Коллекторный двигатель- принцип работы и отличия от бесколлекторного двигателя

Определение и устройство

В справочниках и энциклопедиях приводят, такое определение:

«Коллекторным называется электродвигатель, у которого датчиком положения вала и переключателем обмоток является одно и то же устройство – коллектор. Такие двигатели могут работать либо только на постоянном токе, либо и на постоянном, и на переменном.»

Коллекторный электродвигатель, как и любой другой, состоит из ротора и статора. В этом случае ротор – является якорем. Напомним, что якорем называется та часть электрической машины, которая потребляет основной ток, и в которой индуцируется электродвижущая сила.

Для чего нужен и как устроен коллектор? Коллектор расположен на валу (роторе), и представляет собой набор продольно расположенных пластин, изолированных от вала и друг от друга. Их называют ламелями. К ламелям подключаются отводы секций обмоток якоря (устройство якорной обмотки КДПТ вы видите на группе рисунков ниже), а точнее к каждой из них подключен конец предыдущей и начало следующей секции обмотки.

Ток к обмоткам подаётся через щетки. Щётки образуют скользящий контакт и во время вращения вала соприкасаются то с одной, то с другой ламелью. Таким образом происходит переключение обмоток якоря, для этого и нужен коллектор.

Щеточный узел состоит из кронштейна с щеткодержателями, непосредственно в них и устанавливаются графитовые или металлографитовые щетки. Для обеспечения хорошего контакта щетки прижимаются к коллектору пружинами.

На статоре устанавливаются постоянные магниты или электромагниты (обмотка возбуждения), которые создают магнитное поле статора. В литературе по электрическим машинам вместо слова «статор» чаще используют термины «магнитная система» или «индуктор». На рисунке ниже изображена конструкция ДПТ в разных проекциях. Теперь же давайте разберемся как работает коллекторный двигатель постоянного тока!

Дизельные двигатели

Дизельный мотор — это вид двигателя, который расходует как горючее дизельное топливо. Основные системы и элементы движка идентичны бензиновому брату, различие состоит в системе впрыска и воспламенении смеси. В дизельном моторе отсутствуют свечи зажигания, поскольку воспламенение смеси от искры не нужно.

На моторах такого типа устанавливаются свечи накала, которые разогревают воздух в камере сгорания, который превышает температуру воспламенения. После этого через форсунки подаётся распылённое топливо, которое сгорает, чем создаёт достаточное давление для привода в движения поршня, который раскручивает коленчатый вал.

Дизель с турбонаддувом

Одним из подвидов дизельного ДВС считается турбодизель. На этом моторе установлена турбина, которая имеет вид улитки. При помощи турбины в мотор подаётся больше количество сжатого воздуха, который даёт больше детонационный эффект, за счёт чего движок можно быстрее разогнать.

Устройство магнитного пускателя

Тоже ничего сложного.

Реверсивная схема По сути, данная схема в независимости от величины пускателя работает аналогично предыдущей. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами.

Схема подключения реверсивного магнитного пускателя является ядром управления, так как много электрооборудования работает на реверсе , и именно этот аппарат изменяет направление вращения двигателя. Сравнение магнитного и гибридного пускателя: Post navigation Реверсивная и нереверсивная схема подключения пускателя Магнитный пускатель — это коммутационный прибор, с помощью которого на расстоянии многократно можно включать и отключать потребителя электродвигатели, электрические ТЭНы, электрокотлы и так далее.

Например приставка ПКИ. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до В постоянного тока и до В переменного. При схеме включения приведенной выше следует учесть напряжение номинальное катушки.

В схеме реализована защита от короткого замыкания, это контакты КМ1. В прорези нижней части магнитопровода устанавливается катушка.

Существуют также катушки на 12, 24, 36, 42, вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение. Она подходит к магнитному пускателю КМ1, а также при помощи перемычки с тем же номером контакта на КМ2. Обсудить Редактировать статью Если правильно подключить по схеме реверсивный пускатель, то получится запустить любой электродвигатель и заставить вращаться его не только вперед, но и назад.

На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен. Подключение пускателя с катушкой В к сети Собственно, вариантов подключения контакторов много, опишем несколько.

Подгорел контакт. Магнитный пускатель представляет собой комбинированное низковольтное электромеханическое устройство, предназначенное для пуска трехфазных как правило электродвигателей, для обеспечения их непрерывной работы, для безопасного отключения питания, а иногда и для защиты цепей электродвигателя и других подключенных цепей.
Схема управления двигателем с двух и трех мест

Трёхфазный бесколлекторный электродвигатель постоянного тока

Большинство БД выполняются в трехфазном исполнении. Для управления таким приводом в контролере имеется преобразователь постоянного напряжения в трехфазное импульсное (см. рис.7).

