Принцип работы асинхронного двигателя

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Основные отличия

Наличие обмоток на якоре является одним из основных отличий между двумя типами двигателей

Несмотря на внешнее сходство, асинхронные двигатели и устройства синхронного типа имеют несколько принципиальных отличий:

  • ротор асинхронных моторов не нуждается в токовом питании, а индукция полюсов зависит от магнитного поля статора;
  • ротор в синхронном двигателе обладает обмоткой возбуждения в условиях независимого питания;
  • обороты в асинхронном моторе под нагрузкой отстают по величине скольжения от вращений магнитного поля внутри статора;
  • обороты в синхронных двигателях соответствуют частоте «оборотов» магнитного поля в статоре и постоянны в условиях разных нагрузок.

Статоры в двигателях асинхронного и синхронного типа характеризуются одинаковым устройством и создают вращающееся магнитное поле.

Синхронные двигатели способны работать с одновременным совмещением функций мотора и генератора.

Трехфазный асинхронный двигатель с фазным ротором

До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.

Конструкция АДФР

Фазный ротор

Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в «звезду», а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.

Фазный ротор

Статор АДФР

Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.

Обозначение выводов вторичных обмоток трехфазного АДФР

Обозначение выводов обмоток ротора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза K1 K2
вторая фаза L1 L2
третья фаза M1 M2
Соединение в звезду (число выводов 3 или 4)
первая фаза K
вторая фаза L
третья фаза M
точка звезды (нулевая точка) Q
Соединение в треугольник (число выводов 3)
первый вывод K
второй вывод L
третий вывод M

Обозначение выводов обмоток ротора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Соединение звездой (число выводов 3 или 4)
первая фаза Р1
вторая фаза Р2
третья фаза Р3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод Р1
второй вывод Р2
третий вывод Р3

Примечание: Контактные кольца роторов асинхронных двигателей обозначают так же, как присоединенные к ним выводы обмотки ротора, при этом расположение колец должно быть в порядке цифр, указанных в таблице, а кольцо 1 должно быть наиболее удаленным от обмотки ротора. Обозначение самих колец буквами необязательно.

Пуск АДФР

Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора.

Применяются проволочные и жидкостные реостаты.

Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически с помощью контакторов или контроллера с электрическим приводом.

Жидкостный реостат представляет собой сосуд с электролитом, в котором опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов .

Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.

При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.

ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
ГОСТ 26772-85 Машины электрические вращающиеся. Обозначение выводов и направление вращения.
А.И.Вольдек. Электрические машины. Учебник для студентов высш. техн. заведений. изд. 2-е, перераб. и доп.-Ленинград: Энергия, 1974.

Как работает синхронный двигатель

Принцип действия синхронного двигателя основывается на взаимном влиянии магнитных полей якоря и полюсов индуктора. При обращенной конструкции агрегата расположение якоря и индуктора выполнено наоборот, то есть, первый расположен на роторе, а другой – на статоре. Такой вариант используют криогенные синхронные машины, у которых в состав обмоток возбуждения входят материалы со свойствами сверхпроводимости.

При запуске двигателя его разгоняют до частоты близкой к той, с которой в зазоре вращается магнитное поле. Только после этого он переходит в синхронный режим. В данной ситуации происходит пересечение магнитных полей якоря и индуктора. Этот момент получил название входа в синхронизацию.

При разгоне используется состояние асинхронного режима, когда происходит замыкание обмоток индуктора с помощью реостата или короткозамкнутым путем, подобно асинхронным машинам. Для того, чтобы осуществлять запуск в таком режиме, ротор оснащается короткозамкнутой обмоткой, которая одновременно является успокоительной обмоткой, способной устранить раскачивание ротора во время синхронизации. После того, как скорость становится близко к номинальной, в индуктор подается постоянный ток.

Таким образом, синхронный двигатель это не только двигатель, но и своеобразный генератор, поскольку у них одинаковое конструктивное исполнение. Схема работы двигателя будет следующей. Обмотка якоря подключается к трехфазному переменному току, а к обмотке возбуждения от постороннего источника подается постоянный ток. Вращающееся магнитное поле, созданное трехфазной обмоткой и поле, созданное обмоткой возбуждения, взаимодействуют между собой. Это вызывает появление электромагнитного момента, приводящего ротор во вращающееся состояние.

