Введение
Автоматическое повторное включение (АПВ) выключателей в современных энергосистемах является одним из основных средств повышения надежности работы энергосистем и бесперебойности питания потребителей. Длительный опыт эксплуатации показал, что значительное количество нарушений изоляции электроустановок вообще и воздушных линий в особенности является неустойчивым и самоустраняется после снятия напряжения. Такие повреждения возникают в результате грозовых перекрытий изоляции, схлестывания проводов при ветре и сбрасывания гололеда, падения деревьев, задевания проводов линий движущимися механизмами (краны, стогометатели). Если время действия релейной защиты невелико, то электрическая дуга, возникшая в месте нарушения изоляции, не успеет нанести значительные повреждения (перегорание проводов, полное разрушение изолятора) и включенная повторно линия остается в работе, т. е. происходит успешное АПВ. Устойчивые повреждения, такие как обрыв проводов, замыкание проводов оборванным грозозащитным тросом, поломки и падения опор, происходят значительно реже. В этих случаях АПВ является неуспешным, линия снова отключается релейной защитой [].
Устройства автоматического повторного включения (АПВ) применяются для быстрого восстановления питания потребителей или межсистемных и внутрисистемных связей путем автоматического включения выключателей, отключенных устройствами релейной защиты или по иным причинам, не связанным с оперативным воздействием. АПВ используется для автоматического включения различного оборудования напряжением выше 1 кВ. Являются одним из важнейших и самым сложным элементом автоматики управления выключателем.
На оборудовании, расположенном на открытом воздухе (воздушные линии электропередачи, ошиновка трансформаторов, сборные шины ОРУ) довольно часто возникают короткие замыкания, вызванные внешними причинами (удары молнии, воздействие грузоподъемных механизмов, животных и птиц) или неудовлетворительным состоянием самого оборудования (касание растительностью, схлестывание проводов и т. п.), которые в некоторых случаях достаточно быстро самоустраняются. Применение АПВ в этих случаях позволяет сократить время восстановления нормальной работы сети. Повторные включения при неустойчивых повреждениях принято называть успешными если на ВЛ возникают повреждения, которые не могут самоустраниться (обрывы проводов, тросов или гирлянд изоляторов, падение или поломка опор и т. д). Такие повреждения называют устойчивыми. При повторном включении ВЛ, на которой произошло устойчивое повреждение, вновь возникает КЗ, и она вновь отключается защитой. Повторные включения линий при устойчивых повреждениях называются неуспешными.
Применение АПВ позволяет использовать подстанции с отделителями и короткозамыкателями на стороне высокого напряжения трансформаторов. Включение короткозамыкателя приводит к возникновению искусственного короткого замыкания на землю, отключаемого защитами в голове линии. В бестоковую паузу отключается отделитель, после чего АПВ восстанавливает работу транзита.
Применение
В работе энергосистемы нередко случаются аварии, вызванные разного рода причинами, в результате которых система может потерять часть своих источников питания (аварии на генераторах, питающих трансформаторах). Обычно, в случае потери питания от источника, применяется АВР, с помощью которого к системе подключаются дополнительные источники; или систему соединяют с параллельно работающей системой. Однако во многих случаях мощности источников, питающих параллельную систему, может быть недостаточно для питания своей и добавленной нагрузки, в связи с чем в системе возникает дефицит активной мощности, проявляющийся в первую очередь в снижении частоты системы.
Снижение частоты на десятые доли герца могут привести к ухудшению экономических показателей системы, но серьёзной опасности не несет. (Промышленная частота переменного тока в России и ряде стран Европы принята 50 Гц, В США — 60 Гц) Снижение же частоты на 1-2 Гц и более может привести к серьёзным последствиям для работы энергосистемы, а также для её электроприёмников. Объясняется это тем, что при снижении рабочей частоты снижается скорость вращения питающихся от системы электродвигателей. В число этих двигателей, в частности, входят и механизмы собственных нужд тепловых электростанций, которые также питают данную систему. В результате этого снижается выходная мощность, генерируемая тепловыми электростанциями, и частота падает ещё быстрее. Этот процесс называется «лавиной частоты» и приводит к выводу системы из строя.
