Схемы трехфазных цепей
Обмотки генератора или трансформатора в трёхфазных цепях можно соединить между собой по двум схемам:
- звезда;
- треугольник.
Соединения выполняются на клеммнике (борно) агрегата или трансформатора, куда выводятся концы обмоток.
Соединение перемычками обмоток
Присоединение нагрузки к генератору (трансформатору) можно произвести по следующим схемам:
- присоединение «звезда – звезда» с использованием нулевого проводника;
- подключение «звезда – звезда» без использования нулевого провода;
- подсоединение «звезда – треугольник»;
- схема «треугольник – треугольник»;
- соединение «треугольник – звезда».
Внимание! Такое разнообразие схем вызвано тем, что собственные обмотки генератора и собственные обмотки нагрузки могут быть соединены по-разному. При различных типах сопряжения получаются разные соответствия между фазными и линейными значениями
Соединение может быть выполнено на заводе при сборке генератора, к месту подсоединения питающего кабеля уже выведены вторые концы обмоток. Информация о схеме соединения обмоток наносится на прикреплённую к статору машины табличку.
На электрических двигателях, трансформаторах или иных потребителях также производят необходимые манипуляции по переключению выводов обмоток. На картинке, приведённой ниже, красным маркером отмечены концы обмоток, соединённые перемычкой. Синим маркером – фазы питания.
Соединения на борно двигателя
Соединение звездой
Буквенное обозначение начала обмоток – «А», «В», «С», концов – «X», «Y», «Z». Нулевая точка маркируется как «О». У каждой обмотки есть два конца. При соединении «звезда» все три одноименных вывода обмоток (начала) соединяются между собой в одну точку «О». К свободным концам подключается нагрузка.
Схема соединения обмоток «звездой»
Соединение треугольником
При выполнении этого присоединения на борно ставятся перемычки, включающие обмотки в следующей последовательности:
- конец «А» – с началом «В»;
- конец «В» – с началом «С»;
- конец «С» – с началом «А».
Графическое изображение катушек становится похожим на треугольник, отсюда пошло название.
Когда хотят использовать подключаемый асинхронный двигатель с максимальным коэффициентом полезного действия, то его обмотки соединяют в треугольник. В этом случае фазные напряжения совпадают (Uл = Uф), линейный ток будет вычисляться по формуле:
Iл = √3*Iф.
Подключая в качестве нагрузки двигатель, необходимо учесть ряд нюансов:
- достигается увеличение мощности в 1,5 раза;
- повышается значение пускового тока, по сравнению с рабочим в 7 раз из-за тяжёлого запуска;
- резкое увеличение нагрузки на валу электромашины будет вызывать резкое увеличение тока.
Из-за всего этого есть риск возникновения перегрева машины, что не происходит при соединении обмоток нагрузки по схеме «звезда». Там двигатель не расположен к перегреванию, и его пуск осуществляется плавно.
Включение обмоток по схеме «треугольник»
При двух видах включения обмоток различают и дают определение двум видам токов: линейному и фазному. Запомнить различия просто:
- ток, протекающий через проводник, который соединяет источник с приёмником, называется линейным;
- ток, движущийся по обмоткам источника или нагрузки, называется фазным.
Стоит обратить внимание на формулы мощности при различных схемах соединения источника с нагрузкой. Мощность тока при схеме «звезда» определяется по формуле:
Мощность тока при схеме «звезда» определяется по формуле:
P = 3*Uф*Iф*cosϕ = √3*Uл*Iл*cosϕ,
где:
- Uф – фазное напряжение;
- Uл – линейное напряжение;
- Iф – фазный ток;
- Iл – линейный ток;
- cosϕ – сдвиг фаз.
Мощность тока при схеме «треугольник» вычисляется по формуле:
P = 3* Uф* Iф*cosϕ = √3*Uл*Iл*cosϕ.
К сведению
Обращать внимание на линейный и фазный токи необходимо тогда, когда генератор (источник) нагружается несимметрично при подключении нагрузки
Соединения в трёхфазной цепи
Преимущество трёх фаз
экспериментаторы в голос утверждают о преимуществе трёх фаз перед двумя, но требуется объяснение. Сразу лезут в голову мысли про КПД, вращающий момент и прочее. Но Тесла рисовал в блокнотике сотни конструкций, очевидно, сумел бы расставить полюса, чтобы добиться нужных параметров. Вывод – дело не в конструкции приборов.