Чтобы объяснить, как работает такой вентильный двигатель, следует вместе с рисунком 7 рассматривать рисунок 4, где поочередно изображены все этапы работы привода. Распишем их:

  1. На катушки «А» подается положительный импульс, в то время как на «В» — отрицательный, в результате якорь сдвинется. Датчиками зафиксируется его движение и подастся сигнал для следующей коммутации.
  2. Катушки «А» отключается, и положительный импульс идет на «С» («В» остается без изменения), далее подается сигнал на следующий набор импульсов.
  3. На «С» — положительный, «А» — отрицательный.
  4. Работает пара «В» и «А», на которые поступают положительный и отрицательный импульсы.
  5. Положительный импульс повторно подается на «В», и отрицательный на «С».
  6. Включаются катушки «А» (подается +) и повторяется отрицательный импульс на «С». Далее цикл повторяется.

В кажущейся простоте управления есть масса сложностей. Нужно не только отслеживать положение якоря, чтобы произвести следующую серию импульсов, а и управлять частотой вращения, регулируя ток в катушках. Помимо этого следует выбрать наиболее оптимальные параметры для разгона и торможения. Стоит также не забывать, что контроллер должен быть оснащен блоком, позволяющим управлять его работой. Внешний вид такого многофункционального устройства можно увидеть на рисунке 8.

Определение

Бесколлекторным называют электродвигатель постоянного тока, ток в обмотках которого переключает специальное устройство-коммутатор — он носит название «драйвер» или «инвертор» и эти обмотки всегда расположены на статоре. Коммутатор состоит из 6 транзисторов, они и подают ток в ту или иную обмотку, в зависимости от положения ротора.

В отечественной литературе такие двигатели называют «вентильными» (потому что полупроводниковые ключи называют «вентилями»), и есть разделение таких электромашин на два вида по форме противо—ЭДС. В зарубежной литературе такое различие сохраняется, один из них называют аналогично русскому «BLDC» (brushless direct current drive или motor), что в дословном переводе звучит как «бесщёточный двигатель постоянного тока» в их обмотках возникает трапецеидальная ЭДС. Вентильные же электродвигатели с синусоидальной ЭДС называют PMSM (Permanent magnet synchronous machine), что переводится как «синхронный электродвигатель с возбуждением постоянными магнитами».

Трехфазные бесколлекторные электродвигатели

Очень много бесколлекторных электродвигателей для авиамоделей выполняется под питание постоянным током. Но существуют и трехфазные экземпляры, в которых устанавливаются преобразователи. Они позволяют из постоянного напряжения сделать трехфазные импульсы.

Работа происходит следующим образом:

  1. На катушку «А» поступают импульсы с положительным значением. На катушку «В» — с отрицательным значением. В результате этого якорь начнет двигаться. Датчики фиксируют смещение и подаётся сигнал на контроллер для осуществления следующей коммутации.
  2. Происходит отключение катушки «А», при этом импульс положительного значения поступает на обмотку «С». Коммутация обмотки «В» не претерпевает изменений.
  3. На катушку «С» попадается положительный импульс, а отрицательный поступает на «А».
  4. Затем вступает в работу пара «А» и «В». На них и подаются положительные отрицательные значения импульсов соответственно.
  5. Затем положительный импульс опять поступает на катушку «В», а отрицательный на «С».
  6. На последнем этапе происходит включение катушки «А», на которую поступает положительный импульс, и отрицательный идет к С.

И после этого происходит повтор всего цикла.

Производители электродвигателей

Российские производители электродвигателей

Регион Производитель Асинхронный двигатель Синхронный двигатель УД КДПТ
СДОВ СДПМ, серво СРД, СГД Шаговый
Краснодарский край Армавирский электротехнический завод
Свердловская область Баранчинский электромеханический завод
Владимир Владимирский электромоторный завод
Санкт-Петербург ВНИТИ ЭМ
Москва ЗВИМосковский электромеханический завод имени Владимира Ильича
Пермь ИОЛЛА
Республика Марий Эл Красногорский завод «Электродвигатель»
Воронеж МЭЛ
Новочеркасск Новочеркасский электровозостроительный завод
Санкт-Петербург НПО «Электрические машины»
Томская область НПО Сибэлектромотор
Новосибирск НПО Элсиб
Удмуртская республика Сарапульский электрогенераторный завод
Киров Электромашиностроительный завод Лепсе
Санкт-Петербург Ленинградский электромашиностроительный завод
Псков Псковский электромашиностроительный завод
Ярославль Ярославский электромашиностроительный завод

Аббревиатура:

