Аккумулятор автомобильный

Устройство кислотного АКБ и принцип его работы

Устройство кислотной АКБ (свинцово-кислотного) различного назначения, от разных производителей отличается не принципиально и в тезисной форме выглядит следующим образом:

  1. пластиковый контейнер-корпус из инертного, устойчивого к агрессивной среде материала;
  2. в общем корпусе располагается несколько модулей-банок (как правило шесть), которые являются полноценными источниками тока и соединяются между собой тем или иным способом в зависимости от основных задач;
  3. в каждой банке располагаются плотные пакеты, состоящие последовательно из разделенных диэлектрическими сепараторами отрицательно и положительно заряженных пластин (свинцовый катод и анод из диоксида свинца соответственно). Каждая пара пластин является источником тока, их параллельное соединение кратно увеличивает выдаваемое на напряжение;
  4. пакеты залиты раствором химически чистой серной кислоты, разбавленной до определенной плотности дистиллированной водой.

Работа кислотного аккумулятора

В процессе работы кислотного аккумулятора на катодных пластинах образуется сульфат свинца и выделяется энергия в виде электрического тока. За счет выделяемой в процессе электрохимической реакции воды плотность кислотного электролита падает, он становится менее концентрированным. При подаче напряжения на клеммы в процессе зарядки происходит обратный процесс с восстановлением свинца до металлической формы и повышается концентрация электролита.

Назначение аккумуляторных батарей

Автомобильная аккумуляторная батарея выступает как источником электрического тока, необходимого для пуска двигателя, так и резервным источником питания, в случае, если энергии, вырабатываемой генератором, оказывается мало для электроснабжения авто. Аккумуляторная батарея действует как стабилизатор напряжения, так как она выполняет роль накопителя электроэнергии, отдающего во время пуска двигателя за короткое время большой ток, и пополняемого постепенно генератором автомобиля в процессе подзарядки.

В каких сферах используется

Аккумуляторные батареи используются как дополнительный или основной источник питания. Надежность, простота в использовании позволяет применять батареи в различных областях:

  • автомобильная промышленность;
  • освещение в аварийном состоянии;
  • переносное электрооборудование;
  • медицинское оборудование;
  • игрушки;
  • сигнализация в разных сферах применения;
  • телекоммуникационное оборудование.


Применение батареи в игрушках Роль акб в работе приборов не оспорима. Применение источника энергии практически во всех отраслях доказывает значимость и необходимость знаний о внутреннем содержимом батарей. С использованием в автомобилях широкого разнообразия электроприборов, кондиционеров, мультимедийных центров, генераторы не всегда справляются с обеспечением их энергией. В этом случае подпитка энергией поступает от АКБ, который кроме этого выполняет основную функцию, обеспечивает электроэнергией стартер двигателя. Водителю необходимо знать, как устроен аккумулятор, чтобы выявить сбои в работе источника энергии, назначение аккумулятора, чтобы правильно использовать ресурс, подобрать батарею к условиям эксплуатации и автомобилю. О способах и рекомендациях как проверить аккумулятор читай тут.

Устройство электродов

Можно встретить и гибридную конструкцию, где, кроме свинца, в положительный электрод добавляется сурьма, а в отрицательный – кальций. Правда, в таких случаях имеется повышенный расход воды. Чтобы повысить стойкость к коррозийным процессам, добавляют олово или серебро.

Электроды изготавливаются с решетчатой структурой, их покрывают слоем активной массы. Принцип работы аккумуляторной батареи в немалой степени зависит от того, какой материал используется для пластин. Мы рассматриваем свинцовые, которые просты для изучения, но ориентироваться на них всегда не рекомендуем.

Функциональные возможности

Аккумулятор 6СТ-55 — это многофункциональное устройство, в котором под воздействием химических процессов вырабатывается и накапливается электрическая энергия. Принцип работы основан на том, что между вмонтированными свинцовыми пластинами происходит специфическая реакция. Стоит отметить, что электроды опущены в серную кислоту (электролит). Во время зарядки электрическая энергия перерабатывается в химическую, а при разряде — все наоборот. Этот процесс носит циклический характер: разрядка — зарядка.