Сейчас напряжение 380 В передаётся лишь по трём проводам. Этого нельзя было добиться в первоначальном варианте Николы Теслы. В 1883 году Эдисон массу сил потратил на попытки использовать трёхжильный провод. Очевидно, слышал о демонстрации, устроенной Николой Теслой, и понял опасность ситуации. В цивилизованном мире основную прибыль получает владелец патента, зачем известному изобретателю вытаскивать на свет способного инженера?
Логика Эдисона проста: пользователи увидят, что трёхжильные кабели более дешёвые, нежели четырёхжильные, и откажутся от использования новинок Николы Теслы. Несложно догадаться, что хитроумный план изобретателя цоколя для лампочек накала провалился. И с треском. А виной стал… Доливо-Добровольский. Система Николы Теслы для создания двух фаз требовала наличия четырёх проводов. Одновременно Доливо-Добровольский предлагал передать больше энергии посредством трёх.
Дело здесь в симметрии. Линейные напряжения 380 В в каждый момент оставляют альтернативу для выбора. К примеру, ток с первой фазы способен утечь на вторую или третью. В зависимости от присутствия подходящего потенциала. В результате получается баланс. Если объединить две фазы системы Николы Тесла, получится винегрет. Как следствие, нейтраль в системе Доливо-Добровольского допустимо убрать, если нагрузка симметричная – как часто происходит на практике.
Трехфазные и однофазные электрические сети
Как известно, по проводам, передающим энергию на расстояние, течет трехфазный ток — так выгоднее. В квартиру он заходит однофазным. Расщепление трехфазной цепи на 3 однофазных происходит во ВРУ. Туда входит пятижильный кабель, а выходит трехжильный (рис, 11.2).
Рис. 11.2. Схема расщепления трехфазной сети на однофазные потребители |
На вопрос, куда деваются еще 2, ответ простой: питают другие квартиры. Это не значит, что квартир только 3, их может быть сколько угодно, лишь бы кабель выдержал. Просто внутри щита выполняется схема разъединения трехфазной цепи на однофазные (рис, 11.3). К каждой фазе, отходящей в квартиру, добавляются ноль и заземление, так и получается трехжильный кабель.
Рис. 11.3. Однофазная электрическая цепь |
В идеале в трехфазной сети только один ноль. Больше и не надо, поскольку ток сдвинут по фазе относительно друг друга на одну треть. Ноль — это нейтральный проводник, в котором напряжения нет. Относительно земли у него нет потенциала в отличие от фазового, в котором напряжение равно 220 В. В паре «фаза — фаза» напряжение 380 В. В трехфазной сети, к которой ничего не подключено, в нейтральном проводнике нет напряжения. Самое интересное начинает происходить, когда сеть подключается к однофазной цепи. Одна фаза входит в квартиру, где стоят 2 лампочки и холодильник, а вторая — где 5 кондиционеров, 2 компьютера, душевая кабина, индукционная плита и т. д. (рис, 11.4).
Рис. 11.4. Трехфазная электрическая цепь |
Понятно, что нагрузка на 2 эти фазы неодинакова и ни о каком нейтральном проводнике речи уже не идет. На нем тоже появляется напряжение, и чем неравномернее нагрузка, тем оно больше.
Фазы уже не компенсируют друг друга, чтобы в сумме получился ноль.
В последнее время ситуация с некомпенсацией токов в такой сети усугубилась тем, что появились новые электроприборы, которые называются импульсными. В момент включения они потребляют намного больше энергии, чем при нормальной работе. Эти импульсные приборы вкупе с разной нагрузкой на фазы создают такие условия, что в нейтральном проводнике (ноле) возникает напряжение, которое может быть раза в 2 больше, чем на любой фазе. Однако нейтраль такого же сечения, что и фазовый провод, а нагрузка больше.
Вот почему в последнее время все чаще возникает явление, называемое отгоранием ноля — нейтральный проводник просто не справляется с нагрузкой и перегорает. Бороться с таким явлением непросто: надо либо увеличивать сечение нейтрального провода (а это дорого), либо распределять нагрузку между 3 фазами равномерно (что в условиях многоквартирного дома невозможно). На худой конец можно купить понижающий разделительный трансформатор, он же стабилизатор напряжения.
