Дальнейшее изучение
В конце девятнадцатого века вольтова дуга широко использовалась для общественного освещения. Тенденция электрических дуг к мерцанию и шипению была серьезной проблемой. В 1895 году Герта Маркс Айртон написала серию статей об электричестве, объяснив, что вольтова дуга была результатом контакта кислорода с углеродными стержнями, используемыми для создания дуги.
В 1899 году она была первой женщиной, когда-либо читавшей свой собственный доклад перед Институтом инженеров-электриков (IEE). Ее доклад был озаглавлен как «Механизм электрической дуги». Вскоре после этого Айртон была избрана первой женщиной-членом Института инженеров-электриков. Следующая женщина была принята в институт аж в 1958 году. Айртон подала прошение прочесть доклад перед Королевским научным обществом, но ей не разрешили сделать этого из-за ее пола, и «Механизм электрической дуги» был прочитан Джоном Перри вместо нее в 1901 году.
Разрушительный потенциал
Электрическая дуга имеет нелинейную зависимость между током и напряжением. Как только дуга будет создана (либо путем прогрессирования из тлеющего разряда, либо путем мгновенного касания электродов, а затем разделения их), увеличение тока приводит к более низкому напряжению между дуговыми терминалами. Этот эффект отрицательного сопротивления требует, чтобы какая-то положительная форма импеданса (как электрического балласта) была помещена в цепь для поддержания стабильной дуги. Это свойство является причиной того, что неконтролируемые электрические дуги в аппарате становятся настолько разрушительными, ведь после своего возникновения дуга будет потреблять все больше тока от источника постоянного напряжения до тех пор, пока устройство не будет уничтожено.
Природа и строение
При зажигании дуги создается электрическая цепь. В ней участвуют два электрода — анод и катод, а также участок ионизированного газа. Протекая сквозь газовое облако, электрический ток вызывает его нагрев и интенсивное свечение, связанное с излучением фотонов.
Соответственно участкам цепи, строение сварочной дуги включает в себя три основные области:
- анодная — толщиной 10-4 см;
- катодная 10-5 см;
- столб дуги, длиной 4-6 мм.
В первых двух зонах возникают активные пятна, в них происходит максимальное падение напряжения и максимальный нагрев.
Падение же напряжения в самом сварочном столбе невелико.
При действии электродуги, кроме повышенной температуры, действует еще один важный фактор — весьма интенсивное ультрафиолетовое излучение. Оно оказывает вредное воздействие на человеческий организм, прежде всего – на органы зрения и кожные покровы.
Строение сварочной дуги
Во избежание вреда для здоровья при работе с электросваркой обязательно применение средств индивидуальной защиты: сварочной маски, рукавиц и плотной одежды и обуви из негорючих материалов.
Значения плотности тока для сварочной дуги.
При сваривании металлоизделий электрической дугой большую роль играет и показатель плотности тока. В режиме обычной ручной дуговой сварки плотность тока стандартная, а именно 10-20 А/мм2. Это же значение сварщики выставляют и при сваривании в среде определенных газов. Большая плотность тока, а именно 80-120 А/мм2, а также выше, используется при полуавтоматической или других видах сварки, осуществляемой под защитой газов или флюса.
Плотность тока влияет на напряжение дуги. Эту зависимость принято называть статической характеристикой дуги (она изображается графически). Отметим, что если плотность тока небольшая, то эта характеристика бывает падающей: то есть происходит падение напряжения, когда ток, наоборот, увеличивается. Такое явление обуславливается тем, что при увеличении значения тока проводимость электричества возрастает, так же как и площадь сечения столба дуги, тогда как плотность тока уменьшается.
Когда используется обычная для ручной сварки плотность тока, то напряжение теряет зависимость от величины тока. При этом площадь столба растет пропорционально току. Отметим также, что электропроводность практически не изменяется, также постоянной остается и плотность тока в столбе.
Природа возникновения явления
Процесс формирования дуги выглядит следующим образом:
- Сварщик на долю секунды касается электродом металлической заготовки.
- В момент контакта происходит короткое замыкание, сопровождающееся протеканием тока большой силы и, как следствие, мощным выделением тепла.
- Металл в точке прикосновения плавится. Он становится вязким, тягучим.
- В момент отрыва расходника от заготовки за ним тянется капля расплава.
