Нетрадиционные и возобновляемые источники энергии

Возобновляемые источники энергии в России

Возобновляемые источники энергии в России получили развитие сравнительно недавно. После 2000 годов, из-за сокращения количества энергоносителей и ухудшения экологической обстановки, необходимость внедрения различных видов возобновляемых источников энергии стала очевидной.

Вклад подобных технологий в производство электроэнергии до этих пор составлял 1 %, в теплоэнергетике ─ 2%. Т.е. инвестиции в ВИЭ были минимальны, а основными энергоносителями страны выступали уголь, нефть и газ.

Перспективы развития гелиоэнергетики в России

Самым эффективным является использование установок напрямую преобразующих солнечную энергию в электричество. Они работают на основе монокристаллов, поликристаллов, аморфного кремния. Такие батареи автоматизированы, практически не затрачивают энергию на себя. Они подлежат ремонту, мощность можно регулировать, добавляя или убирая секции. Подобные коллекторы активно устанавливаются в Ставропольском, Краснодарском крае, Ростовской области, Дагестане.

Перспективы развития ветроэнергетики

Экономика ВИЭ в России под ветроэнергетику отводит 25–30% всего объема электричества. Такой показатель неплох, учитывая что страна не входит в число лидеров по использованию ВИЭ. Ветроэнергетика страны имеет мощность 20000 МВт. Уже сейчас работают ветровые станции с высоким КПД на предгорье Кавказа, на Алтае, в районах побережий морей. Мощные ветропарки располагаются на территории Крыма, в Калининградской области, на Алтае. Рассматривается вопрос постройки установок на берегу Каспийского и Азовского морей.

Кроме стационарных «ветряков» запускаются ветровые зонды (на высоту 2-3 км), имеющие более высокий КПД. Это обусловлено сильными порывами ветрами на высоте. Также широко применяются малые ветровые площадки для обеспечения электричеством близлежащих сел и деревень.

Перспективы развития геотермальной энергетики

На мировом рынке геотермальной энергетики вклад России примерно 10%, это весомая часть. Перспективы развития данной отрасли промышленности имеют Краснодарский край (около 12 месторождений), Камчатка, Кавказ, Калининградская область.

В Камчатском регионе работают несколько геотермальных станций мощностью по 80 МВт каждая, которые обеспечивают ¼ энергетических потребностей области. Согласно мнению специалистов Института вулканологии РАН, ресурсы одной только Камчатки составляют не менее 5000 МВт, что даст возможность обеспечить регион теплом и электричеством на 100 лет.

Перспективы развития приливной электроэнергетики

На основе данных экспериментальной Кольской станции (1968), которая дает 450 квт/ч, было решено начать строительство подобных приливных электростанций на берегу Тихого и Северного Ледовитого океанов. Возводятся Мезенская (мощностью 18,2 млн кВт) и Тугурская ПЭС (мощностью 6,8 млн кВт). Подобное оборудование разрабатывается и устанавливается Россией на территории Китая и Индии.

Глобальный взгляд, почему в России переход на ВИЭ не осуществится

Достоинства традиционной топливной энергетики:

  • Дешевизна.
    Человек не одно столетие добывает полезные ископаемые: технологии давно отработаны, месторождения найдены.
  • Доступность.
    Оборудование необходимое для производства себя окупило. Промышленность – стабильный источник рабочих мест и дохода для владельцев.
  • Востребованность.
    Спросом пользуется то, что дешево и эффективно. Эти два понятия связаны с добычей традиционных энергоносителей.

Топливная энергетика в России сегодня более перспективна, она справляется с поставленными задачами, тогда как нетрадиционная ─ лишь развивается. Для внедрения альтернативной энергетики необходимо преодолеть слишком большое количество препятствий, нужен потенциал и поддержка. Специалисты уверены, что на данном этапе ВИЭ в России могут быть лишь подспорьем для традиционных.