В частном доме ситуация получше, поскольку хозяин один и распределить электроэнергию по фазам намного проще. Это даже увлекательное занятие — считать мощность электроприборов и распределять их по фазам, чтобы нагрузка была одинаковой. Все расчеты делаются примерно, и вовсе не значит, что надо включать свет и 2 телевизора, а если заработал столярный станок на улице — это перебор. Все зависит от желания хозяина дома: провести трехфазную сеть или однофазную. Здесь есть свои плюсы и минусы.
Минусов трехфазной сети 2.
1. Напряжение на отдельном участке сильно зависит от работы других. Если перегружена одна из фаз, остальные могут работать некорректно. Проявиться это может как угодно. Чтобы такого не происходило, нужен стабилизатор — вещь недешевая.
ной. Кроме того, нужно знать правила эксплуатации трехфазных сетей.
Плюсов трехфазной сети тоже 2.
1. Трехфазная сеть позволяет получить больше мощности. Если однофазная сеть при суммарной мощности приборов в 10 кВт уже испытывает перегрузки, то трехфазная прекрасно справляется и с 30 кВт. Пример очень простой. Если с линии ЛЭП в дом заходит всего 1 фаза, то при сечении входящего проводника 16 мм1 максимальная мощность составит всего 14 кВт, а если все 3 фазы — то уже 42 кВт. Разница весьма ощутимая.
Способы соединения
Трехфазное подключение широко применяется для включения обмоток электродвигателей и генераторов. При этом используется два варианта соединения обмоток с токоведущими жилами.
- При соединении звездой с шести до четырех уменьшается число соединительных проводов, что положительно влияет на долговечность соединений. К началу обмотки подключаются питающие жилы, а концы при этом объединяются в узел, называемый точкой N или нейтралью генератора. Такой вариант подключения позволяет перейти на трехпроводное подключение, но только в том случае, если подключаемый приемник трехфазной нагрузки симметричен;
- При перекрестном соединении обмоток треугольником, они создают замкнутый контур, который имеет относительно небольшое сопротивление. Такое соединение используется при подключении симметричной системы из трех ЭДС: в этом случае при отсутствии нагрузки в контуре не возникает ток.
Соединение звездой чаще используется для включения усилителей и различных стабилизаторов в сеть 220 вольт и мягкого старта электродвигателей при питании от 380В. Подключение треугольником позволяет двигателям набирать полную мощность, поэтому его чаще применяют в производственных целях, где требуется высокая производительность оборудования.
Почему постоянный ток безопаснее
Прожжённые электрики говорят, что удар током 220 В не слишком опасен, главное – не попасть под линейное трёхфазное напряжение. Оно выше примерно в корень из трёх раз (в пределах 1,7). Линейным называется напряжение между двумя фазами. За счёт сдвига между ними в 120 градусов получается указанный любопытный эффект. Невежды спрашивают, какая разница при сдвиге 90 градусов. Ответ дан вначале – три фазы образуют симметричную систему. Со сдвигом 90 понадобилось бы четыре.
В результате каждым линейным напряжением питают по полюсу, что существенно упрощает их размножение, когда требуется достичь большой мощности. К примеру, в тяговых двигателях пароходов, где требуется чрезвычайно плавно изменять усилие и приходится применять регуляторы скорости вращения вала. Случается, трёх и даже шести полюсов оказывается мало. Лишь коллекторному двигателю пылесоса достаточно двух.
Итак, между фазами имеется 308 В. Безопасным выглядит, если повысить частоту линии передач до 700 Гц. Тесла установил, что с указанного значения ярко проявляется скин-эффект, ток не проникает глубоко в тело. Следовательно, не наносит существенных повреждений человеку. Учёный демонстрировал языки молний на теле при гораздо больших напряжениях и говорил, что это полезно для здоровья, здорово очищает кожу.
Частота 700 Гц (или выше) не пущена в обиход – при этом существенно увеличивались потери трансформаторов. На момент принятия решения о номиналах первой ГЭС переменного тока не существовало наработок по изготовлению электротехнических материалов. Подробнее предлагаем прочитать в теме электронных трансформаторов. Нет надобности дублировать информацию. По причине отсутствия нужных материалов потери на перемагничивание сильно росли с увеличением частоты. Сегодня подобное не вызывает затруднений на уровне технологии.
