Определение силы тока

Электрический ток

Это похоже на оглавление в книге, сразу виден план повествования, а в схеме ясно представляется, что именно каждая часть схемы делает. Третья часть состоит из передающих устройств — проводов и других установок, обеспечивающих уровень и качество напряжения.

Это бытовая, обыденная ассоциация, которая скорее всего возникнет у не специалиста в электротехнике.

Пример расчет электрических цепей постоянного тока Расчет будем выполнять с применением законов Кирхгофа, предварительно преобразовав треугольник сопротивлений в звезду.

Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры. Резисторы 1 и 2 имеют сопротивления R1 и R2. Параллельное соединение источников тока При параллельном способе соединения источников тока соединяют между собой все положительные и все отрицательные полюсы. При неправильном источники соединяются одинаковыми полюсами подключении источников их общее ЭДС и сопротивление рассчитывается по формулам: В обоих случаях общее сопротивление источников увеличивается.

Во всех практических случаях реальные источники ЭДС или источники питания не являются идеальными, так как обладают внутренним сопротивлением. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер.

Должно быть сразу возникает картина в виде источника питания, простой батарейки, потом от неё идут провода, которые подсоединены к лампочке, а её нить накала светится ярким светом. Для того, чтобы отмежеваться от волновых явлений, дальше по тексту сказано, что электромагнитные процессы ограничиваются лишь теми, которые описываются с помощью понятий об ЭДС, токе и напряжении.

На практике большинство приборов могут включаться в цепь сразу обоими способами — последовательно и параллельно. Общее сопротивление батареи при последовательном включении источников равняется сумме внутренних сопротивлений отдельных элементов.

Реальная электрическая цепь может быть представлена в виде активного и пассивного двухполюсников рис. Несколько небольших уточнений: рассматриваемые методы измерений применимы к цепям, не содержащим емкостей и индуктивностей, измерения электрических величин напряжения, тока, сопротивления производятся для участка цепи, имеющего активное сопротивление, поэтому приемлимы как для постоянного напряжения тока так и для переменного, сопротивлением соединительных проводов пренебрегаем. Эти значения соответствуют самым оптимальным условиям работы устройства с точки зрения экономичности, надежности, долговечности и пр. В свою очередь, источник напряжения считается идеализированным элементом цепи, у которого напряжение на зажимах не зависит от протекающего через него электрического тока, а внутреннее сопротивление имеет нулевое значение.
Урок №1. Напряжение и ток. В чем разница?

В дифференциальной форме

Формулу очень часто представляют в дифференциальном виде, поскольку проводник обычно неоднородный и потребуется разбить его на минимально возможные участки. Ток, проходящий через него, связан с величиной и направлением, поэтому считается скалярной величиной. Всякий раз, когда нужно найти результирующий ток через провод, берут алгебраическую сумму всех отдельных токов. Поскольку это правило действует только для скалярных величин, ток принимают также в качестве скалярной величины. Известно, через сечение проходит ток dI = jdS. Напряженье, на нем равняется Еdl, тогда для провода с постоянным сечением и равной протяженности будет верно соотношение:

Дифференциальная форма

Поэтому, выражение тока в векторном виде будет: j = E.

Важно! В случае металлических проводников с ростом температуры проводимость падает, а для полупроводников — растет. Омовский закон не демонстрирует строгую пропорциональность

Сопротивление большой группы металлов и сплавов исчезает при температуре, близкой к абсолютному нулю, а процесс называется сверхпроводимостью.

Вводная про подключение амперметра, вольтметра и измерения мультиметром

Следующим пунктом разберемся с нашими измерительными приборами, которыми мы измеряем ток или напряжение.

Для измерения тока используется амперметр. Амперметр включается последовательно с нагрузкой. И это не пустые слова. Сопротивление амперметра ничтожно мало — это необходимо, чтобы не вносить погрешности в измерения тока, потребляемого нашими приборами. Чтобы использовать амперметр для измерения большего тока, можно произвести его шунтирование.