- Удлиняясь, она утоньшается с образованием т.н. шейки. В какой-то момент та испаряется и превращается в облако заряженных частиц. Одновременно вследствие высокой температуры в данной зоне ионизируется воздух или защитный газ.
- Под действием электрического поля носители отрицательного заряда устремляются к аноду, положительного — к катоду. Начинается процесс протекания тока в плазме.
В момент контакта происходит короткое замыкание, металл в точке прикосновения плавится.
Каждый этап длится миллисекунды, разряд возникает практически мгновенно. Далее ток поддерживается эмиссией электронов на катоде. По пути к аноду они ионизируют газ и пары металла, увеличивая число свободных носителей заряда.
При каких условиях начинается горение
Электрическая сварочная дуга возникает при силе тока от 10 до 1000 А и разности потенциалов 15-40 В. В холодном воздухе розжиг затрудняется, поскольку тот слабо ионизируется. В таких условиях прогревают заготовку либо подают теплый защитный газ.
Источники питания дуги
Для создания разряда используют и постоянное, и переменное напряжение. В первом случае сварной шов получается более качественным, а металл разбрызгивается меньше.
Ток из сети 220 В преобразуется трансформатором, дающим на выходе 15-40 В.
С целью уменьшения его габаритов в современных сварочных аппаратах используют схему, состоящую из таких узлов:
- Входного выпрямителя.
- Инвертора — электронного устройства с быстропереключающимися транзисторами, управляемого микросхемой.
- Трансформатора.
- Выходного выпрямителя.
Инвертор является источником питания дуги.
Инвертор превращает постоянный ток в переменный с частотой до 80 кГц. Это позволяет не только уменьшить размеры трансформатора, но и повысить КПД аппарата.
Параметры источника подбирают с учетом способа выполнения работ. Например, при ручной сварке длина дуги колеблется, поэтому нужен аппарат с крутопадающей вольт-амперной характеристикой. Благодаря ему разряд при растягивании не гаснет, а при его укорочении ток не становится слишком большим.
При сварке плавящимся электродом с него стекают на заготовку капли металла. В такие моменты возникает ток короткого замыкания, превышающий дуговой на 20%-50%. Он пережигает образовавшийся металлический мостик, и плазменный разряд образуется снова. Эти колебания происходят в короткие моменты времени, поэтому источник должен быстро реагировать на них, стабилизируя разность потенциалов.
Чем и как определяется мощность
Плазма представляет собой проводник с протекающим по нему электрическим током. Значит, на вопрос о том, чем определяется мощность сварочной дуги, дается тот же ответ, что и для любого резистора: напряжением и амперажем. Скорость выделения тепла равна произведению этих величин.
Мощность варьируют силой тока, которая зависит от длины дуги.
Чаще мощность варьируют силой тока, которая, в свою очередь, зависит от длины дуги. Одновременно меняется и температура нагрева металла, а с ней и скорость выполнения работ.
Что такое электрическая дуга
Это один из видов электрического разряда в газе (физическое явление). Также ее называют – Дуговой разряд или Вольтова дуга. Состоит из ионизированного, электрически квазинейтрального газа (плазмы).
Может возникнуть между двумя электродами при увеличении напряжения между ними, либо приближении друг к другу.
Вкратце о свойствах: температура электрической дуги, от 2500 до 7000 °С. Не маленькая температура, однако. Взаимодействие металлов с плазмой, приводит к нагреву, окислению, расплавлению, испарению и другим видам коррозии. Сопровождается световым излучением, взрывной и ударной волной, сверхвысокой температурой, возгоранием, выделением озона и углекислого газа.
В интернете есть немало информации о том, что такое электрическая дуга, каковы ее свойства, если интересно подробнее, посмотрите. Например, в ru.wikipedia.org.
Теперь о моем несчастном случае. Трудно поверить, но 2 дня назад я напрямую столкнулся с этим явлением, причем неудачно. Дело было так: 21 ноября, на работе, мне было поручено сделать разводку светильников в распаечной коробке, после чего подключить их в сеть. С разводкой проблем не возникло, а вот когда полез в щит, возникли некоторые трудности. Жаль андройд свой дома забыл, не сделал фото электрощита, а то было бы более ясно. Возможно сделаю еще, как выйду на работу. Итак, щит был очень старый — 3 фазы, нулевая шина (она же заземление), 6 автоматов и пакетный выключатель (вроде все просто), состояние изначально не вызывало доверия. Долго боролся с нулевой шиной, так как все болты были ржавые, после чего без труда посадил фазу на автомат. Все хорошо, проверил светильники, работают.
