Новые генераторы энергии Генератор с самозапиткой своими руками

Виды и их особенности применения

Технологическое оборудование этого класса классифицируется по следующим параметрам:

  1. Сфере иcпользования;
  2. Типу сжигаемого топлива;
  3. Числу фаз;
  4. Мощности.

Начнем рассмотрение с области применения. В зависимости от этого фактора генераторы подразделяются на бытовые и профессиональные, хотя простой электрогенератор можно собрать и своими руками. Первые обычно выполнены в виде компактного силового агрегата и имеют мощность от 0,7 до 25 кВт. Они укомплектовываются двигателем внутреннего сгорания, работающем на бензине или дизельном топливе и оснащенном системой воздушного охлаждения. Такие устройства применяются в качестве резервных источников энергии для бытовых приборов и электроинструмента, как и электрогенератор с самозапиткой собранный своими руками.

Они отличаются небольшим весом и низким уровнем шума, поэтому находят широкое применение в частных домовладениях. Эксплуатация и обслуживание таких агрегатов не представляет сложности и справиться с ней сможет каждый, как и собрать электрический генератор своими руками.

Смотрим видео, немного о генераторах их видах и приемуществах:[su_youtube url=»https://www.youtube.com/embed/FwDmvJ2qJkA»]

Профессиональное оборудование рассчитано на работу в качестве постоянного источника энергоснабжения. Обычно такие генераторы используются в медицинских учреждениях и административных зданиях, а также в строительной отрасли при проведении аварийных и других работ. Агрегаты этого класса имеют значительный вес и не отличаются тихой работой, что значительно усложняет их транспортировку и выбор места для установки. Но в то же время они обладают более высоким моторесурсом и надежностью при эксплуатации в экстремальных условиях. К достоинствам таких электрогенераторов стоит отнести и экономное расходование топлива.

Следующий параметр, используемый при классификации – тип топлива:

  • Бензин;
  • Дизель;
  • Газ.

Первые имеют небольшой диапазон мощностей, но в то же время отличаются мобильностью и простотой в применении, как и электрогенератор используемый для дома, сделанный своими руками. Они используются в качестве резервных источников, так как обладают небольшим моторесурсом и высокой стоимость получаемой энергии.

Дизельные агрегаты имеют широкий диапазон мощностей и могут использоваться для электроснабжения общественных учреждений и даже небольших поселков. Однако они не отличаются компактными размерами и тихой работой, поэтому должны быть установлены на укрепленном фундаменте в отдельном помещении.

Газовые электрогенераторы применяются в основном на промышленных объектах. Они отличаются высокой экологичностью и дешевизной вырабатываемой энергии.

Различаются силовые установки и по количеству фаз на:

  • Одно;
  • Трех.

Первые подходят для приборов с однофазным питанием в соответствующих сетях. Вторые могут служить источником энергии для различных приборов и устанавливаются в домах с трехфазной разводкой сети.

Двигатели на основе реактивного действия пара или жидкости

Все уже привыкли к традиционным двигателям, но их эффективность можно значительно увеличить. Источником свободной энергии, которая практически не используется, может быть поток жидкой или газовой среды. Еще 1760 г. был изобретен двигатель Зегнера, основанный на реактивном действии водного потока. Изобретатель установил, что при увеличении давления струи на выходе в водяной мельнице возникает избыточная мощность, ускоряющая ротор. Здесь начинает действовать принцип «Сегнерова колеса», создающий самовращение за счет реактивного действия потока при входе воды через ось вращения (рис. ниже а).

Ротор Сегнера – схематичное изображение

Кроме того, если наклонить сопла вниз, кроме момента вращения появляется осевая тяга, поднимающая ротор и снижающая нагрузку на упорный подшипник.

Другим достоинством устройства является возможность подачи воды самотеком. Чтобы обеспечить эффективное вращение, входное сечение трубы делается больше, чем суммарное от всех сопел. При этом, можно увеличить кинетическую энергию за счет центробежных сил. Здесь необходимо выбрать оптимальную траекторию движения потока — логарифмическую спираль, изображенную на фиг. 3 б. Подобную форму лопастей и направляющих потока имеют современные вентиляторы и насосы, что делает их чрезвычайно эффективными.

Таким образом, реактивный эффект и ускорение жидкости, движущейся по спирали создает ротору момент вращения, приводящий к его ускорению, после чего внешний привод отключается и машина может работать в генераторном режиме.