Европа: сколько стоит частный киловатт

Италия

Евросоюз обязал Италию к 2020 году вырабатывать 17 процентов электроэнергии от общего национального потребления, используя альтернативные источники. Чтобы заинтересовать население страны в переходе на самообеспечение, правительство Италии в 2007 году разработало систему стимулирующих выплат за установку солнечных панелей, которые итальянцы по закону имеют право устанавливать самостоятельно. На сегодняшний день эти субсидии составляют 0,27 евро за каждый выработанный киловатт. Платежи осуществляются в течение 20 лет. Переход на окупаемость в среднем составляет от 5 до 7 лет. За последние годы в стране (особенно в южной ее части) начался бум на такие панели — даже появились наборы «сделай сам» для установки солнечных батарей, стоимость которых начинается от 1700 евро. Из-за того, что граждане стали занимать ими слишком большие площади сельхозугодий, государство запретило установку солнечных батарей на земле из-за возможных негативных экологических последствий.

После самостоятельной инсталляции фермер, глава домохозяйства или рядовой житель должен обратиться для подключения в Энель Дистрибуционе (главную энергокомпанию Италии, которая является монополистом на рынке энергоуслуг), а затем в налоговую службу, чтобы впоследствии претендовать на налоговые вычеты. Кроме того, особо находчивые домохозяйства умудряются даже на этом заработать, продавая излишки электричества по 0,11 евро за киловатт.

Франция

Здесь давно уже разрешено гражданам обзаводиться солнечными батареями, ветрогенераторами и прочими устройствами по выработке энергии. И государство всячески поощряет французов на этом пути. В первую очередь — льготным налогообложением оборудования и работ, связанных с их установкой. НДС на все это в два раза ниже общенационального: 10 процентов вместо 20. Также можно получить льготный кредит от госструктур, задействованных в программах энергосбережения.

Александр Новак открыл цифровой ветропарк под Калининградом

Правда, индивидуальный «ветряк» — удовольствие в целом дорогостоящее: в зависимости от размеров и мощности тянет на сумму от 25 до 40 тысяч евро. Понятно, что, к примеру, ветряки более популярны в сельской местности, нежели в городах. Чтобы обзавестись ветрогенератором высотой 12 и менее метров, особого разрешения местных властей не требуется. Достаточно просто сообщить им об этом. Если же более 12 метров, без него не обойтись, а нарушителей ждет штраф в 1200 евро. В любом случае устанавливать «эольен», как во Франции называют «ветряки», следует на расстоянии не менее высоты мачты по отношению к ближайшему строению. Как правило, такие ветрогенераторы в отличие от «гигантов», используемых для промышленного производства энергии, особого шума не производят. Тем не менее рекомендуется до начала работ поставить об этом в известность соседей. Если у них вдруг возникают возражения, то вопрос может быть рассмотрен в суде: во Франции существуют законы, определяющие допустимые шумовые уровни.

Турция

Турецкое законодательство не требует лицензировать генерирующие мощности до 1 МВт, работающие на возобновляемых источниках энергии. Такой порядок позволяет жителям широко использовать солнечные батареи — благо климат позволяет с их помощью серьезно экономить. Практически все дома в сельской местности и многие жилые здания в городах оснащены солнечными панелями. Турецкие производители электричества получают поддержку через Механизм поддержки возобновляемых источников энергии (YEKDEM), который позволяет им продавать излишки энергии по фиксированным тарифам, не зависящим от рыночных колебаний.

Эксперты считают необходимым продление госпрограмм поддержки солнечной и ветроэнергетики

Самые высокие расценки — на энергию, получаемую от заводов биомассы и от солнечных панелей, самая дешевая — от ветряков и ГЭС. По данным министерства энергетики и природных ресурсов Турции на сентябрь, большинство выбирают в качестве источника энергии фотогальванические солнечные панели мощностью менее 1 МВт, которые широко представлены на рынке. Плюс у турецких компаний есть опыт их обслуживания и ремонта, также они не занимают много места. Вместе с тем некоторые пытаются ставить и небольшие ветряки. Что же касается ветряков большого размера и заводов по переработке биомассы, то эти проекты требуют серьезных вложений и, как правило, подобными вещами занимаются те, кто намерен продавать излишки энергии.

Энергоэффективность и энергосбережение в России

Эти два направления входят в общий стратегический план развития России, обозначены они были еще в 2010 году. Государству действительно выгодно, чтобы возобновляемые источники энергии в России действительно применялись. Если завод будет потреблять дешевую и легко получаемую энергию, то снизится себестоимость продукции. При этом снизится цена на товар в магазине, создав сокращение социальной напряженности, и увеличится общая прибыль предприятия. А это значит, что будут созданы новые рабочие места, будут развиваться новые технологии и существенно вырастет уровень средств, перечисляемых предприятием в виде налогов.