После, вернулся к щиту, чтобы аккуратно уложить провода, закрыть его. Хочу заметить, электрощит находился на высоте ~2 метра, в узком проходе и чтобы добраться до него, использовал стремянку (лестницу). Укладывая провода, обнаружил искрения на контактах других автоматов, что вызывало моргание ламп. Соответственно я протянул все контакты и продолжил осмотр остальных проводов (чтобы 1 раз сделать и не возвращаться больше к этому). Обнаружив, что один контакт на пакетнике имеет высокую температуру, решил протянуть его тоже. Взял отвертку, прислонил к винту, повернул, бах! Раздался взрыв, вспышка, меня отбросило назад, ударившись об стену, я упал на пол, ничего не видно (ослепило), щит не переставал взрываться и гудеть. Почему не сработала защита мне не известно. Чувствуя на себе падающие искры я осознал, что надо выбираться. Выбирался на ощупь, ползком. Выбравшись из этого узкого прохода, начал звать напарника. Уже на тот момент я почувствовал, что с моей правой рукой (ей я держал отвертку) что-то не так, ужасная боль ощущалась.
Вместе с напарником мы решили, что нужно бежать в медпункт. Что было дальше, думаю не стоит рассказывать, всего обкололи и в больницу. Никогда походу не забуду этот ужасный звук долгого короткого замыкания – зуд с жужжанием.
Сейчас лежу в больнице, на коленке у меня ссадина, врачи думают, что меня било током, это выход, поэтому наблюдают за сердцем. Я же считаю, что током меня не било, а ожег на руке, был нанесен электрической дугой, которая возникла при замыкании.
Что там случилось, почему произошло замыкание мне пока не известно, думаю, при повороте винта, сдвинулся сам контакт и произошло замыкание фаза-фаза, либо сзади пакетного выключателя находился оголенный провод и при приближении винта возникла электрическая дуга. Узнаю позже, если разберутся.
Блин, сходил на перевязку, так руку замотали, что пишу одной левой теперь )))
Фото без бинтов делать не стал, очень не приятное зрелище. Не хочу пугать начинающих электриков….
Итак, идем дальше:
Практическое применение
В промышленном масштабе электрические дуги используются для сварки, плазменной резки, механической обработки электрическим разрядом, в качестве дуговой лампы в кинопроекторах и в освещении. Электродуговые печи используются для производства стали и других веществ. Карбид кальция получают именно таким образом, поскольку для достижения эндотермической реакции (при температурах 2500 °С) требуется большое количество энергии.
Углеродистые дуговые огни были первыми электрическими огнями. Они использовались для уличных фонарей в XIX веке и для создания специализированных устройств, таких как прожекторы, до Второй мировой войны. Сегодня электрические дуги низкого давления используются во многих областях. Например, для освещения используются люминесцентные лампы, ртутные, натриевые и металлогалогенные лампы, а ксеноновые дуговые лампы используются для кинопроекторов.
Формирование интенсивной электрической дуги, подобно мелкомасштабной дуговой вспышке, является основой взрывоопасных детонаторов. Когда ученые узнали, что такое вольтова дуга и как ее можно использовать, разнообразие мирового вооружения пополнилось эффективной взрывчаткой.
Основным оставшимся применением является высоковольтное распределительное устройство для сетей передачи. Современные устройства также используют гексафторид серы под высоким давлением.
Литература
- Дуга электрическая — статья из Большой советской энциклопедии.
- Искровой разряд — статья из Большой советской энциклопедии.
- Райзер Ю. П. Физика газового разряда. — 2-е изд. — М.: Наука, 1992. — 536 с. — ISBN 5-02014615-3.
- Родштейн Л. А. Электрические аппараты, Л 1981 г.
- Clerici, Matteo; Hu, Yi; Lassonde, Philippe; Milián, Carles; Couairon, Arnaud; Christodoulides, Demetrios N.; Chen, Zhigang; Razzari, Luca; Vidal, François (2015-06-01). «Laser-assisted guiding of electric discharges around objects». Science Advances 1 (5): e1400111. Bibcode:2015SciA….1E0111C. doi:10.1126/sciadv.1400111. ISSN 2375—2548.