Для измерения напряжения в цепи уже используется вольтметр. Вольтметр подключается параллельно цепи и имеет большое внутреннее сопротивление. Это сопротивление необходимо для того, чтобы уменьшить ток, протекающий через прибор. Ведь по закону Ома мы уже понимаем, что при постоянстве величины напряжения, чем больше сопротивление, тем меньше ток.

Мультиметр — это прибор, которым можно производить различные измерения электрических и не только величин. Так вот, мультиметром можно замерять и ток и напряжение

Важно при этом вставить измерительные концы в нужные гнезда и выставить нужный предел. А далее уже пользоваться им как вольтметром или амперметром

Еще важным пунктом является предел измеряемых величин на приборах. То есть до измерения, желательно знать порядок величины, которая будет замерена.

Как измерить напряжение в розетке

Что мы будем делать дальше? Берем вольтметр или мультиметр, собранный для измерения переменного или постоянного напряжения. Одним концом тыкаем в одну дырку розетки, а вторым в другую дырку розетки. Что у нас получится?

  • прибор сгорит, если у вас выставлен предел меньше 220 вольт, или шкала прибора рассчитана вольт на 50. Это произойдет из-за того, что внутреннее сопротивление прибора окажется мало, и большАя величина тока вызовет порчу прибора (это может быть перегрев, оплавление, перегорание предохранителя и прочие неприятности)
  • прибор покажет примерно 220 В, и тем самым вы произведете нормальное такое измерение электрической величины

Какой величины ток в розетке и как его измерить

Теперь то, что делать нельзя!!! А то вдруг, вы сразу читаете и делаете. Потом претензии. Поэтому чисто теоретически. Берем мультиметр, подготовленный для измерения силы тока, или амперметр и один конец тыкаем в одну дырку розетки, второй во вторую. Что у нас произойдет?

  • Прибор сгорит. Так как его сопротивление мало, нагрузки нет, и ток будет настолько велик, что и прибор спалится и Вам может достаться, вплоть до больничной койки. Не стоит так делать, ей богу. По братски прошу, не стОит.
  • Прибор не сгорит, но только при условии, что у вас обесточена сеть. поэтому скорее достаем концы из розетки, чтобы сохранить материальную ценность от порчи.

Далее берем нагрузку. Нагрузка это любая штука, которая имеет сопротивление (активное, индуктивное, емкостное). Или же это прибор, который имеет свою электрическую схему (которая и есть сопротивление) и для работы ему необходимо подать питание на выходы ноль и фаза или плюс и минус. Схем огромное количество, как и приборов, где они применяются.

Суть вот в чем, у нас есть провод фазы и провод земли. Амперметр нам надо подключить в разрыв провода фазы. То есть либо перекусить его, либо через клеммник. Делать подключение надо при отсутствии напряжения, а то “лясне”. Сначала собираем измерительную схему — потом подаем на неё напряжение. Фаза пойдет через амперметр и прибор. Что получится:

Нагрузка у нас складывается последовательно. Сопротивление амперметра ничтожно мало, и ток, протекающий через прибор, пропорционален суммарному сопротивлению приборов. Стрелка на амперметре отклониться до величины потребляемого тока, или же на экране загориться значение, если измерительный прибор цифровой.
Прибор сгорит, если он предназначен для измерения постоянного тока, а мы включаем в цепь переменного тока, где нагрузка имеет активную и реактивную составляющие. Реактивная допустим большАя, активная — малипусенькая. Прибор постоянного тока видит только активную составляющую. Сопротивление суммарное будет ничтожным, а значит ток будет гигантским и прибор сгорит, да и измерителю может достаться
Прибор сгорит, если у нас выставлен предел на значение допустим 5А, а мы замеряем 20 ампер

Поэтому важно следить за величинами тока, которые мы измеряем.

Самый простой способ измерения силы тока — подключаем нагрузку в цепь, берем токоизмерительные клещи. Цепляем на провод по которому течет ток и замеряем его величину. Саааамый простой способ.

В общем измерение тока и напряжения это занятие, которое требует практической и теоретической подготовки от человека. Всегда лучше перестраховаться и вызвать специалиста, который разбирается в данных вопросах. Или хотя бы проконсультироваться.

Измерение силы тока мультиметром.