Когда пользователь подключает батарею, то происходит разряд. В этот момент все пластины активно взаимодействуют с серной кислотой. В результате этого образуется сульфат свинца и вода, что провоцирует незначительное уменьшение плотности электролита. Зарядка происходит в тот момент, когда двигатель автомобиля активно работает, основную функцию в этом случае выполняет генератор. Благодаря этому сульфат свинца преобразуется в серную кислоту, что повышает плотность электролита.

Стоит отметить, что высокое напряжение при зарядке аккумулятора существенно снижает уровень электролита. В то время как низкое напряжение не может полностью зарядить батарею, что уменьшает её эксплуатационный срок. Именно поэтому, чтобы приобретённая АКБ служила как можно дольше, нужно создать оптимальные условия для её работы.

Кроме того, температура окружающей среды существенно влияет на работоспособность устройства. Слишком жаркая погода увеличивает коррозию электролитов, что чревато уменьшением заряда батареи (саморазряд). А вот в морозы происходит снижение плотности электролита. Когда аккумулятор не эксплуатируется, то он постепенно разряжается.

Для чего соединять несколько аккумуляторов

Основные причины, по которым аккумуляторы объединяют в сборки, можно свести к следующим:

  1. Уменьшить омические потери (или потери тепла при передаче электроэнергии) путем увеличения сопротивления системы. Сила тока и сопротивление обратно пропорциональны друг другу, а чем слабее ток, тем меньше потери.
  2. Собрать батарею, подходящую для питания приборов с более высокими диапазонами напряжений.
  3. Увеличить емкость аккумулятора.
  4. Увеличить и мощность, и напряжение.

Одним словом, создают АКБ, которая подходит под конкретные нужды. Проще и удобнее комбинировать имеющиеся под рукой аккумуляторы, чем покупать десятки различных батарей. А в некоторых случаях это банально дешевле.

Технические характеристики АКБ

Аккумуляторы 6СТ-55 относятся к категории необслуживаемых устройств. От пользователя требуется только периодическая доливка дистиллированной воды (при нормальных эксплуатационных условиях эта процедура проводится не раньше, чем через 1 год после покупки). Но, чтобы устройство исправно работало и не подводило в самые ответственные моменты, нужно обеспечить оптимальные эксплуатационные условия

В этом случае важно учитывать основные технические характеристики батареи:

  • Показатели номинального напряжения достигают отметки 12 вольт.
  • Полярность имеет два варианта: обратная и прямая.
  • Стандартная ёмкость батареи. Этот показатель составляет 55 ампер в час.
  • Масса аккумулятора с залитым электролитом — 14,5 кг.
  • Способность к разбросу показателей вырабатываемого пускового тока. Минимальный показатель составляет 450 ампер, а вот максимальный — 560 ампер.
  • Внутри корпуса расположено шесть мощных аккумуляторов (6 отдельных элементов по 2 вольта).
  • Габариты. Чаще всего аккумуляторы этой серии имеют параметры 242х175х190. Но в некоторых случаях могут быть исключения — длина может быть увеличена до 270 мм. А вот показатели высоты и ширины остаются неизменными.

Испытания электромобиля QUANTiNO 2 совместно с bi-ION от nanoFlowcell Holdings

Проведены совместные испытания работы аккумуляторов на основе bi-ION компаний по производству элетромобилей QUANTiNO 2 и nanoFlowcell Holdings. Батареи продемонстрировали высокую динамику и стабильность работы системы привода даже без суперконденсаторов. За счет этой технологии компании добились увеличения скорости и огромного снижения как веса, так и стоимости нового электромобиля.