Электрическая дуга история происхождения
В 1801 году британский химик и изобретатель сэр Хэмфри Дэви продемонстрировал электрическую дугу своим товарищам в Лондонском королевском обществе и предложил название — электрическая дуга. Эти электрические дуги, выглядят как неровные удары молнии. За этой демонстрацией последовали дальнейшие исследования электрической дуги, показал русский ученый Василий Петров в 1802 году. Дальнейшие успехи в ранних исследованиях электрической дуги позволили получить такие важные в отрасли изобретения, как дуговая сварка.
По сравнению с искрой, которая является только мгновенной, дуговой разряд представляет собой непрерывный электрический ток, который выделяет так много тепла от несущих зарядов ионов или электронов, что он может испарять или плавить что-либо в пределах диапазона дуги. Дуга может поддерживаться в электрических цепях постоянного или переменного тока, и она должна включать в себя некоторое сопротивление, чтобы повышенный ток не оставался без контроля и полностью разрушал фактический источник цепи с его потреблением тепла и энергии.
Разновидности
Существует несколько классификаций рассматриваемого элемента, которые имеют различные схемы подвода тока и среды, где он появляется.
Сварка
-
С прямым действием.
В данном случае оборудование устанавливается в параллель изделию из металла, которое необходимо сварить. Дуга, в свою очередь, становится под прямым углом по направлению к электродам и металлической поверхности. -
С косвенным действием.
Появляется при использовании двух электродов, которые находятся от свариваемого изделия под углом в 50 градусов. Дуга появляется между электродом и свариваемым материалом.
Возникновение сварочной дуги.
Помимо этого, можно поделить по принципу атмосферы, где появляется сварочная дуга:
-
Открытая сфера.
Дуга может гореть на открытом пространстве с образованием газовой фазы, где содержится пар металла, электрода и поверхностей после обработки сварочным инструментом. -
Закрытая сфера.
Дуга горит под флюсом. В газовой фазе возле дуги попадает пар материала, электродов и самого флюсового слоя. -
С подачей газовой смеси.
В дуге могут находиться сжатый газ, такой как гелий, углекислый газ, водород, аргон и иные примеси газовых веществ. Они необходимы, чтобы свариваемая поверхность изделия не подвергалась окислению. Благодаря их подаче среда восстанавливается либо становиться нейтральной к внешним факторам. В дугу попадает газ, который подается для работы, пар от свариваемого изделия и электродов.
Помимо перечисленных классификаций можно также выделить виды по длительности действия:
- классический используется для постоянной эксплуатации;
- импульсный – для одноразового использования.
Одним из самых востребованных деталей является стальной, т.е. плавящийся электрод. Однако на сегодняшний день большинство профессионалов отдают предпочтение неплавящемуся, из чего можно сделать вывод, что типы рассматриваемых элементов достаточно различны между собой.
Что такое токи Фуко?
В массивном теле, например, сердечнике (магнитопроводе) или корпусе агрегата, возникает объемный ток в виде движения заряженных частиц по круговым (вихреобразным) траекториям. Это называют вихревыми токами.
Изменение пересекающего проводник магнитного потока наблюдается в двух случаях:
- проводник и поле постоянного магнита двигаются друг относительно друга. Пример: сердечник ротора электрогенератора, в котором статор является магнитом (во многих видах магнит — ротор);
- относительное движение отсутствует, но меняются параметры магнитного поля. Для реализации такого варианта применяется электромагнит (смотанный в катушку провод), по которому пропускается переменный ток. Так же как и ток, поле будет периодически менять направленность силовых линий и интенсивность магнитного потока (в противофазе с током). Пример: магнитопровод трансформатора.
Это явление называют «токами Фуко» — в честь ученого Ж. Б. Л. Фуко, проведшего большую работу по их изучению. Первым же обнаружил данное явление французский ученый Д. Ф. Араго, проводивший в 1824-м году опыт с медным диском и вращающейся над ним магнитной стрелкой. Диск тоже начинал совершать аналогичные действия. Этот эффект стали называть в научных кругах «явлением Араго».
