контакта с катушкой трансформатора.

По достижении заданного уровня выходного напряжения сервопривод замирает. Данные об изменении параметров тока отражаются на цифровом интерфейсе или стрелочном табло прибора. В случае превышения допустимых показателей напряжения сетевого тока защитное устройство отключает стабилизатор от электросети и нагрузки. Электронный блок запитан от своего малогабаритного маломощного трансформатора. Его первичная обмотка рассчитана на определённый диапазон допустимого входного напряжения.

Советы по выбору стабилизатора

Многообразие видов стабилизаторов, представленных на рынке сбыта, не то, что упрощает процесс выбора, даже его усложняет. Бытовые приборы не придирчивы к небольшим скачкам напряжения в сети. Но газовый котёл, отапливающий жильё, без этого устройства обойтись не может. И электронная начинка, и электромеханические компоненты котла могут надёжно работать только при устойчивых характеристиках питающего напряжения. Если позволяют средства, то электромеханический тип устройства – наиболее подходящий выбор для сложного оборудования.

Несмотря на разнообразие типов стабилизаторов напряжения есть несколько нюансов, на которые следует обратить внимание. При выборе стабилизатора необходимо уточнить страну производителя и внимательно изучить характеристики

У дешёвых приборов китайского производства они могут быть занижены. Поэтому при покупке нужно останавливать выбор на моделях, имеющих запас 20-35% по мощности

При выборе стабилизатора необходимо уточнить страну производителя и внимательно изучить характеристики. У дешёвых приборов китайского производства они могут быть занижены. Поэтому при покупке нужно останавливать выбор на моделях, имеющих запас 20-35% по мощности.

Дальше, при выборе, надо ориентироваться на следующие критерии:

  • минимальная мощность устройства (зависит от максимального количества одновременно работающих бытовых приборов): для средней квартиры – 7,5 КВА, для частного дома – не менее 22 КВА;
  • минимальное входное напряжение (если оно постоянно занижено, то нижний предел регулирования должен начинаться от 140 В);
  • КПД прибора – от 90%;
  • точность стабилизации – нужно выбирать ближе к 5% (максимум 8%);
  • вид установки при монтаже (зависит от конструкции и места);
  • класс электробезопасности (степень защиты) – не ниже IP24.

Правильно подобранный и установленный стабилизатор напряжения повысит надёжность работы бытовой техники и электроприборов, избавит от плохого качества освещения и защитит от перегрузки комнатной проводки. Выбрать по принципу «доступное качество по доступной цене» легко, понимая, как работают различные системы стабилизации напряжения в сети.

Технические характеристики

В прилагаемых к устройству документах всегда обозначаются его основные технические характеристики. Главной из них выступает мощность прибора. Показатели для аппаратов, предназначенных для обслуживания частных домов и офисных помещений, обычно варьируются в диапазоне от 5 до 15 квт. Иногда значение мощности можно определить по наименованию модели. Например, у продукции фирмы «Ресанта» цифры 500, 1000, 5000 и подобные обозначают данный показатель в ваттах.

Помимо этого, в документах указывают значения следующих показателей:

  • на какую сеть рассчитан прибор: однофазную или трехфазную;
  • присутствует ли у него защита от избыточной нагрузки;
  • скорость регулирования (в вольтах в секунду);
  • нижний и верхний пределы напряжения на входе, с которым работает устройство, а также показатель, получаемый на выходе;
  • максимальное возможное отклонение от выходного показателя (в процентах);
  • коэффициент полезного действия;
  • масса и линейные габариты устройства.

Важно! Многие варианты таких стабилизаторов снабжены лампочкой-индикатором задержки и клавишей регулирования. Когда напряжение выходит за границы входного диапазона или перестает подаваться совсем, происходит аварийное отключение прибора, чтобы обслуживаемая им техника не вышла из строя

В период задержки аппарат продолжает отслеживать параметры тока, чтобы вернуться к нормальному режиму, когда угрожающая ситуация отступит. Длительность периода задержки устанавливает сам потребитель, ориентируясь на продолжительность предыдущих неприятных инцидентов. Если стабилизатор обслуживает холодильник, электрический двигатель или другой прибор, потребляющий много энергии, длительность задержки должна быть больше.