Это означает, что относительно скоро мы увидим, как его уже называют, “квантовый электрокар nanoFlowcell” на дорогах. Также ожидается, что такие автомобили будут стоить меньше, чем современные машины с двигателями внутреннего сгорания. Последние тесты этого ё-мобиля уже направлены на подтверждение готовности к серийному производству.

В ходе испытаний, прошедших на автодроме в швейцарском Цюрихе, Quantino преодолел немыслимое расстояние для всех представленных на рынке электромобилей в 1 000 км всего за 8 часов и 21 минуту, при средней скорости в 120 км/ч. А после теста главного инженера NanoFlowcell Нунцио Ла Веккья, проехавшего 1 036 км со средней скоростью в 74 км/ч, имитируя городской цикл движения с незначительными остановками, остаток емкости батареи составила 78%.

В комплектацию двухдверного концепткара nanoFlowcell Quantino входят 4 электрических двигателя с мощностью по 108 л.с. каждый и крутящим моментом в 200 Нм. Автомобиль набирает скорость в 100 км/ч всего за 5 секунд. Машина способна развивать скорость в 100 км/ч за 5 секунд, а процесс зарядки автомобиля на квантовой энергии занимает всего 4 секунды.

Мощный и экологически чистый квантовый двигатель и простой процесс заправки безопасными энергоносителями – основные конкурентные преимущества концепткара nanoFlowcell Quantino.

Электромобиль в действии, а также его внешний вид можно оценить при помощи данного видео 

Виды аккумуляторов

Классификация акб по составу активного вещества

Свинцовые пластины, используемые в старых аккумуляторах перестали устраивать потребителей. Возникала необходимость по улучшению качества работы акб. Сначала добавили сурьму к свинцу, что позволило заметно продлить срок эксплуатации батареи. На следующем этапе – уменьшили процентное содержания сурьмы до оптимальной концентрации. Такой подход привел к созданию малообслуживаемых аккумуляторов, потому что в них уже намного реже требовался долив воды.

При использовании металлического кальция для покрытия пластин появились кальциевые энергосберегающие источники. В предыдущих моделях потери воды из-за электролиза на 12 вольт требовали постоянного долива, а кальций позволил повысить этот порог до 16 вольт. Так появилась возможность в производстве необслуживаемых аккумуляторов использовать герметичный, неразборной корпус.

  • Сурьмянистые батареи относятся к классике из-за повышенного состава сурьмы, которая ускоряет процесс электролиза.
  • В малосурьмянистых акб материалом для пластин служит свинец с небольшой примесью сурьмы. В них степень саморазряда значительно меньше, чем в сурьмянистых АКБ.
  • При производстве кальциевых источников свинцовые пластины легированы до 0,1% кальцием. Они могут иметь различные заряды, как отрицательный, так и положительный.
  • Гибридные источники энергии вытесняют кальциевые. Конструктивные отличия состоят в том, что при их производстве объединили две технологии: одна, когда пластины формируются из сплава свинца и сурьмы, положительные электроды, а другая – когда пластины формируются из сплава свинца и кальция, отрицательные электроды.
  • EFB является улучшенной жидкозаполненной батареей. Свинцовые пластины в ЕФБ аккумуляторах в два раза толще, чем у обычных, вследствие чего увеличивается их ёмкость. Каждая из пластин закрыта в пакет из специальной ткани, который наполнен жидким сернокислотным электролитом.
  • В гелевых аккумуляторах применяется гелеобразный электролит. Такая технология позволила снизить текучесть электролита, в котором содержится агрессивная серная кислота.
  • В литиевых акб используется жидкий электролит, представляющий собой раствор фторсодержащих солей лития в смеси эфиров угольной кислоты.
  • Отличительной особенностью AGM является то, что в электролит с помощью специальной технологии между пластинами вставляются стекловолоконные микропористые прокладки.
  • Во всех щелочных батареях применяется растворенная в воде щёлочь.