  • АДКР —
  • АДФР —
  • СДОВ — синхронный двигатель с обмоткой возбуждения
  • СДПМ — синхронный двигатель с постоянными магнитами
  • СРД — синхронный реактивный двигатель
  • СГД — синхронный гистерезисный двигатель
  • УД — универсальный двигатель
  • КДПТ — коллекторный двигатель постоянного тока
  • КДПТ ОВ —
  • КДПТ ПМ —

Производители электродвигателей ближнего зарубежья

Страна Производитель Асинхронный двигатель Синхронный двигатель УД КДПТ
СДОВ СДПМ, серво СРД, СГД Шаговый
Беларусь Могилевский завод «Электродвигатель»
Беларусь Полесьеэлектромаш
Украина Харьковский электротехнический завод «Укрэлектромаш»
Молдова Электромаш
Украина Электромашина
Украина Электромотор
Украина Электротяжмаш

Производители электродвигателей дальнего зарубежья

Страна Производитель Асинхронный двигатель Синхронный двигатель УД КДПТ
СДОВ СДПМ, серво СРД, СГД Шаговый
Швейцария ABB Limited
США Allied Motion Technologies Inc.
США Ametek Inc.
США Anaheim automation
США Arc System Inc.
Германия Baumueller
Словения Domel
США Emerson Electric Corporation
США General Electric
США Johnson Electric Holdings Limited
Германия Liebherr
Швейцария Maxon motor
Япония Nidec Corporation
Германия Nord
США Regal Beloit Corporation
Германия Rexroth Bosch Group
Германия Siemens AG
Бразилия WEG

ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
И.В.Савельев. Курс общей физики, том I. Механика, колебания и волны, молекулярная физика.-М.:Наука, 1970.
ГОСТ 29322-92 (МЭК 38-83) Стандартные напряжения.
ГОСТ 16264.0-85 Электродвигатели малой мощности
А.И.Вольдек, В.В.Попов. Электрические машины. Машины переменного тока: Учебник для вузов.- СПб.: Питер, 2007.
Paul Waide, Conrad U. Brunner. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems. International Energy Agency Working Paper, Energy Efficiency Series.: Paris, 2011.
Dr. J. Merwerth. The hybrid-synchronous machine of the new BMW i3 & i8 challenges with electric traction drives for vehicles. BMW Group, Workshop University Lund: Lund, 2014.

Работа электродвигателя постоянного тока

Под токосъемником простейшего двигателя две секции. Выродился барабан коллектора. Каждая контактная ламель (пластинка на валу) занимает половину оборота. Одна щетка снабжается положительным потенциалом, вторая – отрицательным, сообразно меняется направление магнитного поля полюсов. Активными в каждый момент времени являются два (в описанной выше конструкции). Статора может формироваться постоянным электрическим полем, либо металлическим магнитом. Последнее применяется детскими машинками.

Как работает электродвигатель постоянного тока. Допустим, в начальный момент времени обмотки расположены так, как показано на рисунке. В нашем примере полюсов уже не два, как обсуждали выше, – три. Минимальное число для стабильного запуска электрического двигателя постоянного тока в нужном направлении. Обмотки соединены схемой звезды, у каждой пары одна общая точка. Напряженность поля формирует два полюса отрицательных, один положительный. Постоянный магнит стоит, как показано рисунком.

Упрощенный рисунок случая постоянного тока

Каждую треть оборота происходит перераспределение поля так, что полюса сдвигаются согласно изменению напряжения питания на ламелях. На второй эпюре видим: номера обмоток сдвинулись, картина в пространстве осталась. Залог стабильности: один полюс притягивается к постоянному магниту, второй отталкивается. Если нужно получить реверс, меняется полярность подключения батарейки (аккумулятора). В результате получается два положительных полюса, один отрицательный. Вал станет двигаться против часовой стрелки.

Полагаем, принцип действия электродвигателя постоянного тока теперь понятен. Добавим, сегодня распространены двигатели вентильного типа. Многие задумались заставить поля чередоваться на статоре, ротор представлял бы постоянный магнит. В первом приближении двигатель вентильного типа. Постоянный ток подается на нужные обмотки статора через коммутируемые ключи-тиристоры. В результате создается нужное распределение поля.

Преимущества схемы в снижении количества трущихся частей, являющихся причиной необходимости обслуживания, ремонта. Тиристорный блок управления достаточно сложный. Допускается организовать коммутацию при помощи ламелей. Одновременно конструкция послужит грубым датчиком положения вала (плюс минус расстояние между контактными площадками оси вала). Вентильные двигатели не новы. Широко применяются специфическими отраслями. Помогают точно выдержать частоту вращения. В быту вентильные двигатели найти сложно. Некое подобие можно лицезреть в стиральной машине. Речь о помпе слива воды (ротор магнитный, только ток переменный).