Для сжимаемой среды эффект усиливается, поскольку потенциальная энергия накапливается от центробежных сил, после чего на выходе из сопел происходит резкое расширение жидкости. Этот фактор учел в подобной конструкции австрийский изобретатель Шаубергер, используя аэрированную воду. Упругая среда позволила уменьшить потери в потоке, так как несжимаемая жидкость не может перемещаться с ускорением без турбулентности и образования разрывов.

Подобный способ представляет интерес в плане получения прироста потенциальной энергии, когда не затрачиваются дополнительные силы от первичного источника. В данном случае рабочая масса движется по линии действия центробежной силы.

Устройство и принцип работы

Принцип работы

Машина, способная преобразовать механическую энергию в электрическую называется силовой установкой. Ее принцип действия основан на хорошо знакомом каждому с курса школьной физики явлении электромагнитной индукции.

В нем говорится, что в проводнике, перемещающемся в магнитном поле и пересекающем силовые линии образуется ЭДС. Поэтому он может рассматриваться в качестве источника электроэнергии.

Но так как этот способ не совсем удобен для практического применения, то в генераторах его несколько изменили, используя вращательное движение проводника. В теоретическом плане силовые установки представляют собой систему электромагнитов и проводников. Но в конструктивном они состоят из двигателей внутреннего сгорания и генераторов.

Схема силовой установки, собранной своими руками

Многие, стараясь сэкономить средства, стараются насколько это возможно создавать самодельное оборудование, например, генератор. То, что этот прибор необходим в каждом доме объяснять никому не нужно, но промышленная модель стоит дорого.

Чтобы получить аналогичное оборудование в более дешевом варианте придется собирать его самому. Существуют различные схемы электрогенераторов, собранных своими руками: от самых простых – ветряков, до более сложных – выполненных на основе двигателей внутреннего сгорания. Рассмотрим некоторые из них.

Ветряк – простой вариант

Схема Вятряка

Собрать такой агрегат можно из подручных материалов. Он может использоваться, как в походе, так и на даче и относится к бестопливным электрогенераторам собранным своими руками. Для него потребуются:

  • Электродвигатель постоянного тока (ему будет отводиться роль генератора);
  • Кареточные узел и ведомая звездочка со взрослого велосипеда;
  • Роликовая цепь от мотоцикла;
  • Дюралюминий толщиной 2 мм.

Все это не требует больших затрат, а возможно и вообще найдет бесплатно у вас в гараже. Как сделать электрогенератор своими силами вы сможете посмотреть на видео ниже. Сборка также не требует особых знаний. На вал электродвигателя устанавливается цепная звездочка.

Смотрим видео, подробная инструкция по сборке:

https://youtube.com/watch?v=yJaOOqEdYWs

При этом может быть прикреплен к велосипедной раме. Лопасти ветряка делаются немного загнутыми и по длине до 80 см. Даже при небольшом ветре такое устройство способно давать то от 4 до 6 ампер и напряжение 14 В. В качестве генератора для ветряка может быть взят даже двигатель со старого сканера. Это самый простой электрогенератор, который можно собрать своими руками.

Силовая установка на основе старого генератора от мотоблока

Прежде, чем искать схему самодельного устройства решите, какой вариант для вас будет самым доступным. Возможно вы сможете найти генератор от старого мотоблока и на его основе соберете устройство, которое сможет обеспечить питание электролампы, размещенные в нескольких помещениях.

В качестве генератора для такой установки подойдет асинхронный двигатель серии АИР с частотой вращения до 1600 об/мин и мощностью до 15 кВт. Его связывают при помощи шкивов и приводного ремня с мотором, снятым с мотоблока. Диаметр шкивов должен быть таким, чтобы частота вращения электродвигателя, используемого как генератор была на 15% выше паспортного значения.

Смотрим видео, подробно о данных работах:

Обмотки двигателя должны быть соединены звездой, причем параллельно каждой их паре включается конденсатор. В итоге получается треугольник. Но чтобы обеспечить работу генератора необходимо, чтобы все генераторы имели одинаковую емкость.

Более подробные схемы электрогенератора своими руками, как самого простого ветряка, так и сложных моделей можно найти в сети. Если у вас есть желание и возможность собрать электрогенератор для дачи своими силами, то он поможет чувствовать себя комфортно в походе или на даче. Для обеспечения энергией более сложного оборудования все же лучше приобретать промышленные модели, отличающиеся высокой надежностью и экономичностью.