Классификация батарей по типу электролита

Электролиты бывают кислотными, щелочными. Щелочные растворы используются в заправке аккумуляторных батарей. Щелочные аккумуляторные жидкости представляют собой сильные основания, которые проявляют большую активность по отношению к металлам и кислотам. При реакциях с кислотами образуются соль и вода. Растворы щелочей подвергаются гидролизу. Химические свойства позволяют использовать этот тип электропроводящей жидкости для накопления электрической энергии в аккумуляторе.

Кислотные смеси с дистиллированной водой применяются в основном в автомобильных аккумуляторах. Такие составы можно приобрести в специализированных магазинах или же приготовить самостоятельно в домашних условиях. На заводе процесс изготовления таких смесей осуществляется в масштабном производстве по ГОСТу. В домашней обстановке также возможно довольно точно при соблюдении обязательных пропорций и правил техники безопасности смешать кислоту с дистиллированной водой.

Устройство генератора

Устройство автомобильного генератора подразумевает наличие собственного выпрямителя и регулирующей схемы. Генерирующая часть генератора с помощью неподвижной обмотки (статора) вырабатывает трёхфазный переменный ток, который далее выпрямляется серией из шести больших диодов и уже постоянный ток заряжает аккумулятор. Переменный ток индуцируется вращающимся магнитным полем обмотки (вокруг обмотки возбуждения или ротора). Далее ток через щётки и кольца скольжения подаётся на электронную схему.

Устройство генератора: 1.Гайка. 2.Шайба. 3.Шкив. 4.Передняя крышка. 5.Дистанционное кольцо. 6.Ротор. 7.Статор. 8.Задняя крышка. 9.Кожух. 10.Прокладка. 11.Защитная втулка. 12.Выпрямительный блок с конденсатором. 13.Щеткодержатель с регулятором напряжения.

Располагается генератор в передней части двигателя автомобиля и запускается с помощью коленчатого вала. Схема подключения и принцип работы генератора автомобиля одинаковый для любых автомобилей. Есть конечно некоторые отличия, но они, как правило, связаны с качеством изготовленного товара, мощностью и компоновкой узлов в моторе. Во всех современных автомобилях устанавливают генераторные установки переменного тока, которые включают не только сам генератор, но и регулятор напряжения. Регулятор равносильно распределяет силу тока в обмотке возбуждения, именно за счет этого и происходит колебание мощности самой генераторной установки в тот момент, когда напряжение на силовых клеммах выхода остается неизменным.

Новые автомобили чаще всего оборудованы электронным блоком на регуляторе напряжения, поэтому бортовой компьютер может контролировать величину нагрузки на генераторную установку. В свою очередь на гибридных автомобилях генератор выполняет работу стартер-генератора, аналогичная схема используется и в других конструкциях системы стоп-старт.

Принцип работы генератора авто

Схема подключения генератора ВАЗ 2110-2115

Схема подключения генератора переменного тока включает такие составляющие:

  1. Аккумулятор.
  2. Генератор.
  3. Блок предохранителя.
  4. Ключ зажигания.
  5. Приборная панель.
  6. Выпрямительный блок и добавочные диоды.

Принцип работы достаточно простой, при включении зажигания плюс через замок зажигания идет через блок предохранителей, лампочку, диодный мост и выходит через резистор на минус. Когда лампочка на приборной панели загорелась, далее плюс идет на генератор (на обмотку возбуждения), далее в процессе запуска двигателя шкив начинает вращаться, также вращается якорь, за счет электромагнитной индукции вырабатывается электродвижущая сила и появляется переменный ток.

Наиболее опасным для генератора является замыкание пластин теплоотводов, соединенных с «массой» и выводом «+» генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением.

Далее в выпрямительный блок через синусоиду в левое плечо диод пропускает плюс, а в правое минус. Добавочные диоды на лампочку отсекают минусы и получаются только плюсы, далее он идет на узел приборной панели, а диод, который там стоит он пропускает только минус, в итоге лампочка гаснет и плюс тогда идет через резистор и выходит на минус.