Снижение частоты несет разрушительные действия для сложных технологических процессов, может привести к угрозе безопасности людей, повлечь за собой серьёзные техногенные или экологические катастрофы. В частности, при долгой работе крупных паровых турбин на пониженной частоте в них возникают разрушительные процессы, связанные с совпадением частоты вращения турбины с резонансной частотой какой-либо из групп её лопаток.
Кроме частоты, в системе уменьшается напряжение, недостаток которого также серьёзно влияет на состояние потребителей электроэнергии.
Для того, чтобы не допустить обвала частоты в системе, принято отключать часть приёмников электроэнергии, снижая тем самым нагрузку на систему. Подобное отключение называется автоматической частотной разгрузкой (АЧР).
Согласно ПУЭ все потребители электрической энергии делятся на три категории:
I категория — к потребителям этой группы относятся те, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный материальный ущерб, опасность для безопасности государства, нарушение сложных технологических процессов и пр.
II категория — к этой группе относят электроприёмники, перерыв в питании которых может привести к массовому недоотпуску продукции, простою рабочих, механизмов, промышленного транспорта.
III категория — все остальные потребители электроэнергии.
Потребители I категории должны иметь постоянное электропитание, причем от двух независимых источников. Перерыв в питании от одного из источников допускается только на время действия АВР. Потребители II категории допускают работу от одного источника и перерыв питания не должен превышать время, необходимое для включения резервного источника дежурным персоналом или выездной бригадой. Потребители же III категории допускают перерыв в электропитании до суток (время ликвидации аварии выездной аварийной бригадой). Таким образом, действие АЧР направлено на отключение потребителей III категории, как наименее важных.
При проектировании схемы АЧР электрической системы следует распределять потребителей по подстанциям и распределительным устройствам с учетом этого разделения на категории. Кроме того, следует предусмотреть все возможные виды аварий и предусмотреть такую мощность отключаемых электроприёмников, которой окажется достаточно, чтобы вернуть систему в нормальное состояние после их отключения.
Саму схему АЧР делают многоступенчатой, где каждая ступень отличается от другой уставкой по частоте. То есть, при достижении частоты ниже определённого значения, определяемого первой уставкой, сработает первая ступень и отключит часть потребителей. Затем, если процесс падения частоты не остановился, то при достижении частоты значения второй уставки, отключится следующая группа потребителей, что ещё больше замедлит процесс снижения частоты.
Предназначение АПВ
Основное предназначение АПВ в том, чтобы восстановить работу объекта электросистемы будь это потребитель, участок линии электропередачи, участок подстанции или электродвигатель. Обязательное условие существования АПВ — отсутствие запрета на осуществление включения во второй раз.
Причина, вызвавшей остановку работы объекта может быть неисправность на ВЛ или КЛ. К основным типам неисправности относятся короткие замыкания, схлесты проводов из-за сильной пляски или провиса, произошедшие во время сильного ветра, обледенение проводов, перекрытия воздушной изоляции и т. д. После того, как причина отключения исчезает при помощи АПВ на отключенную линию, или на объект мгновенно подается питание. Он остается под напряжением, продолжая работать, а потребитель продолжает получать электроэнергию безостановочно.
Повреждения, которые самоустраняются принадлежат к категории неустойчивых неисправностей, после кратковременного пропадания напряжения линия или объект снова начинает работу.
Работа АПВ происходит с задержкой времени от 0,2 – 0,5 до нескольких секунд в зависимости от напряжения в линии, чем выше напряжение, тем меньше выдержка времени. Так, на линии 110 – 500 кВ время срабатывания – 0,15 сек. Время действия устройства зависит также от сечения и материала проводов, чем меньше сечение проводов, меньше воздушный промежуток между проводами тем более не успешное срабатывание АПВ. Задержка времени необходима для возращения диэлектрической прочности изоляции воздушного промежутка в области горения дуги.
Рис. №1. Схема, поясняющая работу АПВ в современном микропроцессорном блоке защиты УМПЗ
Количество циклов и время выдержки задается уставками, для использования АПВ принимают во внимание кратность и время выдержки
АПВ применяется для питающих объекты (КЛ) кабельных и (ВЛ) воздушных линий электропитания, для секций и систем шин подстанции, а также комплексных распредустройств (КРУН), для двигателей и трансформаторов.