Гениальный провидец и гость из будущего

Самым известным и наиболее загадочным энтузиастом идеи был серб Никола Тесла. Генератор свободной энергии — лишь одно из изобретений гениального ученого, обладателя почти тысячи патентов. Он родился в середине XIX века на территории нынешней Хорватии. У него, как и у некоторых других нетипичных людей, существует как бы две биографии.

Великий ученый

Считается, что сербский ученый не только положил начало современной электротехнике, но и внес важнейший вклад в продолжение промышленной революции — так называемый второй ее этап. Тесла получил известность в различных областях науки. На его счету устройства переменного тока, синхронный генератор, асинхронный двигатель и множество других изобретений. Широко известны официальные данные из его биографии:

  1. С 1884 года Никола Тесла жил в США. За короткое время сотрудничества с Эдисоном он на спор смог улучшить множество его аппаратов на постоянном токе. Позже пути ученых разошлись, грянула знаменитая «Война токов».
  2. В 1887 году серб создал компанию Tesla Electric Company.
  3. Занимался изучением высокочастотных магнитных полей. Часть его разработок и сейчас используется в медицине и электротерапии. Показательно, что ученый сначала испытывал действие переменных токов на себе.
  4. Разработал теорию полей и способы передачи электроэнергии с помощью многофазного переменного тока. Сейчас они являются основой мировой энергетической системы. Например, свет поступает в дома и на предприятия.
  5. Еще до Маркони описал принципы радиосвязи. Позже усовершенствовал передачу радиочастот на большие расстояния.
  6. Придумал устройства для обнаружения подводных лодок и подавления звука.
  7. С его подачи на улицах городов появилась наружная реклама на основе светящихся трубок.
  8. Сделал первый электродвигатель. Провел успешные испытания электромобиля. Изобрел электрическую подводную лодку.
  9. Работал над изучением и применением рентгеновских лучей.
  10. Предсказывал появление оружия типа атомной бомбы, продумывал способы изучения ядра.
  11. Первым построил аппарат, которым можно было управлять дистанционно.
  12. Неоднократно озвучивал идеи, используемые позже в развитии робототехники.

Загадочный волшебник

Многие изобретения ученого ушли вместе с ним. Успешные эксперименты с эфиром не объяснены до сих пор, хоть известен принцип работы генератора Теслы. Бесплатная энергия из эфира при этом не была его самоцелью. Ученый стремился к познанию мира. Революционеров на этом поприще всегда окружают тайны. Для понимания загадки великого серба интересно будет узнать:

  1. Будущий инженер и изобретатель мог стать священником. Он получил не только техническое, но и философское образование.
  2. В молодости увлекался игрой в карты, пока не проигрался до нитки, а долги не пришлось выплачивать родственникам.
  3. В США после ссоры с Эдисоном был бродягой, подсобным рабочим, нанимался на поденщину, рыл канавы.
  4. Никогда не был женат. Ни с кем не сходился близко. Предпочитал работать в одиночку.
  5. Проник в тайну шаровых молний, умел создавать их искусственным путем.
  6. Был суеверен, обладал даром предвидения. Несколько раз, используя эту способность, спасал людей от возможных неприятностей и даже гибели.
  7. Обладал невероятной работоспособностью. Спал по 2 часа в сутки.
  8. Начинал строить уединенную лабораторию на тогда пустынном Лонг-Айленде. Официально в этом месте должна была появиться башня под радиостанцию. Неофициально именно здесь могли прорабатываться на практике идеи использования атмосферного электричества. Для завершения проекта якобы не хватило денег. Впоследствии база была уничтожена.
  9. С башней на Лонг-Айленде связаны слухи по разработке лучей смерти, направленного боевого излучателя и ультразвуковой пушки. Позже идеи серба могли быть применены и при создании лазера.
  10. Во время Первой мировой войны Тесла не только собирал средства для помощи Сербии, но и задумывался над созданием абсолютного оружия, способного разом уничтожить вражеские армии. Неизвестно, как далеко он зашел на этом пути.
  11. Некоторые исследователи связывают с ученым тайну Тунгусского метеорита. Он действительно интересовался незадолго до падения небесного тела отдаленными и наиболее незаселенными территориями Сибири.
  12. В Индийском океане также наблюдались события, подобные тунгусским. Серба обвиняли в том, что он «раскачал» здесь эфир.

https://youtube.com/watch?v=ADgslAI14Dw

Генератор Тесла: как работает, как сделать бестопливный прибор своими руками в 220в — схема

Изобретения знаменитого сербского учёного Николы Тесла намного опередили развитие науки в области альтернативных источников энергии. Его считают человеком, подарившим электричество людям.