Принцип работы автомобильного генератора постоянного, можно объяснить так: через обмотку возбуждения начинает течь небольшой постоянный ток, который регулируется управляющим блоком и поддерживается им на уровне чуть больше 14 В. Большинство генераторов в автомобиле способны вырабатывать как минимум 45 ампер. Генератор работает на 3000 оборотах в минуту и выше — если посмотреть на соотношение размеров ремней вентиляторов для шкивов, то оно по отношению к частоте двигателя составит два или три к одному.

Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Далее рассмотрим схему подключения автомобильного генератора на примере автомобиля ВАЗ-2107.

Хранение нового аккумулятора

Стоит сразу сказать, что покупать аккумулятор про запас и не использовать его – не самая удачная идея. Все равно придется уделять время для его обслуживания.

Большую роль играет срок изготовления, условия и срок хранения АКБ до покупки. Если это совсем новая батарея, хранившаяся на складе несколько месяцев, то остается только подзарядить его и регулярно проверять заряд.


Хранение АКБ

Сухозаряженный аккумулятор нужно активировать самостоятельно после покупки. Залить электролит и зарядить. «Сухие» аккумуляторы хранятся очень долго, главное, держать устройство строго в горизонтальном положении, чтобы осевшие частицы не попали на пластины.

Если продаваемая батарея была изготовлена 2-3 года назад и хранилась в ненадлежащих условиях, то покупать такое устройство вообще не стоит. С большой вероятностью емкость батареи будет значительно снижена. Если вы неуверенны в сроке изготовления, то можете сами проверить батарею. Установите устройство на автомобиль, поездите на нем, а потом включите все возможные потребители (музыкальную систему, фары, обогрев стекла и сидений). Если батарея не разрядится за это время, то устройство соответствует норме. В целом условия хранения новой АКБ и старой не отличаются.

Принцип работы

Между пластинами и электролитом непрерывно происходит электрохимическая реакция. При разряде химическая энергия преобразовывается в электрическую, а при заряде, наоборот, – электрическая в химическую. Когда аккумулятор подключен к потребителям энергии, то происходит его разрядка.


Химическая формула реакции

Происходит следующий процесс. На катоде идет восстановление диоксида свинца. Свинец на аноде окисляется. Серная кислота вступает в реакцию с металлами на обеих пластинах. При этой реакции образуется сульфат свинца. Процесс называется сульфатацией. Из серной кислоты выделяется водород, который затем вступает в реакцию с кислородом из положительно заряженной пластины. Образуется вода, а серная кислота расходуется. Плотность электролита понижается. Процесс реакции показан на картинке.

При зарядке весь процесс происходит в обратном порядке. Серная кислота восстанавливается. Вновь образуется диоксид свинца и серная кислота. При полной зарядке плотность электролита должна быть в пределах 1,29 гр/см3. Это значение показывает уровень содержания серной кислоты на один кубический сантиметр электролита.

Таким образом, работа батареи основана на циклах заряд-разряд. Если допустить глубокий разряд, процесс может быть необратимым. Останется только вода и сульфат свинца. Поэтому нужно всегда следить за уровнем заряда.

Принцип работы и устройство

Аккумуляторы представляют собой химические источники электрического тока. Для увеличения электрической емкости в их состав включается несколько элементов питания. Например, в автомобильных АКБ чаще всего используется шесть элементов (банок) с напряжением в 2,1 вольта. В результате аккумуляторная батарея способна выдавать около 12,6 В.

При разговоре о том, какие бывают аккумуляторные батареи, многие сразу вспомнят о литий-ионных (Li — ion). Они сегодня активно используются в портативной электронике, например, смартфонах и ноутбуках.

Принцип работы АКБ можно рассмотреть на примере литий-ионной батареи. Два электрода (катод изготовлен из алюминиевой фольги, а анод из медной) находятся в пористом материале (сепараторе), который пропитан электролитом. Заряд в аккумуляторе переносится с помощью положительных ионов лития, которые во время разрядки перемещаются от катода к аноду. Когда АКБ заряжается, ионы двигаются в противоположном направлении.