Измерение силы тока мультиметром практически ни чем не отличается от измерения обыкновенным амперметром или миллиамперметром. Разница состоит лишь в том, что у обычного прибора всего один диапазон измерения, рассчитанный на определенную максимальную величину тока, тогда как у мультиметра диапазонов несколько, и перед измерением приходится определять каким из диапазон пользоваться в данный момент.

Обычные мультиметры, не профессиональные, рассчитаны на измерение постоянного тока и имеют четыре поддиапазона, что на бытовом уровне вполне достаточно. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 2m, 20m, 200m, 10А. Например. На пределе «20m» можно измерять постоянный ток в диапазоне 0…20 мА.

Для примера измерим ток, потребляемый обычным светодиодом. Для этого соберем схему, состоящую из источника напряжения (пальчиковой батарейки) GB1 и светодиода VD1, а в разрыв цепи включим мультиметр РА1. Но перед включением мультиметра в схему подготовим его к проведению измерений.

Измерительные щупы вставляем в гнезда мультиметра, как показано на рисунке:

красный щуп называют плюсовым, и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA»;черный щуп является минусовым или общим и вставляется он в гнездо, напротив которого написано «СОМ». Относительно этого щупа производятся все измерения.

В секторе измерения постоянного тока выбираем предел «2m», диапазон измерения которого составляет 0…2 мА. Подключаем щупы мультиметра согласно схеме и затем подаем питание. Светодиод загорелся, и его потребление тока составило 1,74 мА. Вот, в принципе, и весь процесс измерения.

Однако этот вариант измерения подходит тогда, когда величина потребления тока известна. На практике же часто возникает ситуация, когда необходимо измерить ток на каком-либо участке цепи, величина которого неизвестна или известна приблизительно. В таком случае измерение начинают с самого высокого предела.

Предположим, что потребление тока светодиодом неизвестно. Тогда переключатель переводим на предел «200m», который соответствует диапазону 0…200 мА, и после этого щупы мультиметра включаем в цепь.

Затем подаем напряжение и смотрим на показания мультиметра. В данном случае показания тока составили «01,8», что означает 1,8 мА. Однако нолик впереди указывает на то, что можно снизиться на предел «20m».

Отключаем питание. Переводим переключатель на предел «20m». Включаем питание и опять производим измерение. Показания составили 1,89 мА.

Часто бывает ситуация, когда при измерении тока или напряжения на индикаторе появляется единица. Единица говорит о том, что выбран низкий предел измерения и он меньше величины измеряемого параметра. В этом случае необходимо перейти на предел выше.

Также может возникнуть момент, когда измеряемый ток выше 200 мА и необходимо перейти на предел измерения «10А». Однако здесь есть нюанс, который надо запомнить. Помимо того, что переключатель переводится на предел «10А», еще также необходимо переставить плюсовой (красный) щуп в крайнее левое гнездо, напротив которого стоит цифро-буквенное значение «10А», указывающее, что это гнездо предназначено для измерения больших токов.

И еще совет. Возьмите за правило: когда закончите все измерения на пределе «10А» сразу же переставляйте плюсовой (красный) щуп на свое штатное место. Этим Вы сбережете себе нервы, щупы и мультиметр.

Ну вот, в принципе и все, что хотел сказать об измерении тока мультиметром. Главное понимать, что при измерении напряжения вольтметр подключается параллельно нагрузке или источнику напряжения, тогда как при измерении силы тока амперметр включается непосредственно в цепь и через него протекает ток, которым питаются элементы схемы.

Ну и в качестве закрепления прочитанного предлагаю посмотреть видеоролик, в котором на примере схем рассказывается об измерениях напряжения и силы тока мультиметром.

Удачи!

Возникновение тока в электрической цепи

Замечание 1

Электрическую цепь характеризует комплекс устройств, обеспечивающих путь для протекающего электрического тока и соединенных определенным образом. В качестве элементов электроцепи служат: нагрузка, проводники и источник тока. В составе электрической цепи могут быть и другие элементы, как, например, устройства защиты и коммутации.