Созданные им устройства, в том числе электродвигатель, безтопливный генератор, резонасный трансформатор и другие открытия создали стартовую площадку для перехода на новый этап промышленного развития. Настоящей мечтой гения стала идея подарить людям бесплатное электричество.

Генератор Тесла, по замыслу изобретателя, мог передавать энергию электрического тока беспроводным способом на большие расстояния.

Что это такое

Фактически, безтопливный электрический генератор — это вечный двигатель, для работы которого не нужны дополнительные ресурсы. Получение свободной энергии — мечта человечества, которая станет толчком для переустройства общественных отношений общества, приведёт к эволюционному скачку развития.

Эфир Тесла

Реализовать идею получения альтернативной энергии мог бы стать генератор Тесла, который черпает энергию из эфира.

Важно. Много ходят споров, существует ли эфир

По мнению Н. Тесла — это легчайший газ, из почти неуловимо малых частиц. Они движутся с невообразимой скоростью. Н.

 Тесла считал, что каждый вид волны работает на своей частоте и в определённой среде. Эфир — среда для почти мгновенной передачи электромагнитных волн.

Его поле способно переносить на громадные расстояния электромагнитные, гравитационные волны.

Принцип действия безтопливного генератора

Эфир — источник неограниченной энергии. Электромагнитные волны пронизывает окружающую нас атмосферу. У земли низкий энергетический потенциал, у света, солнечных лучей — высокий.

Если установить улавливатель между положительно заряженными частицами света и отрицательно заряженным потенциалом земли, то можно получать электрический ток. В эту цепочку нужно вставить накопитель конденсатор, к примеру, литиевую батарейку.

Она будет улавливать и накапливать энергию. В момент подключения к конденсатору источника питания, произойдёт разрядка накопителя.

Основные звенья безтопливного генератора Н. Тесла состоят:

  1. Расположенного над землёй приёмника.
  2. Накопителя-конденсатора.
  3. Заземление.

Обратите внимание! Безтопливный электрогенератор базируется на получении электрического тока из эфира. Используют два разно заряженных потенциала

Земля — ресурс отрицательных электронов, световая волна, в том числе от солнца — положительных. Один из электродов заземляется, другой — выводится на экранированный экран.

В качестве накопителя в цепи устанавливают конденсатор, который аккумулирует энергию.

Схема, как сделать безтопливный генератор Тесла своими руками

Применение

В быту и на производстве такие генераторы широко применяются в различных сферах и областях, но наиболее востребованы они для выполнения следующих функций:

  1. Использование в качестве двигателей для ветряных электростанций, это одна из наиболее популярных функций. Многие люди самостоятельно изготавливают асинхронные генераторы для задействования их в этих целях.
  2. Работа в качестве ГЭС с небольшой выработкой.
  3. Обеспечение питанием и электроэнергией городской квартиры, частного загородного дома или отдельного бытового оборудования.
  4. Выполнение основных функций сварочного генератора.
  5. Бесперебойное оснащение переменным током отдельных потребителей.

Как избежать мошенников

Здесь все очень просто, следуйте не сложным советам:

  1. Думайте головой.
  2. Расскажите своим друзьям и дайте почитать эту статью.
  3. Даже если очень заинтересовал прибор, попросите привезти его лично и показать работу. Продавец откажется в любом случае, а вы попробуйте увеличить цену в несколько раз. Вы думаете если будет большая цена никто не приедет? Конечно, нет, ведь они знают, что продают полную туфту.

А на всякий случай покажем несколько промышленных бестопливных генераторов, которые успешно продаются и сейчас.
Статья по теме: Выгодно ли устанавливать солнечные батареи в частном доме.

Бестопливное устройство для получения бесплатного электричества

Известно, что возникновению магнитного поля в любом двигателе способствуют обычные катушки индуктивности, изготовленные из медного или алюминиевого провода. Чтобы компенсировать неизбежные потери вследствие сопротивления этих материалов, двигатель должен работать непрерывно, используя часть вырабатываемой энергии на поддержание собственного поля. Это значительно снижает КПД устройства.

