Графен: что это, принцип работы

Графен

Самый перспективный материал будущего — графен, двумерная модификация углерода, состоящая из плоской кристаллической решётки толщиной в один атом. Кристаллическая решётка графена представляет собой плоскость, состоящую из шестиугольных ячеек.

Графен

С одной стороны, все невероятные теоретические свойства графена ограничены тем, что идеальную двумерную плёнку в свободном состоянии ученые пока не смогли получить из-за её термодинамической нестабильности. Тем не менее, графен обладает уникальной электропроводностью, что делает его прекрасной заменой кремнию.

Это позволит создавать ещё более миниатюрные электронные устройства. Кроме того, графен идеально подходит для хранения энергии в топливных элементах, применения в оптике, создания гибких дисплеев и даже для очистки жидкостей, ведь графеновая плёнка пропускает молекулы воды, задерживая другие вещества.

Для того, чтобы воспользоваться большинством уникальных свойств графена, не обязательно применять его в идеальном виде. Если в плёнке графена появляются дефекты, то она может существовать в виде нанотрубок. Композитные материалы, источники тока, нейрокомпьютерные интерфейсы и бионика (например, искусственные мышцы) – ограничений для применения нанотрубок практически нет.

Даже пресловутый «космический лифт» можно построить благодаря углеродным нанотрубкам, ведь теоретически одностенная нанотрубка длиной в несколько километров может выдерживать вес до тонны на квадратный миллиметр.

Свежие разработки графеновых электронакопителей

Многие специалисты занимающиеся разработками имеют такое мнение, что АКБ будущего будет обладать совсем иной формой, химсоставом и строением, по сравнению с Li-ion изделиями, которые за последний десяток лет вытеснили другие технологии со многих рынков. Эксперты ничуть не сомневаются в том, что будущее — за графеновыми электронакопителями.

Относительно недавно, испанская фирма Graphenano, представила прототип графен-полимерной АКБ в распоряжении которой, уникальное качество — аппаратура может заряжаться за в три раза меньшее время, нежели повсеместно распространённые Li-ion накопители. Удачные эксперименты Graphenano дали толчок тому обстоятельству, что самые различные разработчики начали проявлять огромнейший интерес к графеновым технологиям. Производители не долго думая стали предвкушать все выгоды использования такого оснащения.

Испанцы разработали электроаккумулятор под названием Grabat, обеспечивающий электрокару пробег на одном заряде до 800 километров. Ёмкость 2,3 V батареи впечатляет — до 1000 Вт⋅ч/кг. Если сравнивать со всё теми же Li-ion накопителями, то у лучших экземпляров можно наблюдать показатель всего 180 Вт⋅ч/кг. Специалисты «Графенано» заявляют, что Grabat можно подзарядить всего за несколько минут — у этого устройства, скорость заряда/разряда в 33 раза превышает таковую у Li-ion АКБ.

Что выгодного в быстрой разрядке? Она оказывает очень большое влияние на интенсивность разгонной динамики электрических машин. Кроме того, графеновые изделия и весят в 2 раза меньше Li-ion. А вот ещё одно преимущество перед литий-ионными электробатареями: АКБ на основе графена не могут организовать неожиданный и естественно, весьма неприятный для пользователя взрыв.

В конце 2015-го работники «Графенано» подготовили производственную мощность площадь которой составила более 7 тыс. м2. Цель — производить там графен-полимерные аккумуляторные батареи, а для получения максимального результата, Graphenano решили объединиться с фирмой Grabat Energy и когортой химиков из Национального университета города Córdoba.

Было организовано спецоборудование для обеспечения двадцати сборочных линий на 80 млн. ячеек. Разработчики из «Графенано» гарантируют, что такие электроаккумуляторы не будут выделять газы и пожароопасность им чужда, также, короткое замыкание, не нанесёт изделиям никакого вреда. Полимер прошёл сертификацию при взаимодействии с испанским институтом DEKRA и немецким TUV.

И напоследок

С помощью искусственного интеллекта и квантовых вычислений открытие новых материалов в течение следующего десятилетия ускорится в геометрической прогрессии.

При этом персонификация материалов станет обычным делом: будущие имплантаты коленного сустава будут подобраны персонально для точного удовлетворения потребностей каждого организма, как с точки зрения структуры, так и состава.

Наноразмерные материалы, хотя и невидимые невооруженным глазом, будут интегрироваться в нашу повседневную жизнь, плавно улучшая медицину, энергетику, смартфоны и многое другое.

В конечном счете путь к демонетизации и демократизации передовых технологий начинается с изменения материалов — невидимого активатора и катализатора. Наше будущее зависит от материалов, которые мы создаем.