Если частный владелец жилья перейдет на потребление возобновляемой энергии, то государству от этого шага опять-таки будет большая польза. Он, во-первых, приобретет новейшее оборудование, что стоит недешево в настоящее время. Во-вторых, человек не будет требовать подвести к его жилью центральные коммуникации. И в третьих, воздействие на экологию сократиться до минимального, следовательно, государство потратит намного меньше средств на природоохранные мероприятия.

Мотивы в масштабе всей России понятны, осталось самое трудное — научить российских граждан рассуждать не только, исходя из собственных затрат, но и с позиций сбережения природных ресурсов. Необходимо донести до населения, что возобновляемые и невозобновляемые источники энергии могут по-разному влиять не только на благосостояние, но и на здоровье и продолжительность жизни нации.

Нефть, газ, торф, каменный уголь – все это ресурсы привычные, эффективные, но невозобновляемые. Да, если рассматривать вопрос с позиции ныне живущих и даже их детей и внуков, то на наш век всего этого хватит. Но загрязнение атмосферы происходит в большей части именно продуктами сгорания этих ресурсов, а болезни от грязного воздуха (астмы, аллергии, иммунная недостаточность, болезни сердца, рак и пр.) – это уже проблема ныне живущих.

Использование возобновляемых источников энергии не только удешевляет добычу и потребление, но и очищает атмосферу, улучшает наше здоровье. И в этом тоже огромная выгода для государства, ведь здоровое общество – гарант высоких показателей экономики, достижений науки, культуры и искусства и пр.

Ученые отмечают, что в нашей стране огромный потенциал для развития использования энергосберегающих технологий. Мы можем добиться показателя в 40% от всего количества потребления энергии. То есть 40% энергии будет производиться с помощью возобновляемых источников. Это 400 миллионов т.у.т. Для справки: 1 т.у.т. – это теплота сгорания 1 килограмма условного топлива. То есть мы можем заменить альтернативными источниками 400 миллионов килограмм топлива в год, дорогостоящего и дающего вредные выхлопы. Такова возобновляемая энергия в России, а если говорить о мире в целом, то этот показатель составляет 20 миллиардов т.у.т. в год! Это более половины всего топливного и энергетического ресурса.

Российское правительство разработало ряд документов, которые определяют регламент работы по внедрению у нас энергоэффективных технологий. Рассчитано их действие до 2030 года.

Очень интересно мнение экономических аналитиков на тему внедрения в России технологий с использованием возобновляемых источников энергии. Они заметили, что поводом для использования крупными бизнес-субъектами новейших разработок, производства экологичных приборов, имеет два мотива. Первичен мотив экономический. Если технология приносит прибыль производителю или пользователю, то она используется и внедряется. А вот улучшение экологии всегда является вторичным мотивом, про него вспоминают только тогда, когда успешно получена прибыль. Менталитет, что поделать!

Основы альтернативной энергетики и использования ВИЭ

Возобновляемая энергетика использует для своих нужд энергию:

  • ветра;
  • малых речных потоков;
  • солнца;
  • геотермальных источников;
  • приливов и отливов.

Россия стремится к переходу на использование альтернативных источников энергии. Вот как развивается эта отрасль энергетики в государстве:

  1. Ветер.Под ветроэнергетику отводится примерно 26–30% всего электричества, что генерируется на территории России. Хотя страна не входит в число лидеров по производству возобновляемой энергии, показатель уже неплохой.
      • Большим КПД обладают ветроустановки, расположенные в предгорных и горных районах Кавказа, Алтая, Урала. Развитие ветроэнергетики ведётся на российских побережьях Тихого и Северного Ледовитого океанов. Специалисты рассматривают возможность возведения крупных ветропарков на побережьях Каспийского и Азовского морей, на юге Камчатки и п-ове Кольском. Мощнейшие действующие ветропарки локализуются в Крыму, республике Башкортостан, Калининградской области и на Камчатке.
      • Наряду с большими ветровыми площадками, сооружаются малые, предназначенные для обеспечения энергией близлежащих сёл и деревень.
      • Кроме обычных наземных ветрогенераторов, не так давно стали применять зонды, заполненные гелием. Эти приспособления поднимаются на 1,2–3 км над уровнем земли и генерируют энергию, находясь в воздухе. Преимущество таких зондов состоит в большей производимой мощности (т. к. порывы ветра на высоте значительно сильнее).
  2. Горные речки.Малые водные потоки хранят в себе энергию. Во многих частях России (на Кавказе, например) на горных реках были возведены небольшие ГЭС. Такие установки требуют лишь периодического техосмотра. Обслуживать действующее оборудование круглосуточно не требуется. Зато жители поселений, что расположены в таких местностях, имеют сравнительно дешёвую электрическую энергию. Провести в эти деревушки централизованное энергообеспечение было бы в несколько раз дороже!
  3. Геотермальные источники.Энергия горячих подземных вод развивается динамично. По общим данным, на территории России имеется 56 месторождений термальных вод, 20 из которых используются в промышленных целях. Все термальные ЭС расположены в зоне Камчатки и Курильских островов. На западе Сибири было открыто подземное море площадью около 3 млн. м². Его энергия пока остаётся недостаточно востребованной.
  4. Солнце.Огромные площадки, «усеянные» солнечными батареями, расположены в Крыму, республике Башкортостан, в Алтайском крае. Именно в этих районах гелиоэнергетика даёт самые большие доходы.

Из приведённых в списке данных видно, что ВИЭ на территории России набирают обороты и медленно, но верно развиваются. Однако страна всё ещё отстаёт от мировых лидеров по использованию ВИЭ.

Экология под вопросом

Однако, по мнению экспертов, не все ВИЭ одинаково экологически безопасны. Некоторые способны нанести ущерб экологии. В частности, речь идёт о гидроэлектростанциях (ГЭС). Согласно данным исследователей из Австралии и КНР, суммарная площадь земель, затопленных в результате ввода в эксплуатацию гидроэлектростанций, — 340 тыс. кв. км, что немногим меньше площади Германии. Соответствующие сведения учёные приводят в издании Trends in Ecology & Evolution.

Из-за ГЭС были разрушены многие пойменные экосистемы, что привело к снижению видового разнообразия. Впрочем, в последние годы гидроэнергетика уступает лидерство новым видам генерации: солнечной и ветроэнергетике. По прогнозам экспертов, их доля генерации сравняется с долей ГЭС к 2030 году.

Однако активное внедрение биотоплива, произведённого из древесины и сельскохозяйственных культур, способно обернуться неприятными последствиями. Кратное увеличение нагрузки на сельхозугодия может привести к сокращению производства продовольствия. Согласно подсчётам американских исследователей, уже сегодня расширение «топливных» посадок вызвало рост цен на продовольственное сырьё в США. Кроме того, чрезмерное увлечение биотопливом может привести к вырубке лесов. 

Также по теме

Вырубка лесов и CO2: учёные доказали вред биотоплива для окружающей среды

Европейские учёные пришли к выводу, что биотопливо может наносить серьёзный ущерб окружающей среде. В частности, исследователи…

В 2012 году Еврокомиссия пришла к выводу, что перевод земель под топливные плантации должен быть ограничен, а производители топлива из пищевых культур не должны пользоваться господдержкой.

В результате проведённого в прошлом году Евросоюзом исследования учёные выяснили, что пальмовое или соевое масло, из которого извлекают энергию, выделяет в атмосферу больше углекислого газа, чем любое ископаемое топливо.

«Предписанное ЕС дешёвое биотопливо на основе пищевых продуктов, в особенности растительных масел, таких как рапсовое, подсолнечное и пальмовое, — просто ужасная идея», — заявил директор исследовательской организации Transport & Environment Йос Дингс.

Неоднозначными, по мнению экспертов, являются и преимущества электромобилей как с экономической, так и с экологической точек зрения. При этом в ряде стран действуют меры правительственной поддержки этого вида транспорта.

  • Электромобиль Tesla Model 3
  • Reuters

Например, в Эстонии покупатель электрокара может рассчитывать на компенсацию 50% себестоимости машины, в Португалии на покупку электроавтомобиля выплачивается субсидия в 5000 евро. В России тоже задумываются о введении подобных дотаций.