Максимальной эффективностью пользуются АПВ для защиты ВЛ, они входят в обязательный перечень защиты линии электропередач. Для КЛ, системы шин распределительной установки и трансформаторов применение АПВ не считается действенным, так как вероятность появления неисправности на этих объектах с последующим АПВ ничтожна мала. Для КЛ также редко происходит успешное АПВ, это следствие того, что расстояние между кабельным жилами очень мало, появившееся короткое замыкание приобретает устойчивый характер, появляются значительные разрушения в изоляции кабеля.
Наиболее распространенными считаются АПВ однократного действия, их устройство отличается простотой и, самое важное, в случае не успешного действия АПВ на линии пропадает вероятность получения еще большего повреждения на аварийном участке. Многократное АПВ применяют лишь в случае ВЛ с очень большой протяженностью, более 10 км, которая питает потребителей II–III категории и только в том случае, когда приемная подстанция не имеет АВР ввода и вводной выключатель рассчитан на то, чтобы выдержать многократное АПВ
Рис. №2. Схема линии с неселективной токовой отсечкой и АПВ. Схема демонстрирует действие КЗ, если оно произошло вне общей зоны действия защит 1 общ, а зоне действия ТО2 (место КЗ), то защита отключает линию W 2, линия W1 останется под напряжением, в том случае если КЗ будет устойчивым АПВ отключит линию.
Это интересно: Как передается электроэнергия на расстоянии к потребителям: рассказываем по полочкам
АЧР назначение
Устройства АЧР срабатывают при понижении частоты ниже 49 Гц, продолжительность работы электрической системы составляет не больше 40 с. При менее 47 Гц – 10 с., меньше 46 Гц нельзя допустить, так при этом значении происходит явление «лавины напряжения», при котором происходит сбрасывание электростанцией нагрузки.
«Лавина напряжения» способствует повышенному потреблению реактивной мощности что ведет к еще большим осложнениям в системе энергоснабжения.
Пониженная частота может вызвать механический резонанс проточной части турбины, влекущий механические повреждения лопаток турбины.
Снижение частоты влечет снижение скорости вращения асинхронного двигателя и понижение производительности нагрузки, относящейся к собственному потреблению электростанции и питательных электронасосов, что чревато понижением мощности паровых турбин и влечет полное погашение системы. Это действие называется «лавиной частоты», за ней обычно следует появление «лавины напряжения».
При понижении уровня частоты снижается подача давления масла маслонасосом к турбине электростанции, это приводит к посадке стопорных клапанов в аварийном режиме и отключению агрегата.
Изменения параметров частоты всего на 0,2 Гц может способствовать неравномерному и неэкономичному распределению нагрузок агрегатов со статическими характеристиками регулирования.
Изменение частоты может привести к непостоянной скорости работы электроприводов механизмов, что может вызвать появление брака производимых деталей.
Аварийная частотная разгрузка является единственным средством поддержания частоты энергосистемы в разрешенных пределах при регулировании отключением потребителей, этот процесс происходит в случае отсутствия восстановления частоты путем применения нормальных средств регулирования частоты.
Неравномерность АЧР, риски возникающие в результате снижения частоты очень важно предотвратить так, как это ведет к длительному процессу восстановления нормированного значения частоты и восстановлению рабочего состояния потребителей, а также появление лишних операций по включению и отключению коммутирующих аппаратов электроприемников, снижает надежную работу энергосистемы электроснабжения
Выбор переключателя
На рынке представлен широкий ассортимент фазных переключателей. Выбирать их следует исходя из 4 критериев:
- Максимальный рабочий ток. От этого параметра зависит насколько мощные приборы можно подключить к выходу переключателя. Например, для обычной, не сильно нагруженной электроприборами квартиры подойдет автоматический переключатель на 16 А.
- Функция регулировки верхнего и нижнего пределов входного напряжения. Дешевые модели не обладают данными регуляторами. В них переключение происходит при заданном производителем уровне входного напряжения. В дорогих моделях можно самостоятельно настроить, при каком вольтаже в L1 произойдет переход на L.
- Способ индикации состояния. Простые модели переключателей оснащены несколькими светодиодами. Они способны гореть или мигать, в зависимости от состояния прибора и входного напряжения. Более профессиональные модели оснащаются семисегментными индикаторами, способными отображать величину напряжения с точностью до 1 %.
- Функционал. Простые модели выполняют минимальный набор функций. Они просто отслеживают входные напряжения и производят соответствующие переключения. Продвинутые приборы способны на большее. В них можно настроить пороги срабатывания, время на переключение и возврат на основную фазу.