Однофазный прибор на 5 кВт

Кому нужен обязательно

В отличие от крупных городов и мегаполисов, энергоснабжение в сельской местности, на дачах и небольших городках страдает низким качеством тока. Перепады напряжения в сети могут достигать больших величин. Особенно опасен верхний порог превышения стандартного уровня. Техника, запитанная от местной электросети, может не выдержать и просто сгореть.

Чтобы защитить бытовые электроустройства и электронную аппаратуру, обязательно используют стабилизаторы. Устройства индивидуального пользования подсоединяют к каждому потребителю тока. В то же время существует стабилизационное оборудование, которое может фиксировать напряжение выходного тока на требуемом уровне сразу во всём доме. Вот для чего нужны стабилизаторы напряжения.

Преимущества и недостатки

К числу главных преимуществ использования такой техники следует отнести:

  • достаточно большой диапазон показателей входа (некоторые модели работают и с пониженными значениями от 90 вольт);
  • компактные габариты устройств, возможность подобрать прибор для монтажа на стену;
  • высокую скорость коррекции показателей;
  • бесшумность работы;
  • невысокий порог восприимчивости к изменениям данных на входе.

Устройство обладает недостатками:

  1. Корректно работать оно способно при температуре окружающей среды, вписывающейся в рамки от -20 до +40 градусов по Цельсию. Если требуется стабилизация сети в условиях зимних морозов, потребуется позаботиться о создании нужного температурного режима.
  2. Коррекция показателей электротока осуществляется ступенчатым образом. Из-за этого возможны непродолжительные скачки в сети.
  3. Бракованное реле может срабатывать некорректным образом.

Важно! Выбор недостаточно мощной модели может инициировать перебои в сети или аварийную ситуацию. Общий (суммарный) мощностной показатель всех предметов электротехники в доме должен составлять не более, чем 0,5 от мощности стабилизирующего устройства

Стабилизаторы напряжения феррорезонансного типа

Стабилизаторы напряжения феррорезонансного или ферромагнитного типа были широко распространены двадцать, тридцать лет назад, в настоящее время такие устройства практически не производятся.

Основной принцип работы феррорезонансного стабилизатора напряжения основан на эффекте резонанса напряжения в электрическом контуре, состоящем из трансформатора и конденсатора.

Феррорезонансный стабилизатор напряжения включает в себя два дросселя и конденсатор. Один дроссель имеет насыщенный магнитный сердечник, а второй дроссель не имеет насыщенного сердечника. Путем подбора характеристик этих дросселей и конденсатора можно изменять соотношение входящего и выходящего напряжения. Данное устройство имеет достаточно высокую стоимость из-за использования дорогих металлоемких комплектующих.

Разновидности прибора

Практически уже не используется, но имеет немало достоинств классический электромеханический стабилизатор. Его отличает плавная регулировка напряжения, что позволяет рассчитывать на высокую точность коррекции параметров работы электрической цепи. Такие модели все еще применяются для обслуживания чувствительной аудиоаппаратуры и систем освещения. Более распространен автоматический стабилизатор напряжения релейного типа, регулировка в котором происходит благодаря механическому переключателю.

Этот вариант целесообразно использовать в частных домах, на дачах и в квартирах. Также растет в популярности цифровой импульсный стабилизатор. Концепция данного прибора полностью укладывается в представления о современной компактной бытовой технике. Импульсные модели имеют дисплеи с меню управления, предусматривают возможность программирования функции стабилизатора, отличаются быстрой регулировкой и высокой степенью надежности.

Принцип работы

Тиристорные стабилизаторы работают по тому же ступенчатому принципу, что и релейные, рассмотренные ранее. Отличие заключается в том, что роль контактов электромеханических реле играют электронные управляемые ключи — тиристоры.