Без господдержки такие автомобили не пользуются спросом: после того как власти Гонконга отменили налоговые льготы для покупателей электрокаров Tesla, продажи этих машин упали до нуля. Однако польза электрокаров для окружающей среды пока не очевидна. 

Проекты будущего

На фоне «дележа пирога» мирового энергобаланса между классической генерацией и ее молодой соперницей в лице ВИЭ, особняком стоят проекты, которые в итоге могут сыграть ключевую роль в формировании энергетики будущего. Человечество ищет надежный, безопасный и дешевый источник энергии, который бы не только не загрязнял окружающую среду, но и решал накопившиеся проблемы.

В этом плане надо обратить внимание на Международный экспериментальный термоядерный реактор (ИТЭР), строительство которого идет во французском Кадараше. Это крупнейший мировой научный проект, на территории Франции реактор возводят практически всем миром: участвуют ЕС, Швейцария, Китай, Индия, Япония, Южная Корея, Россия и США

Страны Европы вносят около 50% объема финансирования проекта, на долю России приходится примерно 10% от общей суммы, которые будут инвестированы в форме высокотехнологичного оборудования.

В основе реактора отечественная технология токамака, и это будет первая крупномасштабная попытка использовать для получения электроэнергии термоядерную реакцию, подобную той, что происходит на Солнце. Если ИТЭР будет успешным (появления первого прототипа коммерческой термоядерной электростанции мир ожидает к концу века), все участники получат полный доступ к технологиям для строительства объектов термоядерной генерации. Запасы топлива для такой станции на планете практически неисчерпаемы, к тому же термоядерная генерация экологически безопасна.

«ИТЭР – это ворота в термоядерную энергетику, через которые мир должен пройти», – говорил почетный президент НИЦ «Курчатовский институт», академик РАН Е.П. Велихов.

Еще один проект, способный повлиять на формирование облика энергетики будущего, – «Прорыв», реализуемый в Росатоме. Он предусматривает создание ядерных энергетических технологий нового поколения на базе замкнутого ядерного топливного цикла с использованием реакторов на быстрых нейтронах (БН). Развитие атомной генерации на основе реакторов БН позволит решить проблему накопленных радиоактивных отходов, топлива для таких реакторов человечеству должно хватить на очень длительный период.

«Цель проекта «Прорыв» – это не только уникальный результат научно-исследовательских или опытно-конструкторских работ, но и создание конкурентоспособной технологии, с помощью которой атомная отрасль России сможет не только сохранить, но и усилить свое лидерство на мировом рынке в ближайшие 30 лет», – считает генеральный директор Росатома Сергей Кириенко.

В мире поиском генерации будущего занимаются не только государства и крупные корпорации, но и частные инвесторы, вкладывающие свои средства в передовые проекты. К примеру, компания TRI ALFA ENERGY разрабатывает компактную термоядерную электростанцию – возможного конкурента ИТЭР.

Билл Гейтс инвестировал в компанию TerraPower, которая создает инновационный ядерный реактор на бегущей волне и планирует построить его прототип к 2020 году.

Активно совершенствуются системы аккумулирования энергии – Илон Маск в 2015 году представил новую компактную систему Tesla Powerwall, которая способна днем накапливать электроэнергию от солнечных панелей для использования в ночном режиме. Подобные аккумуляторы не являются чем-то новым, но важен сам факт совершенствования и удешевления данных систем для того, чтобы их можно было использовать в домашних условиях.

Скупые очертания будущей мировой энергетики можно увидеть в планах развития распределенной генерации, в повышении энергоэффективности и проектах модернизации действующих объектов тепловой генерации, а также вывода старых мощностей из эксплуатации.

У России сегодня сильные позиции в ряде энергетических направлений, в том числе в атомной сфере, мы и в перспективе точно должны оставаться в лидерской группе стран, создающих инновационные технологии энергогенерации, которые и определят  энергетическое будущее человечества.      

Андрей Ретингер, независимый эксперт в энергетической отрасли

Переход на возобновляемые источники

Хотя перспективы возобновляемых источников энергии для замены ископаемого топлива имеет такую мощную привлекательность, полный глобальный переход потребует ряда сложных и длительных процессов, которые будут стоить больших денег.