Устройство с семисегментными индикаторами
Важно! Основная фаза — это термин, свойственный некоторым моделям переключателей. В меню подобных приборов можно настроить, какая из входных фаз будет считаться основной
При переключениях АПФ отдает предпочтение основной фазе.
Требования к АПВ согласно правилам эксплуатации и практики
- АПВ должно обеспечить действие защиты в ускоренном порядке до своего срабатывания и после.
- При срабатывании АПВ устройство должно автоматически вернуться в изначально готовое положение (примечание не всегда, особенно на старых МВ 6-10 кВ польского производства не работает МУН, а также типов ВМГ-133 и ВМП-10, поэтому после неуспешного срабатывания однократного АПВ фидера, бригада ОВБ, выезжающая на место неисправности и после ее устранения, после введения объекта в работу должна проследить готовность МВ к последующему срабатыванию, и при невозможном автоматическом возврате устройства, сделать готовность, вручную).
- Запрет АПВ при срабатывании некоторых видов релейных защит и автоматики, например, дифференциальной и газовой зашиты трансформатора. При срабатывании защит силовых электродвигателей ключ АПВ должен быть выведен в отключенное положение.
- При отключении высоковольтного выключателя ключом вручную по телеуправлению и при оперативном выключении, дистанционно, в случае КЗ, АПВ выводится из работы.
- АПВ блокируется от многократных включений, предупреждая устойчивое КЗ, а также при неисправностях в самом устройстве АПВ.
- При плановом и оперативном переключении и выводе в ремонт отходящего фидера ВЛ и КЛ ключ АПВ выводится в положении выключено, чтобы не было ложного повторного включении выключателя.
Характеристики провода АПВ
Если брать провод АПВ и технические характеристики, то их можно разделить на механические и электрические параметры. Они во многом зависят от свойств материала изготовления – алюминия, но для рассмотрения сферы применения провода давайте их разберем отдельно.
Механические характеристики провода АПВ
Для начала давайте остановимся на механических характеристиках провода АПВ. Как известно алюминий материал достаточно мягкий и гибкий. В то же время он имеет низкую температуру плавления и достаточно быстро теряет свои свойства при переламывании.
Изгиб провода АПВ
Итак:
- Одним из основных параметров при выборе провода является максимальный возможный радиус изгиба провода. Механические характеристики провода АПВ 2 5 и других сечений позволяют изгибать его с радиусом не более 10 наружных диаметров. Это не очень много. Поэтому данный тип провода следует применять только при небольших радиусах изгиба.
- Отдельным вопросом стоит вопрос изгибания кабеля при минусовых температурах. Для этого на предприятии-изготовители должны проводить специальный тест. Суть теста сводится к следующему. Провод наматывают на барабан равный 5 наружным диаметрам провода при температуре в -15⁰С. Такое испытание называется испытание навиванием. Качественный продукт должен выдержать такое испытание без изломов.
Конструкция механизма для испытания провода навиванием
- Кстати АПВ 4 провод который должен нормально выдерживать температуры от -50⁰С до +70⁰С. Что делает невозможным его применение для горячих цехов или других помещений со специальным температурным режимом.
- Отдельно стоит отметить и изоляцию провода, которая как вы можете видеть на видео выполнена из ПВХ пластика. Этот вид материала достаточно плохо переносит агрессивную наружную среду. В связи с этим применять данный провод для наружного вида работ не рекомендуется.
Электрические характеристики провода АПВ
Очень важным параметром являются электрические характеристики провода. От них напрямую зависит не только пропускная способность изделия, но и сфера его применения.
Сопротивление проводов ПВА
Одним из основных электрических параметров является сопротивление провода. Оно напрямую зависит от его сечения. Так, например, АПВ 6 провод должен иметь внутреннее сопротивление не более 5,1 Ом/км. А провод сечением в 50 мм2 сопротивление не более 0,641 Ом/км.
Таблица 1.3.5 ПУЭ для выбора сечения алюминиевых проводов
- Достаточно часто для провода АПВ применение ищут исходя из максимально допустимого тока для изделий разного сечения. Но этот подход не совсем верный. Дело в том, что максимально допустимый ток провода зависит от условий прокладки и определяется по табл.1.3.5 ПУЭ.