Тиристор представляет собой полупроводниковый прибор, имеющий три электрода — анод, катод и электрод управления. И в зависимости от наличия сигнала управления, он может находиться в закрытом или открытом состоянии. Проводимость в данной схеме имеет односторонний характер. В открытом состоянии движение электрического тока происходит от анода к катоду. Для использования этих электронных ключей в схемах переменного тока обычно поступают следующим образом. Два тиристора соединяют по так называемой встречно-параллельной схеме, то есть, анод одного прибора соединяют с катодом другого и наоборот.

В результате получается комбинированный ключ, обеспечивающий проводимость в обоих направлениях. Аналогично релейным приборам, каждый тиристорный ключ управляет только одной отпайкой вторичной обмотки автотрансформатора и одновременное открытие нескольких ключей не допускается.

Управление тиристорными ключами осуществляется электронным блоком. Алгоритм работы системы управления аналогичен тому, что применяется в релейных стабилизаторах. Система осуществляет постоянный контроль уровня напряжения и при его отклонении подаёт сигнал на открывание соответствующего ключа.

Схема устройства и главные особенности

Главная особенность электромеханического стабилизатора – это регулировка входящего тока ползунковым контактором. Ползунок передвигается по поверхности катушки, тем самым меняя количество рабочих витков обмотки трансформатора. Токосъёмник приводится в движение шаговым электродвигателем.

Обмотка тороидального трансформатора покрыта изолированным проводом. На рабочем участке изоляция удалена. Шаговый электромотор поворачивает токосъёмник точно на определённый угол, заданный электросхемой прибора. Ниже приведены 2 электронные схемы ЭМС.

Схема с операционным усилителем

ЭМС с релейным электроприводом

Плюсы и минусы

Устройство однофазных сервоприводных стабилизаторов напряжения обладает рядом достоинств, которые принесли большую популярность этому виду электрооборудования. Повышенный спрос на ЭМС стимулирует многих производителей изготавливать их различные модификации. Преимущества данной конструкции заключаются в следующем:

  • высокий КПД прибора;
  • погрешность точности стабилизации напряжения – 2%;
  • отсутствие искажений выходных параметров тока;
  • широкий диапазон стабилизации отклонений уровня входного напряжения;
  • тороидальная форма катушки трансформатора сводит до минимума поле рассеивания;
  • габариты и большая площадь сечения провода обмотки допускают высокий порог мощности нагрузки;
  • невысокая стоимость стабилизаторов.

Наряду с достоинствами, ЭМС имеет недостатки:

  • Замедленная реакция сервопривода на изменение напряжения входного тока. Всему виной – механический привод щёточного узла. Например, для сглаживания всплеска напряжения величиной 50 вольт прибору потребуется около 5 секунд. За это время чувствительная электроника может получить значительные повреждения.
  • Низкая износостойкость щёточного узла требует регулярной замены графитовых контакторов. Этот фактор не даёт конкурировать ЭМС с релейными и тиристорными аналогами.
  • Работа щёточного узла при определённом износе щёток может вызывать искрение внутри стабилизаторов. Поэтому применять его категорически нельзя в условиях высокой пожарной опасности.

Бытовой стабилизатор средней мощности

Для обслуживания личного жилища с малым числом потребителей хорошо подойдет стабилизатор на 5000 ватт. Обычно такие устройства отличаются демократичной ценой, небольшими габаритами и высоким КПД работы. Однако прежде, чем приобретать такую модель, нужно убедиться, что суммированная мощность эксплуатируемых потребителей (начиная от светильников и заканчивая электродвигателями и скважинными насосами, используемыми в сельском хозяйстве) не будет превышать 2500 ватт.

Стабилизаторы с реле и цифровым дисплеем широко применяются для коррекции входных сигналов благодаря быстроте срабатывания и возможности работы с широким диапазоном значений. При выборе модели первоочередным критерием должна быть мощность, способная обслужить все имеющиеся в доме электроприборы.