Для двигателей, где установлены постоянные магниты, применяются специальные внешние разгонные двигатели. В отличие от асинхронных устройств, разгон ротора в синхронном двигателе должен достигнуть частоты вращения магнитного поля. Это связано с подачей в обмотку ротора тока из постороннего источника, а не индуцируется в нем под действием магнитного поля статора, следовательно, на него не влияет частота вращения вала. В результате, синхронный двигатель переменного тока приобретает постоянную частоту вращения ротора вне зависимости от нагрузки. Специфический принцип работы этих устройств оказал влияние на их пуск и регулировку частоты вращения.

Определяем параметры старой АКБ

Первое, что следует сделать – выяснить ее технические характеристики, на которые вы будете ориентироваться при выборе нового АКБ для источника бесперебойного питания. Основные параметры, которые нужно знать это напряжение (В) и емкость (Ah, А/ч).

Напряжение должно в точности соответствовать значению, указанному на старом АКБ. Как правило, аккумуляторные батареи могут быть напряжением 6 и 12 вольт. Что касается емкости, ее можно выбрать немного больше, чем была.

Также не помешает определить габариты АКБ, что может помочь выбрать подходящую модель, если какие-то характеристики вы не смогли прочитать.

Кстати, все важные параметры батареи находятся в паспорте источника бесперебойного питания. Если документация у вас сохранилась, выбор будет облегчен.

Условия для подключения электродвигателя

Основным условием для нормальной работы трехфазных двигателей является стабильность напряжения и тока в каждой из фаз электрической сети. Обрыв хотя бы одной фазы приведет к тому, что двигатель потеряет значительную часть мощности и при нагрузке на валу свыше 50 % нормативной остановится и выйдет из строя. Пуск на двух фазах возможен только при полном отсутствии нагрузки и только в то время, когда ротор сохраняет хотя бы небольшую угловую скорость.

Асинхронный двигатель

К сведению! В момент пуска асинхронный двигатель потребляет ток, в 3-5 раз превышающий номинальный до тех пор, пока ротор не наберет определенные обороты. Это явление исходит из принципа работы двигателя.

Таким образом, если в рабочем режиме ток двигателя позволяет использовать обычные автоматические выключатели, то для обеспечения нормального пуска коммутацию следует производить через мощный контактор (магнитный пускатель).

Магнитный пускатель

В отдельных случаях возможно подключение трехфазного двигателя в бытовую однофазную сеть. При этом сильно падают мощностные характеристики. Такая ситуация возникает очень часто, когда необходимо использовать промышленный привод в бытовых условиях. Используя специальную схему включения, обеспечивают нормальную работу мотора с учетом снижения мощности.

Классификации

По источнику энергии

Двигатели могут использовать следующие типы источников энергии:

  • электрические;
    • постоянного тока (электродвигатель постоянного тока);
    • переменного тока (синхронные и асинхронные);
  • электростатические;
  • химические;
  • ядерные;
  • гравитационные;
  • пневматические;
  • гидравлические;
  • лазерные.

По типам движения

Получаемую энергию двигатели могут преобразовывать к следующим типам движения:

  • вращательное движение твёрдых тел;
  • поступательное движение твёрдых тел;
  • возвратно-поступательное движение твёрдых тел;
  • движение реактивной струи;
  • другие виды движения.

Электродвигатели, обеспечивающие поступательное и/или возвратно-поступательное движение твёрдого тела;

  • линейные;
  • индукционные;
  • пьезоэлектрические.

Некоторые типы электроракетных двигателей:

  • ионные двигатели;
  • стационарные плазменные двигатели;
  • двигатели с анодным слоем;
  • радиоионизационные двигатели;
  • коллоидные двигатели;
  • электромагнитные двигатели и др.

По устройству

Двигатели внешнего сгорания — класс двигателей, где источник тепла или процесс сгорания топлива отделены от рабочего тела:

  • поршневые паровые двигатели;
  • паровые турбины;
  • двигатели Стирлинга;
  • паровой двигатель.

Двигатели внутреннего сгорания — класс двигателей, у которых образование рабочего тела и подвод к нему тепла объединены в одном процессе и происходят в одном технологическом объеме:

  • двигатели с герметично запираемыми рабочими камерами (поршневые и роторные ДВС);
  • двигатели с камерами, откуда рабочее тело имеет свободный выход в атмосферу (газовые турбины).