Встаёт сложность – экранирование. В годы первых попыток передачи энергии не знали об излучении. Радио делало первые шаги в 90-х годах XIX века. В действительности рост частоты сопровождается резким повышением выброса энергии в пространство. И провода требовалось экранировать, это дорого, требует наличия мощных диэлектриков. Не факт, что современные сети сумели бы решить задачу.
Тесла предлагал передавать энергию через эфир. Для чего построил башню Ворденклиф. Но… промышленники оказались заинтересованы в продаже меди на изготовление проводов и на этом основании отказали учёному в финансировании. Но главное – грядёт время, когда трёхфазное напряжение уйдёт в небытие или будет получаться из преобразователей, и сам Тесла даст ответ, как это сделать.
Точнее, ответ дадут многочисленные патенты и идеи изобретателя. Недаром записи были немедленно изъяты после смерти учёного и тщательно засекречены. Рекомендуем взяться за изучение кавитационных двигателей. Пора мечтать, что машины станут ездить на растительном масле, не загрязняя окружающую среду отвратительным дымом и гарью
Обратите внимание, что все секреты лежат на поверхности и ждут желающего их раскрыть. Возможно, кто-то из читателей сумеет сделать это первым?
Мощность в трехфазных цепях
Трехфазная цепь является обычной цепью синусоидального тока с несколькими источниками.
Активная мощность трехфазной цепи равна сумме активных мощностей фаз
(6.5)
Формула (6.5) используется для расчета активной мощности в трехфазной цепи при несимметричной нагрузке.
При симметричной нагрузке:
При соединении в треугольник симметричной нагрузки
При соединении в звезду
.
В обоих случаях .
к оглавлению
ТОЭ
ТЭЦ
Реальная физика
Знаете ли Вы, в чем фокус эксперимента Майкельсона?
Эксперимент А. Майкельсона, Майкельсона — Морли — действительно является цирковым фокусом, загипнотизировавшим физиков на 120 лет.
Дело в том, что в его постановке и выводах произведена подмена, аналогичная подмене в школьной шуточной задачке на сообразительность, в которой спрашивается: — Cколько яблок на березе, если на одной ветке их 5, на другой ветке — 10 и так далееПри этом внимание учеников намеренно отвлекается от того основополагающего факта, что на березе яблоки не растут, в принципе. В эксперименте Майкельсона ставится вопрос о движении эфира относительно покоящегося в лабораторной системе интерферометра
Однако, если мы ищем эфир, как базовую материю, из которой состоит всё вещество интерферометра, лаборатории, да и Земли в целом, то, естественно, эфир тоже будет неподвижен, так как земное вещество есть всего навсего определенным образом структурированный эфир, и никак не может двигаться относительно самого себя
В эксперименте Майкельсона ставится вопрос о движении эфира относительно покоящегося в лабораторной системе интерферометра. Однако, если мы ищем эфир, как базовую материю, из которой состоит всё вещество интерферометра, лаборатории, да и Земли в целом, то, естественно, эфир тоже будет неподвижен, так как земное вещество есть всего навсего определенным образом структурированный эфир, и никак не может двигаться относительно самого себя.
Удивительно, что этот цирковой трюк овладел на 120 лет умами физиков на полном серьезе, хотя его прототипы есть в сказках-небылицах всех народов всех времен, включая барона Мюнхаузена, вытащившего себя за волосы из болота, и призванных показать детям возможные жульничества и тем защитить их во взрослой жизни. Подробнее читайте в FAQ по эфирной физике.
Отличие линейного от фазного напряжения
Если представить трехфазную цепь, то четко понятно, что в ней есть определенное напряжение между фазными контактами и фазным и нулевым проводом. Это происходит из-за того, что в этой схеме используется четырёхпроводная трехфазная цепь. Главные её характеристики – напряжение и частота. Напряжение, возникающее в цепи между двумя фазными проводами – это линейное, а то, что появляется между фазным и нулевым – фазным.