В ближайшее время наше потребительско-капиталистическое общество делает такой переход совершенно нереализуемым.

Перспективы возобновляемых источников энергии не могут обеспечить основную часть мирового спроса на энергию.

По крайней мере, не в настоящее время, учитывая тот факт, что после 50 лет субсидий, солнечная и ветровая технология, которая на сегодняшний день является самым популярным, все еще производит только около 1% мировой энергии. Если мы учитываем периодическое снабжение, которое ограничивает крупномасштабное использование, будучи также зависимым от погоды, технология еще больше теряет свою привлекательность.

  • Хотя коалиция глобального лидерства может с помощью правильных политических решений увеличить мировое производство возобновляемых источников энергии, все еще слишком оптимистично полагать, что они будут поставлять основную часть мировой энергии к 2050 году. Реализация таких целей потребует радикальных социальных, экономических, политических и культурных изменений. Однако некоторые страны могут фактически реализовать общенациональный переход на возобновляемые источники в кратчайшие сроки, например, Дания, Испания, Германия, даже развивающиеся экономики, такие как Южная Африка и Бразилия. Кроме того, трудно рассчитать со 100% точностью стоимость этого перехода.
  • Возобновляемые источники энергии имеют серьезные проблемы с масштабируемостью и хранением, особенно солнечные и ветровые источники. Например, для строительства функциональной ветроэлектростанции среднестатистически потребуется 10 гектаров продуктивной земли, когда продуктивная земля на человека составляет 1,3 гектара на планете.
  • Опять же, крупномасштабное производство, особенно через солнечные тепловые станции и фотоэлектрические фермы в наиболее благоприятных местах, будет включать в себя передачу на большие расстояния. Потери электроэнергии из-за передачи на большие расстояния неизбежно велики.
  • Возобновляемые источники энергии, наконец, будут доминировать, но это займет столетия за столетиями. Спрос уже растет, однако ископаемое топливо будет жить достаточно долго.
  • Наконец, хорошо знать, что прогресс есть прогресс. Если мы можем довести мировое производство возобновляемых источников энергии до 7%, мы также можем довести его до 10%, а затем до 15%, 20%…Гринпис предполагает, что ключ лежит в том, чтобы иметь сочетание источников, разбросанных по широкой территории: солнечная и ветровая энергия, биогаз, биомасса и геотермальная, даже океанская энергия могут внести свой вклад.

Стимулы развития ВИЭ в мире

Основными стимулами развития возобновляемых источников в мире являются следующие обостряющиеся со временем проблемы, стоящие перед человечеством:

  • 1. Как обеспечить возрастающие энергетические потребности быстро растущего населения мира? В начале ХХI века мировое потребление энергии превысило 500 ЭДж/год (1 ЭДж = 1018 Дж) или около 12 млрд тн.э./год. По различным прогнозам уже к 2020г. мировое энергопотребление возрастет более чем в полтора раза, в первую очередь, за счет развивающихся стран (рост населения с одновременным повышением удельного в расчете на 1 человека потребления энергии). В условиях постепенного истощения дешевых запасов органического топлива возможность полного и с приемлемыми затратами удовлетворения растущих энергетических потребностей вызывает серьезные опасения. Ядерная энергетика после ряда серьезных аварий на АЭС пока не вызывает доверия общественности, да и ее полноценное развитие возможно лишь при переходе на новые типы реакторов-размножителей, обеспечивающих воспроизводство ядерного топлива, что сопряжено с необходимостью освоения новых технологий и определенными дополнительными рисками. Термоядерная энергетика пока не вышла из стадии фундаментальных исследований, и сроки ее возможного промышленного освоения пока не предсказуемы. В этой ситуации ставка на расширение масштабов использования ВИЭ, ресурсы которых по сравнению с обозримыми энергетическими потребностями человечества практически неограниченны, несмотря на повышенные затраты, представляется вполне оправданной.
  • 2. Как обеспечить энергетическую безопасность стран и регионов, сильно зависящих от импорта энергоресурсов? Эта проблема стоит еще более остро и актуально, чем предыдущая. Мир довольно жестко поделен на страны экспортеры и импортеры энергоресурсов. Месторождения органических топлив и урана по миру распределены крайне «несправедливо», что вызывает экономические и политические кризисы и создает напряженность в мире. ВИЭ распределены по странам мира более или менее равномерно и доступны в том или ином виде и количестве в любой географической точке, что обусловливает их дополнительную привлекательность.
  • 3. Как обеспечить экологическую безопасность? Масштабы современной энергетики пока еще малы в рамках природного энергетического баланса: потребление энергии человечеством составляет всего около 2/10000 суммарного поступления энергии солнечного излучения на поверхность Земли. Вместе с тем, в сравнении с энергией, идущей на процессы фотосинтеза (около 40 ТВт), мировая энергетика соизмерима и, по оценкам, достигает около 20% от нее, что указывает на принципиальную возможность заметного глобального влияния энергетики на биосферу. Энергетика ответственна примерно за 50% всех вредных антропогенных выбросов в окружающую среду, в том числе парниковых газов. Не вызывает сомнений, что ВИЭ более экологически безопасны, чем традиционные источники.