По типу движения главного рабочего органа ДВС с запираемыми рабочими камерами делятся на ДВС с возвратно-поступательным движением (поршневые) (делятся на тронковые и крецкопфные) и ДВС с вращательным движением (роторные), которые по видам вращательного движения делятся на 7 различных типов конструкций. По типу поджига рабочей смеси ДВС с герметично запираемыми камерами делятся на двигатели с принудительным электрическим поджиганием (калильным или искровым) и двигатели с зажиганием рабочей смеси от сжатия (дизель).

По типу смесеобразования ДВС делятся на: с внешним смесеобразованием (карбюраторные) и с непосредственным впрыском топлива в цилиндры или впускной коллектор (инжекторные). По типу применяемого топлива различают ДВС работающие на бензине, сжиженном или сжатом природном газе, на спирте (метаноле) и пр.

Реактивные двигатели

Воздушно-реактивные двигатели:

  • прямоточные реактивные (ПВРД);
  • пульсирующие реактивные (ПуВРД);
  • газотурбинные двигатели:
    • турбореактивные (ТРД);
    • двухконтурные (ТРДД);
    • турбовинтовые (ТВД);
    • турбовинтовентиляторные ТВВД;

Ракетные двигатели

  • жидкостные ракетные двигатели;
  • твердотопливные ракетные двигатели;
  • ядерные ракетные двигатели;
  • некоторые типы электроракетных двигателей.

По применению

В связи с принципиально различными требованиями к двигателю в зависимости от его назначения, двигатели идентичные по принципу действия, могут называться «корабельными», «авиационными», «автомобильными» и тому подобными.

Категория «Двигатели» в патентоведении одна из наиболее активно пополняемых. В год по всему миру подаётся от 20 до 50 заявок в этом классе. Часть из них отличаются принципиальной новизной, часть — новым соотношением известных элементов. Новые же по конструкции двигатели появляются очень редко.

Как проверить двигатель перед запуском

Перед тем, как запустить асинхронный двигатель в работу, желательно его проверить на работоспособность. С чего же начать?

Внешний осмотр двигателя. Проверьте, нет ли сколов, вмятин, покрутите вал двигателя. Он должен крутиться плавно и без рывков в обе стороны. Этим действием вы проверяете подшипники, на которых держится ротор двигателя. Если вал двигателя подклинивает, то на это могут быть несколько причин: разбиты посадочные места под подшипники, убитые подшипники, либо ротор затирает статор. Для того, чтобы выяснить причину, нужно будет полностью разобрать двигатель и выяснить реальную проблему. Если все ок, то двигаемся к следующему шагу.

Проверяем обмотки двигателя. Для этого берем мультиметр, ставим его на измерение сопротивления и проверяем сопротивление обмоток. Если обмотки подключены по схеме “звезда”, то нам будет достаточно замерять сопротивление между клеммами, куда подается напряжение питания. Делается это в три этапа.

Раз.

Два.

Три.

Во всех трех случаях сопротивление должно быть одинаково. Допускается отклонение в несколько Ом.

Этими тремя действиями мы проверили обмотки нашего двигателя и убедились, что они все целые.

И заключительный шаг. Проверяем, не звонятся ли обмотки на землю. Так как все обмотки так или иначе соединяются между собой, достаточно будет встать щупом мультиметра на любую из обмоток, а вторым щупом встать на корпус двигателя. Переключатель на мультиметре поставить на измерение МОм.

В идеале должно получиться бесконечно большое сопротивление, в реале от 100 МОм и выше. Если сопротивление очень маленькое, что то около 1-10 Ом, то это означает, что какая-то из обмоток двигателя звонится на землю, что категорически недопустимо. На практике если же сопротивление меньше 1 МОм, то надо выяснить причину и устранить ее. Скорее всего в двигатель попала влага, грязь, либо произошел пробой диэлектрика медного провода. В этом случае поможет только полная разборка и визуальное выяснение причины.

Все те же самые операции применяются и к двигателю со схемой подключения “треугольник”.

Большинство материала для статьи” асинхронный двигатель” было взято из видео ниже. Обязательно к просмотру.

No tags for this post.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.