- Имеются примерные значения для одиночно смонтированных проводов. Они приведенные в таблице ниже.
На фото допустимые токи отдельно смонтированных проводов ПВА
Важным электрическим параметром провода является их сопротивление изоляции. Так у нового провода сопротивление изоляции проверяется напряжением 2000 В и частотой в 50 Гц в течении 5 минут. Для проводов уже находившихся в эксплуатации эти параметры снижаются и их допускается проверять напряжением в 1000В.
Снт как платить председателю
Инфо Их исполнение не делает председателя правления единоличным исполнительным органом, а позволяет ему действовать от имени СНТ как специально уполномоченного члена СНТ, через действия которого СНТ в силу закона может приобретать гражданские права и принимать на себя гражданские обязанности.
В практическом же применении такой подход подчас означает не что иное, как банальное вымогательство, тем более ужасное, что совершается оно под маской закона. Наверное я не ошибусь, если скажу, что подавляющее большинство конфликтов в садоводческих товариществах происходит из-за электричества. Выглядит типичный конфликт примерно так.
3.3.4
При применении АПВ должно, как правило,
предусматриваться ускорение действия релейной защиты на случай неуспешного АПВ.
Ускорение действия релейной защиты после неуспешного АПВ выполняется с помощью
устройства ускорения после включения выключателя, которое, как правило, должно
использоваться и при включении выключателя по другим причинам (от ключа
управления, телеуправления или устройства АВР). При ускорении защиты после
включения выключателя должны быть приняты меры против возможного отключения
выключателя защитой под действием толчка тока при включении из-за
неодновременного включения фаз выключателя.
Не следует ускорять защиты после включения выключателя,
когда линия уже включена под напряжение другим своим выключателем (т. е. при
наличии симметричного напряжения на линии).
Допускается не ускорять после АПВ действие защит линий 35
кВ и ниже, выполненных на переменном оперативном токе, если для этого требуется
значительное усложнение защит и время их действия при металлическом КЗ вблизи
места установки не превосходит 1,5 с.
3.3.24
АПВ шин электростанций и подстанций при наличии
специальной защиты шин и выключателей, допускающих АПВ, должно выполняться по
одному из двух вариантов:
1) автоматическим опробованием (постановка шин под
напряжение выключателем от АПВ одного из питающих элементов);
2) автоматической сборкой схемы; при этом первым от
устройства АПВ включается один из питающих элементов (например, линия,
трансформатор), при успешном включении этого элемента производится последующее,
возможно более полное автоматическое восстановление схемы доаварийного режима
путем включения других элементов. АПВ шин по этому варианту рекомендуется
применять в первую очередь для подстанций без постоянного дежурства персонала.
При выполнении АПВ шин должны применяться меры, исключающие
несинхронное включение (если оно является недопустимым).
Должна обеспечиваться достаточная чувствительность защиты
шин на случай неуспешного АПВ.
Предъявляемые требования
Для обеспечения заявленных режимов и безопасных условий работы оборудования, к устройствам автоматического повторного включения предъявляется ряд требований:
- Быстродействие – должна обеспечивать скорость перехода, определяемая типом питаемых устройств и категорией потребителя. Но, при этом, скорость не должна выполнять повторное включение до полного рассеивания электрической дуги. Так как в противном случае, даже при кратковременных повреждениях возможна повторная ионизация изолирующего промежутка.
- Устойчивость к аварийному режиму – устройства ТАПВ и резервных защит не должны снижать качество и скорость реагирования из-за перепадов электрических величин.
- Селективность АПВ – система должна отстраивать свою работу в соответствии с другими устройствами аварийной автоматики, не прерывая действия защит.
Рисунок 3: Согласование АПВ с другими защитами
- В случае оперативных отключений с целью проведения плановых работ, АПВ должно выводиться из цепи, чтобы ошибочно не подать напряжение на шины подстанции и не подвергнуть угрозе персонал.
- После срабатывания повторного включения коммутационное устройство должно возвращаться во включенное положение. При неуспешном АПВ должен происходить автоматический возврат в отключенное положение.
- Для некоторых видов защит (газовой, дифференциальной и прочих, реагирующих на повреждение трансформатора) должен устанавливаться запрет на повторное включение. Также отключенное положение должно сохранятся при возникновении аварийного режима в силовых электрических машинах.