Немаловажными аргументами в пользу развития ВИЭ являются также:

  • забота о будущих поколениях: энергетика — крайне инерционная сфера экономики, продвижение новых энергетических технологий занимает десятки лет, необходима диверсификация первичных источников энергии, в том числе за счет разумного использования ВИЭ;
  • многие технологии энергетического использования ВИЭ уже подтвердили свою состоятельность и за последнее десятилетие продемонстрировали существенное улучшение технико-экономических показателей. Удельные капитальные затраты на создание энергоустановок на ВИЭ и стоимость генерируемой ими энергии приблизились к аналогичным показателям традиционных энергоустановок, и в ряде случаев использование ВИЭ в некоторых регионах и практических приложениях стало вполне конкурентоспособным.

Ставка на солнце

Берлин несколько лет назад сделал ставку на масштабное развитие солнечной генерации, решив постепенно отказаться от атомных объектов для выработки электроэнергии. Определенных успехов в этой области Германия достигла в июле 2015 года, когда солнечные батареи, установленные по всей стране, произвели столько же электроэнергии, что и атомные электростанции: объем генерации и тех, и других составил по 5,18 ТВт/час.

Уже в 2014 году ветер, солнце, биомасса и вода обеспечили 26,2% всей произведенной в Германии электроэнергии, впервые обогнав по этому показателю традиционного для отрасли лидера – бурый уголь, на долю которого пришлось 25,4%.

Некоторые эксперты считают, что к 2030 году страна может полностью перейти на ВИЭ при производстве электроэнергии, уйдя от всех ископаемых, а также ядерных источников получения энергии.

На примере Германии видно, к каким последствиям способно привести чисто политическое решение по отказу от стабильного источника энергии, в данном случае атомной генерации. В числе внутренних последствий – рост стоимости электрической энергии для конечных потребителей, в числе внешних – потеря важнейших компетенций в высокотехнологичной атомной отрасли, и это на фоне того, что в мире вновь бурно развивается строительство АЭС и все новые страны заявляют о планах создания собственной атомной генерации.

Высокая зависимость ВИЭ от государственной поддержки делает «зеленую» энергетику уязвимой в кризисной экономической ситуации. К тому же ВИЭ имеют те самые родовые недостатки, заключающиеся в том, что объем производства энергии на объектах альтернативной генерации сильно зависит от погоды, в случае с солнечной генерацией – еще и от времени суток.

Для обеспечения энергоснабжения крупного промышленного производства солнечной генерацией надо покрыть панелями колоссальную территорию в десятки квадратных километров. К тому же солнечная генерация не работает в вечерние, пиковые часы потребления, а значит необходимо аккумулировать в огромных объемах энергию, полученную в течение светового дня, что приведет к еще большему удорожанию и так далеко не дешевой фотовольтаики.

Сторонники альтернативной генерации называют ее экологически чистой, критики в ответ на это подчеркивают несколько существенных моментов: строительство крупных ГЭС приводит к затоплению огромных территорий, уничтожению флоры и фауны и необратимому изменению климата в регионе, ветроэлектростанции являются реальной угрозой для птиц и причиной эрозии почвы из-за постоянной вибрации, а производство пластин для фотовольтаики не только очень дорогое и энергозатратное, но и крайне токсичное.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.