Таблица параметров работы стабилизаторов напряжения различных типов

Тип стабилизатора напряжения Скорость стабилизации Точность стабилизации Диапазон входного напряжения Перегрузочная способность Надежность КПД
Стабилизаторы релейного типа высокая средняя широкий высокая высокая высокий
Стабилизаторы электромеханического типа низкая высокая широкий средняя низкая средний
Стабилизаторы симисторного и тиристорного типа высокая средняя широкий средняя средняя высокий
Стабилизаторы инверторного типа высокая высокая широкий средняя средняя средний
Стабилизаторы феррорезонансного типа высокая высокая средний низкая низкая низкий

При выборе типа стабилизатора напряжения необходимо подробно изучить параметры существующего сетевого электропитания, изучить требования подключаемых электрических приборов и оборудования, использовать лучшую комбинацию свойств стабилизаторов различных типов.

  • Причины низкого напряжения в сети
  • Стабилизатор напряжения SKAT ST 12345, 12 кВт — 12 аргументов
  • Таблицы мощности бытовых тепловых электрических приборов
  • Несколько советов по стабилизаторам

Разновидности стабилизаторов

Из всей палитры разнообразных конструкций СН можно выделить следующие приборы.

Стабилизаторы постоянного напряжения

Линейный стабилизатор

Устройство есть не что иное, как делитель напряжения. СН – это микросхема с тремя выводами. Две боковые клеммы предназначены для входного/выходного тока, средний контакт служит для заземления. Регуляция напряжения происходит путём изменения величины сопротивления одного из плеч делителя. Величина сопротивления выдерживается на постоянно заданном уровне напряжения на выходе микросхемы.

Надо отметить! При большом соотношении входных и выходных напряжений КПД устройств довольно низок. Из-за этого большая часть мощности входного тока рассеивается в виде тепла. Поэтому микросхему помещают на радиатор, который будет поглощать и рассеивать излишнюю тепловую энергию.

Параллельный параметрический стабилизатор на стабилитроне

Один из типов линейных СН – это регулирующее устройство, включённое параллельно нагрузке. В этой схеме применяют полупроводниковый стабилитрон.

Обратите внимание! Стабилитрон (диод Зенера) функционирует по принципу обратного смещения в режиме пробоя. Ток, проходящий через радиодеталь, резко увеличивается, дифференциальное сопротивление резко падает

Из-за этого во время пробоя напряжение в стабилитроне выдерживается на одном уровне с высокой точностью.

Стабилитрон

Стабилитроны с интегральной структурой ценятся, как самые стабильные и точные поставщики опорного напряжения. СН с высокой дифференциальной величиной сопротивления применяют на участке ВАХ (вольт-амперная характеристика) в диапазоне рабочих токов.

Последовательный стабилизатор на биполярном транзисторе

Как работает компенсационный стабилизатор, можно понять из схемы ниже.

Схема ПСН

Входное напряжение стабилитрона Uz равно показателю базы транзистора. Напряжение на выходе Uout будет означает разницу:

Uout = Uz – Ube,

где Ube – напряжение между эмиттером и базой.

В устройстве отсутствует контур авторегулирования. Схема последовательного стабилизатора повторяет параллельный параметрический СН, только подсоединённый к входу повторителя эмиттера. Такие радиодетали используют в платах с низкими токами нагрузки, измеряемыми в единицах мкА.

Последовательный компенсационный стабилизатор с применением операционного усилителя

Выходной показатель напряжения в таких стабилизаторах соразмеряется с величиной опорного напряжения. Их разница обрабатывается операционным усилителем рассогласования.

Несмотря на давность использования такого вида стабилизаторов (около 50 лет), эксплуатация их до сих пор актуальна. Примером может служить СН в интегральном виде – микросхема КР142ЕН22А.

Последовательный СН КР142ЕН22А

Импульсный стабилизатор

Внешняя энергия попадает серией коротких импульсов в накопитель (дроссель или конденсатор). Накопленная энергия затем подаётся в нагрузку. Применение накопителя даёт возможность влиять на величину выходного напряжения по отношению к входному показателю.