Необходимым условием возникновения тока будет соединение двух точек, у одной из которых очень много электронов в отличие от другой. Иными словами, потребуется образование разности потенциалов между указанными точками. С этой целью в цепи используется источник тока. Таким источником могут служить устройства в виде генераторов, батарей, химических элементов и др.

Лень читать?

Задай вопрос специалистам и получи ответ уже через 15 минут!

Задать вопрос

В качестве нагрузки в электроцепи выступает абсолютно любой потребитель электроэнергии. Нагрузка способна оказывать сопротивление электрическому току. От величины такого сопротивления будет зависеть величина тока. Ток течет по проводникам от источника тока к нагрузке. Проводниками, в свою очередь, служат материалы, имеющие наименьшее сопротивление, такие, как золото, серебро, медь.

Электрические цепи и их разновидности

Электрическая цепь представляет собой комплекс устройств и отдельных объектов, которые связываются заданным способом. Они обеспечивают путь для прохождения электротока. Для характеристики отношения заряда, протекающего в рамках каждого отдельного проводника за некоторое время, к продолжительности этого времени используется определенная физическая величина. И это сила тока в электрической цепи.

В состав такой цепи включены источник энергии, энергопотребители, т.е. нагрузка и провода. Они делятся на две разновидности:

  • Неразветвленные – ток, движущийся от генератора к энергопотребителю, не меняется по своему значению. Например, это освещение, включающее в свой состав только одну лампочку.
  • Разветвленные – цепи, имеющие некоторые ответвления. Ток, двигаясь от источника, разделяется и идет на нагрузку по нескольким ветвям. При этом его значение меняется.

Примером может служить освещение, включающее многорожковую люстру.

Ветвь являет собой один или несколько компонентов, соединенных последовательно. Движение тока идет от узла с высоким напряжением к узлу с минимальным его значением. При этом входящий ток на узле совпадает с выходящим.

Цепи могут быть нелинейными и линейными. Если в первых существует один и более элементов, где есть зависимость значений от тока и напряжения, то у вторых характеристики элементов не имеют такой зависимости. Кроме того, в цепях, характеризующихся постоянным током, его направление не меняется, а при условии переменного тока происходит его изменение с учетом параметра времени .

Отходящие линии

Отходящие линии могут быть как однофазными, на 220 В, для питания бытовых устройств и сети освещения, так и трехфазными. Последними запитываются линии питания асинхронных электродвигателей, электрокотлы, мощные системы кондиционирования. Такая линия может быть отведена для электропитания отдельно стоящего гаража или мастерской.

Перед распределением отходящих линий 220 В, проверьте напряжения на всех трех фазах. За городом, в сельской местности, нередки случаи, когда одна и фаз «просажена», и напряжение на ней ниже, чем на других. Не стоит перегружать ее, подключая мощные энергоприемники. Бытовые приборы, критичные к пониженному напряжению (холодильник, стиральная машина), также лучше подключать к фазам со стабильным напряжением.

Для защиты однофазных отходящих линий, применяются однополюсные или двухполюсные автоматические выключатели. Преимущество последних в том, что при срабатывании они отключают не только фазный проводник, но и рабочий ноль. При некоторых авариях сети, на нулевой проводник может подаваться значительное напряжение.

Для разрыва ноля при аварии, нельзя использовать два независимых однополюсных автомата! При таком схемном решении, велика вероятность того, что автоматический выключатель на нулевом проводнике сработает первым. В этом случае, токоведущие части приборов останутся под напряжением, что может привести к поражению электрическим током!

Выбирая между однофазным и трехфазным подключением, оцените ваши потребности и возможности энергоснабжающей компании. Подключение дома к сети 380 В, сложнее технически и дороже, а потому, не во всех случаях оправдано.

Как правильно подключить автомат
Как подключить электродвигатель на 380 вольт

Сила тока – что это

Рассматривая количество электроэнергии, которое протекает через определенный проводник за различные временные интервалы, станет ясно, что за малый промежуток ток протечет более интенсивно, поэтому нужно ввести еще одно определение. Оно означает силу тока, протекающую в проводнике за секунду времени.

Основные величины, характеризующие поток электронов

Если сформулировать определение на основе всего вышеперечисленного, то сила электротока – это количество электроэнергии, проходящее через поперечное сечение проводника за секунду. Маркируется величина латинской буквой «I».