Проточный аккумулятор своими руками

Неискоренимо желание наших соотечественников сэкономить денег на том, что можно сделать самостоятельно и даром. Но, к сожалению, для энтузиастов и даже умельцев придется сообщить печальную новость — проточный аккумулятор своими руками сконструировать очень трудно. Во всяком случае пока. Все мы привыкли в пошаговым инструкциям, которые ведут нас от нуля и до результата. Но не в этот раз, господа.

Что же этому препятствует:

  • технология производства в общий доступ еще не выложена, поскольку она новая и частью секретная,
  • чтобы создать такой проточный аккумулятор, потребуются лаборатория и оборудования для создания необходимых химических соединений и соблюдение их пропорций (ведь принцип, как помним, построен именно на химической реакции);
  • нужны сами химические элементы, которые на прилавке авторынка не купишь,
  • нужны научные знания в области химии.

Разумеется, самодельный накопитель без соблюдения технологии может оказаться и вредным. В Сети можно встретить статьи с заголовками, обещающими научить конструировать своими руками, к примеру, ванадиевые проточные аккумуляторы или батареи, работающие на некой ионной жидкости. В подавляющем большинстве случаев — это или выдумки, или переливание из пустого в порожнее без какой либо конкретики.

По последним данным, в производстве ученые пытаются применяться даже травы, что позволит создать еще более экологичные и дешевые устройства. Отечественные инженеры рассматривают возможность внедрить в потоковый аккумулятор в качестве электропроводящего вещества растение ревень. По их расчету, такая батарея будет абсолютно безопасна для здоровья и не навредит окружающей среде. Именно поэтому можно считать такие батареи большим шагом в будущее.

Параллельное соединение проводников

Параллельное соединение проводников выглядит вот так.

параллельное соединение резисторов

Ну что, думаю, начнем с сопротивления.

Сопротивление при параллельном соединении проводников

Давайте пометим клеммы как А и В

В этом случае общее сопротивление RAB будет находиться по формуле

Если же мы имеем только два параллельно соединенных проводника

То в этом случае можно упростить длинную неудобную формулу и она примет вид такой вид.

Напряжение при параллельном соединении проводников

Здесь, думаю ничего гадать не надо. Так как все проводники соединяются параллельно, то и напряжение у всех будет одинаково.

Получается, что напряжение на R1 будет такое же как и на R2, как и на R3, так и на Rn

Сила тока при параллельном соединении проводников

Если с напряжением все понятно, то с силой тока могут быть небольшие затруднения. Как вы помните, при последовательном соединении сила тока через каждый проводник была одинакова. Здесь же совсем наоборот. Через каждый проводник будет течь своя сила тока. Как же ее вычислить? Придется опять прибегать к Закону Ома.

Чтобы опять же было нам проще, давайте рассмотрим все это дело на реальном примере. На рисунке ниже видим параллельное соединение трех резисторов, подключенных к источнику питания U.

Как мы уже знаем, на каждом резисторе одно и то же напряжение U. Но будет ли сила тока такая же, как и во всей цепи? Нет. Поэтому для каждого резистора мы должны вычислить свою силу тока по закону Ома I=U/R. В результате получаем, что

I1 = U/R1

I2 = U/R2

I3 = U/R3

Если бы у нас еще были резисторы, соединенные параллельно, то для них

In = U/Rn

В этом случае, сила тока в цепи будет равна:

Задача

Вычислить силу тока через каждый резистор и силу тока в цепи, если известно напряжение источника питания и номиналы резисторов.

Решение

Воспользуемся формулами, которые приводили выше.