4-проводная сеть
Примечательной особенностью линейного напряжения является то, что именно по нему рассчитываются токи и другие параметры трехфазной цепи. Кроме того, к такой схеме можно подключать не только стандартные трехфазные контакты, но и однофазные (это различные бытовые приборы, приемники). Номинальное равняется 380 вольт, при этом оно может изменяться в зависимости от скачков или других перемен в локальной сети.
Существует несколько вариантов такого соединения, скажем, система с нейтралью под заземлением является самой популярной. Она характеризуется тем, что подключение к ней производится по особой схеме:
- Однофазные отводы подключаются к фазным проводам;
- Трехфазные – к трехфазным, соответственно.
Линейное напряжение имеет очень широкое использование благодаря своей безопасности и удобства разветвления сети. Электрические приборы подключаются только к одному- фазному проводу, опасность представляет он один. Расчет системы очень прост, в нем руководствуются стандартными формулами из физики. При этом, чтобы измерить этот параметр сети, достаточно воспользоваться простым мультиметром, для того, чтобы замерить характеристики фазового подключения потребуется несколько специальных устройств (датчики тока, вольтметры и прочие).
Некоторые особенности сети:
- При разводке такой проводки не требуется использовать профессиональные приборы- все измерения проводятся отвертками с индикаторами;
- При соединении проводников нет необходимости подключать нулевой провод, т. к. благодаря свободной нейтрали, риск поражения током крайне мал;
- Электротехника использует такую схему подключения для различных электродвигателей и других устройств, требующих высокую мощность для работы. Дело в том, что используя этот тип напряжения есть возможность повысить КПД на треть, что является весьма полезным свойством, в особенности, для асинхронного двигателя;
- Схема используется как для переменного тока, так и для постоянного;
- Нужно помнить, что однофазное соединение можно подключить к трехфазной сети, но не наоборот;
- Но, у такой цепи есть и определенные недостатки. В линейном соединении проводников очень сложно обнаружить повреждения. Это способствует повышенной пожарной опасности.
Соответственно, основная разница между фазовым и линейным напряжением заключается в разности подсоединяемых проводов обмоток.
Для контроля и выравнивания этого параметра часто используется специальный прибор — линейный стабилизатор напряжения. Он позволяет поддерживать показатель на определённом уровне, при этом нормализуя повышенное. Еще одно его определение – импульсный стабилизатор. Устройство может подключаться к розетке, контактам электрических приборов и т. д.
Расчет
Напряжение в трехфазных цепях
В трёхфазных цепях выделяют два вида напряжения – линейное и фазное. Чтобы разобрать их отличия нужно взглянуть на векторную диаграмму и график. Ниже вы видите три вектора Ua, Ub, Uc – это вектора напряжений или фаз. Угол между ними 120°, иногда говорят 120 электрических градусов. Этот угол соответствует таковому в простейших электрических машинах между обмотками (полюсами).
Если отразить вектор Ub так, чтобы сохранился его угол наклона, но начало и конец поменялись местами, его знак изменится на противоположный. Тогда установим начала вектора –Ub в конец вектора Ua, расстояние между началом Ua и концом –Ub будет соответствовать вектору линейного напряжения Uл.
Простыми словами мы видим, что величина линейного напряжения больше чем фазного. Давайте разберем график напряжений в трёхфазной сети.
Красной вертикальной линией выделено линейное напряжение межу фазой 1 и фазой 2, а желтой линией выделено фазное амплитудное фазы 2.
КРАТКО: Линейное напряжение измеряется между фазой и фазой, а фазное между фазой и нулём.
С точки зрения расчетов, разница между напряжениями обуславливается решением этой формулы:
Линейное напряжение больше фазного в √3 или в 1,73 раза.
Нагрузка к трёхфазной сети может быть подключена по трём или четырем проводам. Четвертый проводник – нулевой (нейтральный). В зависимости от типа сеть может быть с изолированной нейтралью и глухозаземленной. Вообще при равномерной нагрузке три фазы можно подать и без нулевого провода. Он нужен для того, чтобы напряжения и токи распределялись равномерно и не было перекоса фаз, а также в качестве защитного. В глухозаземленных сетях, при пробое на корпус выбьет автоматический разъединитель или перегорит предохранитель в щите, так вы избежите опасности поражения электрическим током.
Отлично то, что в такой сети у нас одновременно есть два напряжения, которые можно использовать исходя из требований нагрузки.