- При повторных включениях должны блокироваться неконтролируемые многократные АПВ во избежание разрушающих воздействий устойчивых токов кз на устройства.
Рисунок 4: Увеличение тока при кз
Назначение фазного переключателя
Фазный переключатель — это электротехническое устройство, предназначенное для подключения ответственных потребителей электроэнергии. Под ответственными потребителями подразумеваются приборы, которые должны непрерывно работать 24 часа в сутки. Например, оборудование серверных, автоматика газовых котлов или системы видеонаблюдения на охраняемых объектах.
Подключение оборудования через переключатель фаз
Существует 2 основные категории переключателей фаз:
- ручные (механические);
- автоматические.
Ручной переключатель фаз представляет собой многопозиционный кулачковый коммутатор. Он может устанавливаться не только на дин рейку, но и на дверцу шкафа управления. По сути это кнопка, позволяющая усилием руки самостоятельно переключить питание потребителя с одной линии на другую. Такие приборы дешевые и простые в понимании. Но они не способны работать без человека.
Ручной модульный переключатель
Автоматические модели в присутствии человека не нуждаются. В них установлен микроконтроллер, отслеживающий напряжения входных фаз. На верхние клеммы прибора подключается 4 провода: 3 фазы и ноль. Снизу снимается 2 провода: 1 фаза и ноль.
Во время работы прибор подключает одну из входящих фаз (например, L1) на выходную клемму. Если напряжение в фазе L1 по каким-либо причинам выходит за допустимые пределы, то к выходу подсоединяется фаза L2. Если напряжение выходит за пределы и в L2, то подключается L3.
Несинхронное АПВ
НАПВ является наиболее простым АПВ и применяется при разделении двух частей энергосистемы независимо от разности частот их напряжений.
Расчет несинхронного режима
Существуют экспериментально-расчетные исследования целесообразности применения НАПВ. Ниже приведены выражения для определения возможности этого режима для отдельных элементов энергосистемы.
- IНС – максимальный возможный ток несинхронного включения (апериодическая составляющая)
uk% – напряжение короткого замыкания трансформатора
x”d – сверхпереходное сопротивление
IНОМ – номинальный ток (генератора, трансформатора, компенсатора синхронного)
Uc – в этом и некоторых других расчетах, например самозапуска, напряжение системы принимается 1,05UНОМ
Суммарное сопротивление рассчитывается в режиме, когда по оборудованию протекает максимально возможный ток.
Для предотвращения повторного включения линии на устойчивое КЗ с одной из сторон линии используется контроль напряжения.
Если его не использовать, то устройство будет производить два включения двух выключателей на КЗ, что будет негативно сказываться на выключателях и работе энергосистемы. Поэтому сначала включается АПВ стороны, где не предусмотрен контроль напряжения и, если неисправность устранилась, то сработает АПВ с другой стороны, среагировав на наличие напряжения на линии.
НАПВ применяют на линиях, которые обладают высокой пропускной способностью и на которых, согласно расчетам, после асинхронного режима частота выравнивается и происходит синхронизация частей энергосистемы.
Если НАПВ используется на линии с двухсторонним питанием, то повторное включение будет сопровождаться толчками тока и активной мощности. Это вызвано тем, что напряжение по обоим концам может иметь различные значения величины и частоты.
Это может отразиться на поведении релейной защиты, неправильном её срабатывании. Поэтому на транзитных участках, где соединяются разные части энергосистемы необходимо следить за правильностью срабатывания релейной защиты и анализировать ее поведение.
Последние статьи
Самое популярное
Особенности эксплуатации переключателя
Если прибор установлен в электрощит впервые, то некоторое время уйдет на его точную настройку и наладку. Особенно это относится к домам со старыми электросетями, где напряжение в розетке способно сильно варьироваться в зависимости от времени года и суток.
В зимний период большинство жителей частных домов активно используют электрические обогреватели. Поэтому стоит ожидать существенных просадок напряжения. Они отразятся на работе переключателя. АПФ будет чаще щелкать реле, чтобы подобрать фазу с самым подходящим напряжением.
Частые переключения отмечаются и в ночное время суток. Жильцы ложатся спать, потребление электроэнергии заметно снижается. Соответственно, сетевое напряжение возрастает. Прибор так же начинает переключаться в поисках оптимальной фазы.