В трансформаторе, работающем от неодимовых магнитов, нет катушек самоиндукции, соответственно и потери, связанные с сопротивлением, отсутствуют. При использовании постоянного магнитного поля токи вырабатываются ротором, вращающимся в этом поле.

Новые генераторы энергии

> Генераторы > Новые генераторы энергии

Новые генераторы энергии — о чём это? В настоящее время еще выгодно получать энергию из нефти, газа и угля. Использование гидроэлектростанций является трудоемким и затратным способом, а атомная энергетика представляет опасность. Запасы природного топлива скоро подойдут к концу, искать новые источники альтернативной и свободной энергии крайне необходимо. Под обозначением СЕ понимается независимая энергия из окружающей среды. На рисунке ниже изображен в действии знаменитый генератор свободной энергии Никола Тесла.

Генератор свободной энергии Никола Тесла

Для развития любой цивилизации необходим непрерывный рост восполняемой свободной энергии, ее новые источники постоянно ищут. Для этого требуется создавать генераторы с самозапиткой, использующие следующие явления:

статическое электричество;
особенности действия магнитного поля, создаваемого постоянными магнитами (блокинг-генераторы);
извлечение тепла путем механического нагрева;
использование ресурсов земли и космоса;
тепловые насосы;
СЕ воды, ветра и магнитного поля земли;
создание биогазовых установок;
получение водородного топлива из воды;
СЕ солнца.

То, что ранее казалось фантастикой, сейчас уже находит промышленное применение, хотя принцип получения свободной энергии является затратным. Новые устройства заводского изготовления имеют высокие цены и не все генераторы оправдывают ожидания. Поэтому целесообразно часть затрат сократить, изготовив установки своими руками.

Элементы Пельтье

Вначале элементы нашли применение в военной и космической технике, где требуется не очень мощное устройство, подверженное к тому же вибрациям и тряске. Сейчас новые устройства широко используются в быту, чаще всего для охлаждения электронной аппаратуры и в изготовлении небольших переносных холодильников. Холодильники с модулями можно изготовить своими руками, но они также есть в продаже.

Эффект Пельтье проявляется, когда на разные поверхности полупроводниковой пластины подается постоянное напряжение: одна из сторон нагревается, а другая – охлаждается. Процесс является обратимым: при поддерживании между сторонами пластины температурного перепада, между ними протекает электрический ток и устройство выполняет функцию генератора. Схема его строения изображена на рисунке ниже.

Термоэлектрический генератор (элемент Пельтье)

Это дает возможность применять элемент Пельтье в качестве генератора электроэнергии. Мощные установки здесь обойдутся слишком дорого, а в качестве независимых зарядных устройств при сборке своими руками для мобильников они подходят в самый раз.

Преимуществом термоэлектрического генератора является отсутствие подвижных частей, которые обычно подвергаются износу и требуют обслуживания. Недостаток — это низкая производительность, поскольку при одной работающей стороне, с другой приходится рассеивать энергию во внешнюю среду.

Испарительные насосы

Принцип действия теплового насоса основан на сборе и повышении потенциала тепла через обратный цикл Карно. Система заполнена фреоном и состоит из следующих частей:

  • наружный и внутренний контуры с теплоносителем;
  • компрессор;
  • испаритель;
  • конденсатор.

Тепловая энергия берется из окружающей среды. Она является условно свободной, поскольку температура воды, воздуха и грунта всегда разная

Важно ее постоянное возобновление. Принцип действия теплового генератора можно смоделировать, если установить внутри обычного холодильника теплообменник, через который прокачивается теплая вода

Генератор будет работать на ее охлаждение, а тепло выделяется в радиаторе задней стенки холодильника. По такому методу работает тепловой насос для отопления дома, забирая тепло из окружающей среды и перенося его в помещения. Источниками свободной тепловой энергии могут быть технические или грунтовые воды, водоем, наружный воздух, грунт.

На рисунке ниже схематически изображена установка отопления дома тепловым насосом.

Схема работы теплового насоса

Вход тепла происходит от внешнего контура (синего цвета), по которому циркулирует теплоноситель с отбором тепла (свободной энергии) из окружающего пространства, например, из водоема. В испарителе теплоноситель передает тепло (4-70С) циркулирующему через тепловой насос хладагенту, температура кипения которого составляет всего +100С.

Хладагент закипает и переходит в газообразное состояние. Теплоноситель, отдав часть тепла, уходит на подогрев, а газообразный хладагент подается на компрессор, где он сжимается, и его температура значительно повышается.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.