Подписывайтесь на Telegram-канал РБК Тренды и будьте в курсе актуальных тенденций и прогнозов о будущем технологий, эко-номики, образования и инноваций.

Новая эра в электронике?

Графен – уникальный по своей электропроводности материал: его сопротивление на 35% меньше, чем у меди, а по подвижности носителей заряда он превосходит и кремний, и антимонид индия.

Существующие сегодня чипы памяти и микропроцессоры уже преодолевают технологические границы в 10 нанометров. Процесс дальнейшей миниатюризации представляет значительные сложности. Все громче раздаются голоса, что мы практически достигли пределов кремниевых чипов. Сегодня разработчики топчутся на тактовой частоте около 4 ГГц, не в силах обеспечить дальнейшее увеличение быстродействия.

На основе графена можно делать гибкие экраны электронных устройств. Скорее всего, это станет первой областью применения этого материала

Кремний всем хорош для микроэлектроники, но есть у него и существенный недостаток – низкая теплопроводность. С увеличением плотности элементов и ростом тактовой частоты это становится серьезным барьером для дальнейшего развития отрасли.

Правда, для изготовления полевого транзистора из графена нужно как-то создать в нем запрещенную зону, чтобы задавать два состояния, пригодных для двоичной логики: непроводящее и проводящее. Однако уже сегодня предложены несколько способов решения данной проблемы, и это позволяет надеятся на скорое появление подобных транзисторов. Инженеры полагают, что быстродействие графеновых микропроцессоров может быть на порядок выше существующих – на основе этого материала уже построены транзисторы, модуляторы, микросхемы, работающие на частотах выше 10 ГГц.

Помимо высокой электропроводности, графен отличается практически полной прозрачностью. Он поглощает всего лишь 2% света, причем в самом широком оптическом диапазоне. Список материалов, одновременно обладающих этими качествами, очень ограничен, и графен лучше их всех. Поэтому это идеальный материал для жидкокристаллических дисплеев. Кроме того, он отличается высокой механической прочностью, так что скоро вы сможете забыть о разбитых экранах смартфонов и ноутбуков. Мы уже можем получать материал подходящего качества, и сейчас вопрос стоит только в снижении его себестоимости.

Еще одной ожидаемой областью применения графена является производство различных измерительных устройств, датчиков, сенсорных систем. Например, газовые датчики из этого материала могут реагировать буквально на единичные акты адсорбции/реабсорбции молекул — то есть работать на пределе чувствительности для таких устройств. Еще в 2015 году специалисты из Американского химического общества (ACS) на основе графена разработали прототип тепловизора с высокочувствительной матрицей, не требующей охлаждения. В будущем это позволит создавать качественные и, главное, недорогие тепловизионные приборы и обычные телекамеры, способные вести съемку в полной темноте.

Графен — один из главных претендентов на смену кремния в микропроцессорах

Кто из нас не мечтал о новом смартфоне или ноутбуке с батареей, запаса которой хватало хотя бы на несколько дней? Очень может быть, что уже в ближайшем будущем это станет реальностью. Графен имеют максимальное отношение поверхности к объему, благодаря чему прекрасно подходит для аккумуляторов и суперконденсаторов.

Разработки в этом направлении ведутся самым активным образом. Несколько лет назад испанские инженеры сообщили о создании графенового аккумулятора для электромобилей, который может заряжаться всего за восемь минут, на 77% дешевле литиевых аналогов и в два раза легче их по весу. Разработчики утверждают, что заряда достаточно для 1000 километров пробега.

Особенности магний-графенового аккумулятора

Первые магниевые батареи были разработаны испанскими учеными в 2017 году. Графеновые аккумуляторы, в которых электролитом выступает магний, более емкие и быстрее заряжаются.

Нередко это изобретение относят к батареям нового поколения. При этом, они на 77% дешевле и на 50% легче литий-ионных аналогов.

Высокая подвижность ионов позволяет зарядить такой аккумулятор за 8 минут. А максимальной емкости достаточно, чтобы электромобиль смог проехать 1000 км.

Принцип действия любых аккумуляторов – химические процессы окисления и восстановления. Магний, который стоит практически в 20 раз дешевле лития, выбран неслучайно.

Магний, как литий, не взрывоопасен при контакте с жидкостью, также его легче утилизировать. Да и запасов его на планете куда больше.

Магний – не идеальное вещество, поэтому и с производством магний-графеновых аккумуляторов возникали сложности. Серьезной проблемой оказался подбор электролита, в котором бы передвигались ионы. Эти работы продолжаются до сих пор.

По мнению ученых, новые магний-графеновые батареи будут иметь емкость в 2,5 раза больше, чем у традиционных литиевых источников питания.