Импульсный СН отличается от линейного аналога более высоким КПД. Также он может быть как понижающим, так и повышающим стабилизатором.

Стабилизаторы переменного напряжения

Такие устройства разделяют на две группы.

Феррорезонансные стабилизаторы

ФС применялись в основном для ламповых телевизоров прошлого века. Конструкция приборов строилась на базе двух дросселей. Один был с ненасыщаемым сердечником, вторая катушка выступала в роли конденсатора.

Определённый подбор характеристик катушек (дросселей) позволяет стабилизировать напряжение при резких изменениях входного показателя. Недостатком феррорезонансного стабилизатора считается высокая чувствительность к колебаниям частоты напряжения сетевого тока.

Современные стабилизаторы

Радиотехническая промышленность выпускает несколько типов стабилизаторов:

  • электромеханические (автотрансформаторы);
  • феррорезонансные;
  • электродинамические;
  • электронные.

Электронные СН, в свою очередь, подразделяются на ступенчатые симисторные, тиристорные, релейные, а также плавные компенсационные и комбинированные.

Дополнительная информация. Различные модели СН предназначены как для однофазной сети (220 в), так и для трёхфазного тока (400 в). Их мощность варьируется от нескольких ватт до мегаватт.

СН трёхфазного тока

Для дома

Нужно понимать, что для дома даже погрешность релейных моделей в 8-10% является приемлемой и большинство приборов «переваривают» такие отклонения спокойно

У тиристорных точность работы выше, она обычно 3-5%, казалось бы, зачем это в быту? Но наряду с этим они реагирует быстрее, как писали ранее и перегрузки, в моменте, терпят гораздо бОльшие, а это важно при пусковых токах насосов, станков и пр. Ну и дорогая аудио- и видео-техника тяготеет к хорошему питанию

Пример

В качестве примера, рассмотрим стабилизаторы от одного производителя: тиристорные Энергия Classic и Энергия Ultra имеют точность работы 5 и 3% соответственно, а перегрузку терпят в 180%. Представители релейного сегмента Энергия Voltron работают с точностью 5% и способны вытерпеть кратковременную перегрузку в 110%.

Тиристорные трехфазные стабилизаторы

Тиристорные стабилизаторы, на данный момент, выпускают только однофазные, но для сети 380 В приобретается модульный комплект из 3-х однофазных приборов, а если появляется прибор требующий ровно 380 В, то докупается блок контроля сети.

Популярные модели тиристорных стабилизаторов напряжения

Стабилизатор напряжения Энергия Ultra 35000

Подробнее

Цена: 160 000 руб.

  • — Мощность 35 кВ·А
  • — Электронный
  • — Настенное крепление
  • Габариты: 735х615х545 мм
  • Масса: 100 кг.

Стабилизатор напряжения Энергия Classic 9000

Подробнее

Цена: 32 000 руб.

  • — Мощность 9 кВ·А
  • — Электронный
  • — Настенное крепление
  • Габариты: 320х420х180 мм
  • Масса: 20 кг.

Стабилизатор напряжения Энергия Classic 12000

Подробнее

Цена: 37 400 руб.

  • — Мощность 12 кВ·А
  • — Электронный
  • — Настенное крепление
  • Габариты: 360х500х200 мм
  • Масса: 32 кг.

Стабилизатор напряжения Энергия Classic 7500

Подробнее

Цена: 27 100 руб.

  • — Мощность 7.50 кВ·А
  • — Электронный
  • — Настенное крепление
  • Габариты: 320х420х180 мм
  • Масса: 20 кг.

Стабилизатор напряжения Энергия Ultra 12000

Подробнее

Цена: 45 400 руб.

  • — Мощность 12 кВ·А
  • — Электронный
  • — Настенное крепление
  • Габариты: 360х500х200 мм
  • Масса: 32 кг.

Смотреть другие тиристорные модели

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.