I1 = U/R1

I2 = U/R2

I3 = U/R3

Если бы у нас еще были резисторы, соединенные параллельно, то для них

In = U/Rn

Следовательно,

I1 = U/R1 = 10/2=5 Ампер

I2 = U/R2 = 10/5=2 Ампера

I3 = U/R3 = 10/10=1 Ампер

Далее, воспользуемся формулой

чтобы найти силу тока, которая течет в цепи

I=I1 + I2 + I3 = 5+2+1=8 Ампер

2-ой способ найти I

I=U/Rобщее

Чтобы найти Rобщее мы должны воспользоваться формулой

Чтобы не париться с вычислениями, есть онлайн калькуляторы. Вот один из них. Я за вас уже все вычислил. Параллельное соединение 3-ех резисторов номиналом в 2, 5, и 10 Ом равняется 1,25 Ом, то есть Rобщее = 1,25 Ом.

I=U/Rобщее = 10/1,25=8 Ампер.

Параллельное соединение резисторов в электронике также называется делителем тока, так как резисторы делят ток между собой.

Ну а вот вам бонусом объяснение, что такое последовательное и параллельное соединение проводников от лучшего преподавателя России.

Типы аккумуляторных батарей

  1. Свинцово-кислотные.
  2. Литиевые.
  3. Никель-кадмиевые.

Это самые популярные представители. Но для понимания возможностей предлагаем ознакомиться со списком материалов, которые могут выступать в качестве электродов:

  • железо;
  • свинец;
  • титан;
  • литий;
  • кадмий;
  • кобальт;
  • никель;
  • цинк;
  • ванадий;
  • серебро;
  • алюминий;
  • ряд других элементов, которые, впрочем, встречаются очень редко.

Использование разных материалов влияет на получаемые выходные характеристики и, следовательно, на сферу применения. Так, к примеру, li-ion аккумуляторы применяются в компьютерных и мобильных устройствах. Тогда как никель-кадмиевые используются в качестве замены стандартных гальванических элементов. Теоретически все типы аккумуляторных батарей могут работать с любой нагрузкой. Вопрос только в том, насколько оправданным является такое применение.

Выбор батарей: итоговые замечания

Литиевые батареи

  • могут обеспечивать до 5000 зарядных циклов
  • Наиболее длительный срок службы при разряде на 80%
  • Могут заряжаться за 1-2 часа
  • Могут работать при минусовых температурах, но заряжать нужно при плюсовых температурах
  • Не могут заряжаться малыми токами
  • Требуют обслуживания,  выравнивания и специальной системы управления зарядом и разрядом
  • Саморазряд на уровне примерно 10% в месяц
  • Можно хранить в холодном месте при заряженности не менее 40% от полной
  • Низкая токсичность, но желательно утилизировать после окончания срока службы

Никель-металгидридные батареи

  • Могут обеспечить до 3000 зарядных циклов
  • Заряд происходит за 2-4 часа
  • Могут работать при минусовых температурах
  • Не могут заряжаться малыми токами, низкая устойчивость к перезаряду
  • Могут обеспечивать большие токи при мощности до 200Вт (для самых больших NiMh батарей)
  • Требуют периодического обслуживания и выравнивания (каждые 3 месяца)
  • Саморазряд на уровне примерно 30% в месяц
  • Можно хранить в холодном месте при заряженности не менее 40% от полной
  • Низкая токсичность, но желательно утилизировать после окончания срока службы

Герметичные свинцово-кислотные аккумуляторы

  • Могут обеспечить до 3000 зарядных циклов
  • Заряжаются за 8-16 часов
  • Могут работать при минусовых температурах
  • Могут заряжаться малыми токами
  • Не требуют обслуживания, но желательно следить за уровнем заряженности и периодически проводить тренировочные циклы
  • Могут обеспечить высокие разрядные токи при больших мощностях
  • Желательно не разряжать более, чем на 50%
  • Саморазряд — около 3% в месяц
  • Хранить при комнатной температуре и полностью заряженными
  • Содержат токсичные материалы и должны быть утилизированы после окончания срока службы

Подробно о видах и применении свинцово-кислотных аккумуляторов в статье Типы свинцово-кислотных аккумуляторов

Эта статья прочитана 17743 раз(а)!

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.