Немецкие автомобильные концерты приняли такую батарею на тестирование. Тест оказался успешным и пошли разговоры об использовании аккумуляторов в промышленности.


Магниево-графеновый аккумулятор для электромобиля

Электромобиль, работающий без использования ископаемых источников топлива, не будет таким же быстрым, как транспортное средство на бензине или «дизеле». Но снижается цена питания и обслуживания. А это уже значимый шаг, который еще более отображает перспективность машин на электричестве.

Компания Graphenano в 2017 году создала предприятие, производящее графеновые аккумуляторы. Их перспективная разработка – полимерные батареи, к сожалению, пока еще не вышла «в свет».

По их мнению, подобные источники питания станут еще безопаснее, более стойкими к возникновению коротких замыканий.

Где купить аккумулятор

Аккумуляторы, сделанные из графена, пока что остаются только в виде проектов. Если они будут реализованы, то получатся батареи, которые смогут в течение года работать без подзарядки. Пока что заряд приходится постоянно пополнять и все знают, сколько примерно заряжаются литий-ионные «пластины».

Пока что графен – малоизученная структура, поэтому власти не спешат давать ему «зеленый свет».

Достаточно представить, что в одной коробочке, размером с пачку масла, может вмещаться 1 мегаватт энергии – такое изобретение кто-то захочет использовать как оружие с немалой поражающей мощностью. Производители продолжают тестировать новинку на своих автомобильных концернах, доводя ее до «норм».

Углеродные источники питания – технология, которая найдет отклик в будущем, когда будут отлажены все технические тонкости производства. Тогда, может быть, появятся и первые смартфоны с графеновыми аккумуляторами, которые будут заряжаться за несколько минут.

Графеновый аккумулятор своими руками

Уже понятно, создать двухмерную структуру графена и закрепить его свойства – задача не из простых. Ученые всего мира работают над проблемой. Сделать в кустарных условиях графеновый аккумулятор невозможно.

Но усвоив, что слой углерода должен быть микроскопически тонким, мастера получают такой разными способами.  Они истирют графит в тонкодисперсный порошок, производят химическую обработку, наносят его на подложку из алюминия. Предлагаем ознакомиться с одним из способов получения нужного состава.

Потребентся металлический сосуд с герметичной закрывающейся крышкой, с мешалкой. Миксер работает от асинхронного двигателя без перерыва 2 суток. В емкости смешивается в пену графитовый порошок с жидкостью Ферри. В полученной пене во взвешенном состоянии находятся микроскопические частицы графита. Высушить пену, собрать пыль, растворить ее в лаке для обработки алюминия – вот и готов «графен». Теперь состав нужно нанести на подложку из алюминия и строить магний-графеновый аккумулятор своими руками.

Есть способы сбора угольной пыли на липкую ленту, выжигание лучом лазера с получением чешуйчатого материала, растворение графита в смеси азотной и серной кислот. Высохший осадок выжигают в установке, получая легкие хлопья. Считают этот вид сажи графеном и работают с ним.

Графеновые аккумуляторы

«Инновационный углерод» нашел применение, в первую очередь, в автомобилестроении. Точнее – в производстве электромобилей. Повышенная активность заряженных частиц позволяет увеличить полезную емкость графеновых батарей.


У графена высокая электропроницаемость

На начальных этапах разработки этих источников питания, в листы графена добавляли литий. Но вещество «бурно» реагировало на воду и другие окислители, поэтому для промышленных задач эта схема оказалась малопригодной.

Литий, контактирующий с водой на открытой местности, приводит к масштабному взрыву. Поэтому такие модификации не устанавливались в автомобили, ведь, если транспортное средство повредится, а вместе с ним и аккумулятор – это может стать причиной возгорания.

Сам процесс производства требовал большого количества лития – вещества, которого на планете не так уж и много.

Батареи литий-графенового типа долго заряжаются, из-за чего в автомобильной отрасли с их применением начали возникать сложности. Новым источником питания стали магний-графеновые аккумуляторы, о которых еще пойдет речь.

Принцип действия аккумулятора аналогичен тому, как работают классические батареи в автомобилях с ДВС. Различаются только электрохимические процессы, проходящие в «теле» устройства. Они практически аналогичны реакциям литий-полимерных батарей.

Есть две технологии производства графеновых источников питания:

  • американская модель. Источником реакции выступают кобальтат литий и катод из перемежающихся пластин кремния и графена;
  • российская модель. Магний-графеновая модификация, в которой литиевую соль (анод) заменили на оксид магния (доступное и менее токсичное вещество).

У графена высокая электропроницаемость, а еще он склонен к накоплению электрозаряда. Поэтому в обоих случаях скорость движения ионов между электродами повышается, а вместе с этим и емкость батарей.