Реле — устройство электромеханическое. Во время работы оно создает характерные щелчки. Ложась спать, никому не хочется слушать звук переключения реле. Поэтому этот прибор рекомендуется устанавливать подальше от жилых комнат.
Принцип работы
Рассмотрите принцип работы автоматического повторного включения на примере такой схемы.
Рис. 2: Принципиальная схема АПВ
Как видите на рисунке 2, напряжение подается на шину управления ШУ, на схеме показан пример питания от источника постоянного тока + ШУ и – ШУ. В данном примере устройство АПВ управляется механизмами:
- контроля синхронизации;
- положения контактов выключателя;
- запрета АПВ;
- разрешения подготовки.
Релейная защита реализуется посредством реле времени РВ и промежуточного РП. Последнее имеет две обмотки: по току РП I и по напряжению РП U. В нормальном режиме к ШУ приложено напряжение, которое заряжает конденсатор С при наличии соответствующего сигнала от цепей разрешения подготовки. Но повторное включение блокируется сигналом цепи запрета АПВ, который отстраивается на основе резисторов R1 и R2, находящихся в последовательном соединении с управленческими цепями.
В случае отключения трансформатора, линии или других участков, сигнал контроля синхронизации замыкает цепь для РВ. Которое при отсчете установленного промежутка времени выполняет замыкание собственных контактов, они, в свою очередь, шунтируют резистор R. После чего происходит разряд конденсатора на обмотку напряжения РП. При этом возбуждается и токовая катушка, которая притягивает контакты реле и замыкает цепь на включение выключателя.
Если трехфазное кз прекратилось и электроснабжение возобновится, то контроль синхронизации подает сигнал на размыкание обмотки РВ. После чего в цепь снова вводится сопротивление R и происходит возврат реле в обесточенное состояние. После возврата устройства в режим ожидания сразу происходит заряд конденсатора С для готовности к последующему повторному включению.
Узел Н позволяет вывести повторное включение на время проведения каких-либо плановых манипуляций оперативным персоналом.
Характеристики.
- Провод способен выдержать температуру от -50 до +70 градусов. Но монтаж следует проводить при температуре не более -15 градусов.
- Данный кабель имеет хорошую гибкость и может гнуться на 90 градусов. Помимо этого, он не портится под воздействием различных вибраций, грибков, перепадов напряжения и всех видов шумов, не распространяет горение.
- Для наружного применения данный провод не подходит, так как материал изоляции плохо переносит воздействие наружной среды. Также, его нельзя использовать в цехах с высоким температурным режимом.
- Срок службы данного провода составляет 15 лет.
- Стоимость провода достаточно низкая, так как он имеет определенные требования к условиям размещения.
Особенности конструкции
Поговорим о том, из чего состоит установочный провод АПВ. Конструкция достаточно простая, он состоит из одной однопроволочной (монолитной, жесткой) токопроводящей жилы из алюминия до 16 кв. мм. АПВ с сечением жил 25-35 кв. мм – из свитых 7 проволок.
Это делает толстый провод более гибким, что повышает удобство при работе с ним. При сечениях жилы от 50 кв. мм свивают не меньше, чем 19 проволок.
Повышение гибкости за счет использование многопроволочной конструкции жилы снижает риск переломить кабель, делает его удобнее в процессе монтажа, и выполнения соединений.
Толщина изоляции также зависит от площади поперечного сечения ТПЖ, например:
- при сечении от 2,5 до 6 (включительно) номинальная толщина изоляции 0,8 мм, а минимальная – 0,62 мм;
- при 10-16 кв. мм, номинальная – 1 мм, а минимальная – 0,8 мм;
- 25-35 кв. мм, номинальная – 1,2 мм, а минимальная 0,98 мм;
- 50 кв. мм, номинальная 1,4 мм, минимальная 1,15 мм.
Для удобства и наглядности при работе с собранной схемой провода могут иметь различную цветовую маркировку, либо одноцветную, либо в виде двух разноцветных полос (по требованию). Ниже приведены типовые цвета изоляции с буквенным сокращением (используется для того, чтобы указать цвет на схеме):
- Белый или серый – Б.
- Желтый, оранжевый, фиолетовый – Ж.
- Розовый, красный – К.
- Синий или голубой – С.
- Зеленый – З.
- Коричневый – Кч.
- Черный – Ч.
- Зелено-желтый (цвета заземления, полосатый) – Ж-З или З-Ж.