Магнитное поле токов Фуко
Исследователь не смог правильно объяснить механизм вращения, это сделал несколькими годами позже М. Фарадей, открыв ЭИ:
- плоский круглый предмет помещается в крутящееся магнитное поле;
- его воздействие на деталь выражается в наведении в ней вихревых токов;
- токи Фуко, в свою очередь, вступают во взаимодействие с магнитным полем;
- диск начинает крутиться.
Сила вихревых токов напрямую зависит от скорости изменения магнитного потока.
Строение и зона анодного пятна
В структуре дуги различают 3 участка:
- Катодное пятно. Является местом разгона и эмиссии электронов, имеет отрицательный заряд. Размер этой зоны — примерно 1 мкм (0,001 мм). Здесь выделяется 38% тепла, падение напряжения составляет 12-17 В.
- Столб дуги. Имеет нейтральный заряд, поскольку положительные и отрицательные частицы присутствуют в равных количествах. Средняя длина — 5-10 мм. В этом участке выделяется 20% тепла, теряется 2-12 В.
- Анодное пятно. Бомбардируется электронами, что придает ему вогнутую форму (кратер). Протяженность этой зоны составляет 10 мкм. Выделяется 42% тепла, теряется 2-11 В.
Строение и свойства электрической сварочной дуги.
Критическое скольжение
Природа и строение
Строение и параметры сварочной дуги.
По своим особенностям, характеристика сварочной дуги и её природа достаточно легкие в понимании. Максимальная температура в электрическом рассматриваемом элементе для сварки может быть до 10 тысяч градусов.
Это получается за счет прохождения электрического тока через катоды, куда он попадает в ионизированный газ, а затем, после разряда с яркой вспышкой, дает возможность разогреться до необходимой температуры.
После ток попадает на металл, который подвергается сварке и дальнейшей обработке.
Поскольку температура достаточно большая, то данный элемент для сварки излучает инфракрасные и ультрафиолетовые лучи, которые является опасными для организма человека. От этого может нарушиться зрение, либо возникнуть сильный ожог на кожном покрове.
Чтобы защитить себя от негативных последствий необходимо изучить ее свойства, характеристики, а также обеспечить себя или мастера надежной защитой.
Ещё одним немаловажным аспектом является строение сварочной дуги. Вопрос о том, из скольких частей состоит сварочный элемент, достаточно интересный и познавательный. В первую очередь стоит отметить, что она обладает тремя главными зонами: анодной, катодной и столбом.
Когда горит механизм на катоде или аноде, появляются небольшого размера пятна – места, где температура имеет максимальное значение. Сквозь эти области и протекает электрический ток, а анодное и катодное места на поверхности подразумевают под собой пониженное действие напряжения.
Столб зачастую находится посреди этих локаций, и напряжение может незначительно спадать в нем. За счет этого сварочный элемент имеет длину, которая включает в себя все перечисленные области.
Особенности
Она имеет следующие особенности по сравнению с другими электрическими зарядами:
- Высокая плотность тока, которая достигает нескольких тысяч ампер на квадратный сантиметр, благодаря чему достигается очень высокая температура;
- Неравномерность распределения электрического поля в пространстве между электродами. Вблизи электродов падение напряжения очень велико, когда в столбе – наоборот;
- Огромная температура, которая достигает самых больших значений в столбе из-за высокой плотности тока. При увеличении длины столба температура уменьшается, а при сужении – наоборот увеличивается;
- С помощью сварочных дуг можно получать самые различные вольт-амперные характеристики – зависимости падения напряжения от плотности тока при постоянной длине, то есть установившемся горении. На данный момент существует три вольтамперные характеристики.
Первая – падающая, когда при увеличении силы и ,соответственно, плотности тока, напряжение падает. Вторая- жесткая, когда изменение силы тока никак не влияет на значение величины напряжения итретья – возрастающая, когда при увеличении силы тока напряжение также увеличивается.
Таким образом, сварочную дугу можно назвать самым лучшим и надежным способом скрепления металлических конструкций. Сварочный процесс оказывает большое влияние на сегодняшнюю промышленность, потому что только высокая температура сварочной дуги способна скреплять большинство металлов. Для получения качественных и надежных швов необходимо правильно и верно учитывать все характеристики дуги, следить за всеми значениями, благодаря этому процедура пройдет быстро и наиболее эффективно. Также необходимо учитывать свойства дуги: плотность тока, температуру и напряжение.