Технические характеристики электродвигателей постоянного тока лучше, нежели при питании переменным током. Класс устройств широко применяется. Чаще электродвигатели постоянного тока используются при питании батареями различного рода. Когда нет выбора. Преимущества схемы питания позволят аккумуляторам дольше продержаться.

Обмотки статора, ротора включают последовательно, параллельно. Последнее применяется при нагруженном в исходном состоянии валу. Наблюдается резкое повышение оборотов, может привести к негативным последствиям, если ротор слишком легко идет. Упоминали о подобных тонкостях в теме конструирования двигателей своими руками.

Запуск бесколлекторных моторов

Изготавливать микроконтроллеры самостоятельно нет смысла, намного лучшим вариантом окажется покупка готового, пусть и китайского. Но необходимо придерживаться следующих рекомендаций при выборе:

Учитывайте максимально допустимую силу тока. Этот параметр обязательно пригодится для различных видов работы привода. Характеристика часто указывается производителями непосредственно в названии модели. Очень редко указываются значения, характерные для пиковых режимов, в которых микроконтроллер не может работать продолжительное время.
Для продолжительной работы необходимо учитывать и максимальную величину напряжения питания.
Обязательно учитывайте сопротивление всех внутренних цепей микроконтроллера.
Обязательно нужно учитывать максимальное число оборотов, которое характерно для работы этого микроконтроллера

Обратите внимание на то, что он не сможет увеличить максимальную частоту вращения, так как ограничение сделано на уровне программного обеспечения.
Дешёвые модели микроконтроллерных устройств имеют импульсов в интервале 7…8 кГц. Дорогие экземпляры можно перепрограммировать, и этот параметр увеличивается в 2-4 раза.

Старайтесь подбирать микроконтроллеры по всем параметрам, так как они влияют на мощность, которую может развить электродвигатель.

Устройство сервопривода

Сервопривод состоит из синхронного двигателя, датчика скорости и положения, а также управляющего контроллера. Основная разница между шаговым двигателем и сервоприводом состоит в наличии обратной связи по положению, скорости, моменту на валу ротора.

Электропривод такого типа построен на базе следящей схемы автоматического регулирования. При несоответствии скорости или другой величины контроллер будет подавать сигналы на отработку, пока требуемый параметр или положение вала не будет соответствовать заданному. В качестве датчика обратной связи используют абсолютные и относительные энкодеры различных типов и конструкций.

Заключение

Итак, подведем итоги и обозначим в чем разница между коллекторным и бесколлекторным двигателем, перечислив их особенности.

Коллекторный двигатель:

  1. Есть щетки и коллектор, которые искрят и изнашиваются.
  2. Нужно чаще обслуживать, соответственно и срок службы не слишком долгий.
  3. Легко регулировать скорость лишь изменением напряжения.
  4. Для реверса нужно просто сменить полярность.
  5. Два предыдущих факта позволяют их использовать в бюджетных устройствах без сложных электросхем.

Бесколлекторный двигатель:

Для запуска нужен контроллер, который хоть и не слишком дорого стоит, но увеличивает конечную стоимость, схемотехнику и вес изделия.
Весят меньше чем коллекторные, при одинаковой мощности (но это частично компенсируется предыдущим фактом).
Нет щеток и коллектора, поэтому не требуют обслуживания, не искрят.
Больший срок службы, он ограничен лишь ресурсом подшипников ротора.
Стоят обычно дороже чем коллекторные.
Зачастую выдают больший момент на валу и обороты.
При наличии датчиков положения вала обеспечивают большую стабильность оборотов при изменении нагрузки (жесткая механическая характеристика)

Это особенно важно при использовании на станках и ручном инструменте.. От автора:

От автора:

Добавлю то, что нельзя однозначно сказать какой лучше или какой мощнее, можно найти коллекторный двигатель размером с холодильник, а можно бесколлекторный размером с ноготь. При этом оба будут отлично выполнять те функции, на которые рассчитаны и использоваться в конкретных устройствах с учетом требований к их надежности и особенностям эксплуатации. Каждый вид электропривода хорош по своему и идеален по конструкции как таковой.

Теперь вы знаете, в чем разница между коллекторным и бесколлекоторным двигателем, а также какие плюсы и минусы у каждого варианта исполнения. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы по теме:

  • Чем отличается трансформатор от автотрансформатора
  • Разница между контактором и пускателем
  • Что лучше поставить: дифавтомат или УЗО

Опубликовано:
05.07.2019
Обновлено: 05.07.2019

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.