Гальванометр для измерения небольшой силы тока

Важно! Специалисты определяют силу электротока, равную одному амперу, когда через поперечное сечение проводника проходит один кулон электричества за одну секунду. Часто в электротехнике можно увидеть другие единицы измерения силы электротока: миллиамперы, микроамперы и так далее

Связано это с тем, что для питания современных схем таких величин будет вполне достаточно. 1 ампер – это очень большое значение, так как человека может убить ток в 100 миллиампер, и потому электророзетка для человека ничуть не менее опасна, чем, к примеру, несущийся на скорости автомобиль

Часто в электротехнике можно увидеть другие единицы измерения силы электротока: миллиамперы, микроамперы и так далее. Связано это с тем, что для питания современных схем таких величин будет вполне достаточно. 1 ампер – это очень большое значение, так как человека может убить ток в 100 миллиампер, и потому электророзетка для человека ничуть не менее опасна, чем, к примеру, несущийся на скорости автомобиль.

Схема, определяющая рассматриваемое понятие

Если известно количество электроэнергии, которое прошло через проводник за конкретный промежуток времени, то силу (не мощность) можно вычислить по формуле, изображенной на картинке.

Когда электросеть замкнута и не имеет никаких ответвлений, через каждое поперечное сечение за секунду протекает одно и то же количество электричества. Теоретически это обосновывается так: заряд не может накапливаться в определенном месте, и сила электротока везде одинакова.

Виды токов

Основные единицы измерения силы тока

В качестве основной единицы измерения силы тока используют ампер (краткое обозначение – А). Ампер, получивший свое название по имени ученого физика Анри Ампера, входит в Международную систему единиц (СИ).

Если через поперечное сечение в течение 1 секунды проходит 1 кулон электричества, то сила тока в этом проводнике равна одному амперу. Как вспомогательные единицы применяются:

  • миллиамперы (ма), одна тысячная или 10-3 ампер;
  • микроамперы (мкА), одна миллионная или 10-6 ампер.

Сила тока является важным параметром, знание которого поможет в выборе кабелей с оптимальным для планируемой нагрузки размером сечения.

Определение силы тока и способы ее измерения

Значение количества электричества можно использовать для определения и расчета силы тока, благодаря существованию правила постоянства тока в замкнутых цепях (в каждой точке цепи). Суть правила в том, что количество проходящего за одну секунду тока будет одинаковым для любого сечения в любом месте цепи, независимо от толщины проводника (правило действует для цепей без разветвлений).

Измерить силу тока можно с помощью специального оборудования. Обычно применяют следующие приборы:

  • амперметр (наиболее востребованный вариант);
  • мультиметр;
  • миллиамперметр;
  • микроамперметр.

Последние два варианта служат для измерения малых сил тока, составляющих миллионные доли ампера, например, возникающих при прохождении тока через фотоэлементы.

Чтобы получить значение силы тока с помощью амперметра, прибор следует подключить в разрыв цепи (в любой ее точке) таким образом, чтобы ток проходил через амперметр. Стрелка устройства при этом будет показывать силу тока в цепи. Амперметр можно подключить как до, так и после устройства-потребителя, поскольку миф о том, что в потребителе остается «часть тока» и после него сила тока в цепи меньше, не соответствует действительности.

Как найти падение напряжения и правильно рассчитать его потерю в кабеле

Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.

Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:

  • определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
  • определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
  • определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
  • определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).

Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь. Таблица значений индуктивных сопротивлений


Таблица значений индуктивных сопротивлений

В трехфазной сети

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

Формула расчета

Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.

Пример таблицы

Потери напряжения определены следующей формулой:

ΔU = ΔUтабл * Ма;

Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.

Вам это будет интересно Особенности DC тока


Однолинейная схема линии трехфазного тока

На участке цепи

Для того, чтобы провести замер потери напряжения на участке цепи, следует:

  • Произвести замер в начале цепи.
  • Выполнить замер напряжения на самом удаленном участке.
  • Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.

Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра. Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз)

Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).


Образец калькулятора для вычисления потерь

Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.