Преимущества и недостатки


Графен экологически чистое вещество

Если сравнивать с традиционными технологиями, то у графеновых источников питания следующие достоинства:

  • исходное сырье доступно и распространенно. Сейчас графен производят в промышленных масштабах, причем довольно простым способом;
  • малый вес. Масса 1 м2 графена – менее 1 грамма. Значит, снижается общая масса аккумулятора, что вносит свои коррективы в производство электромобилей;
  • экологически чистое вещество, не оказывающее негативного воздействия на окружающую среду;
  • высокие показатели прочности и водонепроницаемости;
  • поврежденные участки быстро восстанавливаются;
  • проводимость выше, чем у любого доступного сейчас полупроводника;
  • высокая удельная емкость. Если графеновая батарея применяется как источник тока, то электрический автомобиль способен «на ней» проехать 1000 км не подзаряжаясь;
  • технически долговечное вещество, мощность которого не снижается из-за частых циклов зарядки/разрядки;
  • быстро заряжается.

Недостаток графенового аккумулятора – низкая плотность. По этой причине такие источники питания не устанавливаются в мобильные устройства, так как получаются слишком крупными.

Но и это не самая «страшная» проблема. Дело в том, что до сих пор батареи из графена не производят крупномасштабными партиями.

Устройство

Графеновые АКБ работают за счет той же электрохимической реакции, что присуща распространенным свинцовым батареям, в которых кислотный или щелочной электролит.

Устройство более всего схоже с литий-ионными источниками питания, в которых задействуется твердый электролит.

Единственное, катодом выступает угольный кокс, так как его химический состав наиболее близок к чистому углероду, а графитовый слой заменен графеновым.

Емкость батареи зависит от того, сколько ионов находится в кристаллической решетке анода. Скорость перемещения ионов влияет на то, как быстро заряжается аккумулятор.

Для повышения «вместимости» батареи, ученые начали устанавливать между слоями графена кластеры из кремния. А для повышения скорости зарядки в пластинах графена начали делать небольшие отверстия, 15 – 20 нм (нанометров).

Устройство АКБ на основе графена

Теперь стоит рассмотреть особенности устройства графеновых аккумуляторов для электромобилей, поскольку именно в этой сфере могут применяться такие источники питания.

Интересно, что принцип работы ничем не отличается от того, как работают обычные свинцово-кислотные аккумуляторные батареи. Здесь также протекают аналогичные электрохимические процессы. Но, разумеется, реакции внутри АКБ совершенно иные.

Это к вопросу о том, как устроен потенциально перспективный графеновый аккумулятор.

Рассматриваемый тип батарей можно сравнить с литий-полимерными аккумуляторами, поскольку по устройству они во многом похожи. Уже существует несколько технологий, позволяющих создавать графен-полимерные источники питания:

  1. Одна из технологий предусматривает чередование пластин из графена и кремния, которые используются в качестве катода. При этом в роли анода применяют кобальтат лития.
  2. Другая технология подразумевает, что вместо кобальтата задействуют более финансово доступный оксид магния, а катод останется аналогичным. Если судить по стоимости, сочетание магния и графена при создании АКБ обойдётся значительно дешевле, если сравнивать с аналогичным вариантом с использованием лития. Магний-графеновые АКБ вызывают повышенный интерес у автопроизводителей. Ведь потенциально при установке таких батарей на электрокар можно увеличить проходимую дистанцию автомобиля до 1000 километров без остановок на дозарядку. При этом полная зарядка будет занимать около 10 минут. Правда, для работы с графеновыми АКБ потребуются специальные зарядные устройства, которыми планируется оснастить АЗС.

Многие эксперты уверены, что именно за счёт повышения автономного пробега удастся привлечь повышенное внимание к электрическим машинам и наконец-то запустить плавный переход от ДВС к электромоторам. Чтобы создать графеновые АКБ, применяют литий

Но это не самый распространённый и часто встречающийся природный материал. Его запасов объективно недостаточно для того, чтобы покрыть спрос со стороны автопроизводителей. Потому инженеры активно работают над созданием устройств, способных обеспечить замену лития на магний

Чтобы создать графеновые АКБ, применяют литий. Но это не самый распространённый и часто встречающийся природный материал. Его запасов объективно недостаточно для того, чтобы покрыть спрос со стороны автопроизводителей. Потому инженеры активно работают над созданием устройств, способных обеспечить замену лития на магний.

Какие именно характеристики смогут на практике обеспечить графеновые аккумуляторы при оснащении электромобилей, пока спрогнозировать сложно. Но специалисты не сомневаются, что будущее за графеном.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.