Для примера: обратите внимание на электрический щиток в подъезде вашего дома. К вам приходит три фазы, а в квартиру заведена одна из них и ноль
Таким образом, вы получаете в розетках 220В (фазное), а между фазами в подъезде 380В (линейное).
Схема
Агрегаты трехфазного тока имеют две схемы подключения в сеть: первая – «звезда», вторая – «треугольником». В первом варианте, начальные контакты всех трех обмоток генератора замыкаются вместе по параллельной схеме, что, как и в случае с обычными щелочными батарейками не даст прироста мощности.
Вторая, последовательная схема подключения обмоток источника тока, где каждый начальный вывод подключается к конечному контакту предыдущей обмотки, дает трехкратный прирост напряжения за счет эффекта суммирования напряжений при последовательном подключении.
Кроме того, такие же схемы подключения имеют и нагрузку в виде электродвигателя, только устройство, подключенное в трехфазную сеть по схеме «звезда», при токе в 2,2 А будет выдавать мощность 2190Вт, а тот же агрегат, подключенный «треугольником», способен выдать в три раза большую мощность – 5570, за счет того, что благодаря последовательному подключению катушек и внутри двигателя, сила тока суммируется и доходит до 10 А.
Расчет трехфазной цепи, соединенной звездой
Трехфазную цепь, соединенную звездой, удобнее всего рассчитать методом двух узлов.
На рис. 7.5 изображена трехфазная цепь при соединении звездой. В общем случае сопротивления фаз нагрузки неодинаковы (ZA ≠ ZB ≠ ZC )
Нейтральный провод имеет конечное сопротивление ZN .
В схеме между нейтральными точками источника и нагрузки возникает узловое напряжение или напряжение смещения нейтрали.
Это напряжение определяется по формуле (6.2).
Рис.6. 5
(6.2)
Фазные токи определяются по формулам (в соответствии с законом Ома для активной ветви):
(6.3)
Ток в нейтральном проводе
(6.4)
Частные случаи.
1. Симметричная нагрузка. Сопротивления фаз нагрузки одинаковы и равны некоторому активному сопротивлению ZA = ZB = ZC = R.
Узловое напряжение
,
потому что трехфазная система ЭДС симметрична, .
Напряжения фаз нагрузки и генератора одинаковы:
Фазные токи одинаковы по величине и совпадают по фазе со своими фазными напряжениями. Ток в нейтральном проводе отсутствует
В трехфазной системе, соединенной звездой, при симметричной нагрузке нейтральный провод не нужен.
На изображена векторная диаграмма трехфазной цепи для симметричной нагрузки.
2. Нагрузка несимметричная, RA< RB = RC, но сопротивление нейтрального провода равно нулю: ZN = 0. Напряжение смещения нейтрали
рис. 6.6
Фазные напряжения нагрузки и генератора одинаковы
Фазные токи определяются по формулам
Вектор тока в нейтральном проводе равен геометрической сумме векторов фазных токов.
На рис. 6.7 приведена векторная диаграмма трехфазной цепи, соединенной звездой, с нейтральным проводом, имеющим нулевое сопротивление, нагрузкой которой являются неодинаковые по величине активные сопротивления.
Рис. 6.7
3. Нагрузка несимметричная, RA< RB = RC, нейтральный провод отсутствует,
В схеме появляется напряжение смещения нейтрали, вычисляемое по формуле:
Система фазных напряжений генератора остается симметричной. Это объясняется тем, что источник трехфазных ЭДС имеет практически бесконечно большую мощность. Несимметрия нагрузки не влияет на систему напряжений генератора.
Из-за напряжения смещения нейтрали фазные напряжения нагрузки становятся неодинаковыми.
Фазные напряжения генератора и нагрузки отличаются друг от друга. При отсутствии нейтрального провода геометрическая сумма фазных токов равна нулю.
На рис. 6.8 изображена векторная диаграмма трехфазной цепи с несимметричной нагрузкой и оборванным нейтральным проводом. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений нагрузки. Нейтральный провод с нулевым сопротивлением в схеме с несимметричной нагрузкой выравнивает несимметрию фазных напряжений нагрузки, т.е. с включением данного нейтрального провода фазные напряжения нагрузки становятся одинаковыми.
Рис. 6.8