Травмы, вызванные вспышкой дуги
Когда люди думают о травмах, вызванных вспышкой дуги, они часто полагают, что электрошок — единственный риск. В то время как электрошока, безусловно, является главной опасностью, это действительно только начало потенциальных проблем. Ниже приведены некоторые из других способов, как электрическая дуга может нанести вред людям.
Ожоги — Даже если дуга не вступает в непосредственный контакт с человеком, она все равно может причинить ожог. Температура дуговой вспышки может достигать 20 000 градусов по Цельсию, что может привести к серьезным ожогам.
Огонь. Существует опасность попадания в огонь. Если в области есть какие-либо огнеопасные предметы, их следует удалить.
Разлет предметов — дуговая вспышка может создавать много давления, которое может раскидать объекты по воздуху. Такие вещи, как расплавленный металл и части машин, могут стать очень опасными снарядами.
Давление взрыва — давление от взрыва может достигать 2000 фунтов на квадратный фут. Это может подбросить людей в воздух. Это также то, что вызывает упомянутые выше снаряды.
Слуховой ущерб — вспышки дуги очень громкие. Фактически, они могут достигать 140 дБ в некоторых случаях. Это примерно тот же уровень звука, что и выстрел пистолета. Так как это происходит быстро, это может нанести серьезный ущерб слуху тех, кто находится в этом районе.
Тяжесть потенциальной травмы
Существует много способов вспышки дуги, которые могут привести к травмам людей и окружающего объекта. Тяжесть травмы будет зависеть от ряда факторов. Понимание того, насколько опасна ситуация, может помочь учреждениям и сотрудникам правильно подготовиться при входе в зону, где возможна дуговая вспышка.
Следующие факторы могут повлиять на то, насколько серьезной может быть травма:
Электрический ток. Сила электричества, создающая дуговую вспышку, окажет существенное влияние на потенциальную травму. Чем выше ток, тем больше будет риска.
Близость. Чем ближе кто-то к фактической вспышке дуги, тем больше опасности у них
Поэтому важно держать людей, которые не обучены и не подготовлены для работы с электрическим оборудованием, вдали от любой области, где есть потенциал для дуговой вспышки
Длина — дуговая вспышка обычно будет продолжаться до тех пор, пока цепь не разорвется. Когда автоматические выключатели работают правильно, это займет всего доли секунды. Однако даже небольшое увеличение длины дуговой вспышки может привести к увеличению вероятности травмы.
Температура. Температура вспышки дуги также может вызывать повышенный риск ожогов и других травм.
Окрестности. Объекты, находящиеся в районе, где происходит вспышка дуги, могут быть ключевым показателем того, насколько потенциально может быть травма. Если вокруг склада возникает вспышка дуги, эти объекты могут разлетаться по всему району, что приводит к серьезной травме.
Область воздействия. Место на теле, в которое ударяет дуга, также влияет на потенциальную травму. В то время как само электричество может проходить через тело из любой точки входа, места, где он входит и выходит из организма, подвержены более сильным ожогам.
Область применения
Сварочная дуга используется в ручной электродуговой сварке, ставшей надежным помощником профессионалов и домашних мастеров. В ручной сварке используются плавкие электроды, обмазанные флюсовым составом. В процессе сварки материал стержня плавится, формируя материал шва, а обмазка при сгорании выделяет облако газов, защищающих сварочную ванну от воздействия кислорода. Ручная сварка используется как при работе с обычными нелегированными конструкционными сталями, так и в уникальных операциях по сварке нержавеющих, высоколегированных сплавов и цветных металлов.
Такая же дуга применяется и в установках — полуавтоматах. В них вместо электрода применяется сварочная проволока, подающаяся механическим устройством с постоянной скоростью. Инертные газы нагнетаются в рабочую зону через сопло горелке. Эта технология отличается оптимальным расходом сварочных материалов и высокой стабильностью параметров шва. Ввиду дороговизны оборудования экономически эффективна при больших объемах сварочных работ.
Автоматическая сварка осуществляется в специальных герметично закрытых объемах, заполненных инертным газом. Ее используют при сварочных работах с цветными металлами, особо ответственных операциях с нержавеющими сплавами.