Проверка датчиков двигателя своими руками

Основные типы и марки приборов мегаомметров из моей практики (устройство и принцип работы)

Мегаомметр ЭСО-210

Начнем с простеньких. Итак, первые участники сегодняшнего парада – украинские приборы ЭСО 210/3 и ЭСО 210/3Г. Буква «Г» говорит о том, что прибор работает от внутреннего генератора и имеет ручку. Модель без ручки работает от сети 220В и от кнопки. Они невелики по размеру и удобны в пользовании. Это верные помощники энергетиков. Ими удобно мегерить любое электрооборудование. А еще можно взять после испытания один из концов и разземлять им, ибо концы с обеих сторон имеют металлические наконечники. В моделях с ручкой в качестве источника напряжения выступает генератор переменного тока, в моделях с кнопкой — трансформатор, преобразующий переменное напряжение в постоянное.

Значит, пройдемся по настройкам прибора. Прибором можно испытывать, подавая постоянное напряжение величиной 500, 1000 или 2500 Вольт. Показания появляются на стрелочной шкале, которая имеет несколько пределов, которые переключаются выключателем. Это шкала «I», «II» и «IIx10».

Шкала «I» — нижние цифры верхней шкалы. Отсчет идет справа налево. Значения от 0 до 50 МОм.

Шкала «II» — верхние цифры верхней шкалы. Отсчет идет слева направо. Значения от 50МОм до 10 ГОм.

Шкала «IIx10» — аналогична шкале «II», однако, значения от 500МОм до 100 ГОм.

В приборе также имеется нижняя шкала от 0 до 600 В. Эта шкала имеется в приборе ЭСО-210/3 и при не нажатом положении кнопки подачи напряжения показывает напряжение на концах. В общем, поднесли концы мегаомметра к розетке, и стрелка поднялась до 220В. Но только правильно подключить их надо на измерение напряжения, а не сопротивления изоляции. Один на молнию, а второй на Ux.

При подаче напряжения загорается красная лампочка на шкале, что сигнализирует о наличии напряжения на концах прибора.

Как подсоединить щупы прибора? У нас имеется три отверстия для присоединения щупов – экран, высокое напряжение и третий измерительный (rx, u). Вообще два щупа спарены и один из них подписан. Ошибиться внимательному человеку непросто.

Мегаомметр sonel mic-2510

Шагнем далее и остановим свой взор на мощном польском приборе под названием Sonel – мегаомметр mic-2510. Этот мегаомметр является цифровым. Внешне он очень симпатичный, в комплект входит сумка, в которую складываются щупы типа крокодилы (достаточно мощные и надежные) и втычные. Кроме того, в комплект входит зарядное устройство. Сам же прибор работает на батарейке, что достаточно удобно. Не требуется подключение к сети и не требуется вращение ручки, как у старых моделей отечественных мегаомметров. Также имеется лента, для удобного расположения на шее. Вначале это казалось мне не очень удобно, но в итоге к этому привыкаешь и осознаешь все достоинства. Кроме надежной батарейки к плюсам можно отнести возможность подачи напряжения без поддержания кнопки. Для этого вначале нажимаешь старт, потом «энтер» и всё – следи за показаниями и не подпускай никого под напряжение.

Этим прибором можно измерять следующие величины двухпроводным способом и трехпроводным. Трехпроводный способ используется для измерений, где необходимо исключить влияние поверхностных токов – трансформаторы, кабели с экраном.

Также прибором можно измерять температуру с помощью термодатчиков, напряжение до 600 вольт, низкоомное сопротивление контактов.

Шкала прибора имеет значения 100, 250, 500, 1000, 2500 Вольт. Это достаточно широкий диапазон, который может удовлетворить нужды инженеров при проведении самых различных испытаний. От коэффициента абсорбции, до коэффициента поляризации. Максимально измеряемое сопротивление изоляции, которое способен измерить прибор составляет 2000 ГОм — впечатляющая величина.

Коэффициент поляризации характеризует степень старения изоляции. Чем он меньше, тем более изоляция изношена. Коэффициент поляризации на 2500В и замеряем сопротивление изоляции через 60 и 600с или через 1 и 10минут. Если он больше двух, то всё хорошо, если от 1 до 2 – то изоляция сомнительна, если же коэффициент поляризации меньше 1 – время бить тревогу. Западные шеф-инженеры не приветствуют высоковольтные испытания, тем же АИДом, а рады провести мегер-тест на 5кВ или 2,5кВ с измерением данного коэффициента.

Коэффициент абсорбции это отношения сопротивления изоляции через 60 и 15 секунд. Этот коэффициент характеризует увлажненность изоляции. Если он стремится к единице, то необходимо поднимать вопрос о сушке изоляции. Более подробно о его величине для разного типа оборудования описано в нормах испытания электрооборудования вашей страны.

В процессе работы я встречался и с другими приборами, но именно эти два показывают, как далеко шагнул прогресс в процессе производства мегаомметров. У каждого из увиденных мною приборов есть свои плюсы и минусы.

Причины неисправности

Причинами, почему не работает датчик уровня топлива либо он неправильно показывает, становятся такие неисправности:

  • Поплавок потерял герметичность. Подобная ситуация актуальна, когда в качестве поплавка используется шарик из хрупкой пластмассы, которая может растрескаться в результате механического воздействия либо в результате эксплуатации авто при сильных морозах. В этом случае поплавок будет находиться внутри жидкости или, что чаще, попросту утонет и ляжет на дно. Результатом будет постоянные показания прибора, что в баке нет топлива. Ремонтные меры предусматривают замену поплавка либо же всего узла целиком. Еще редкий вариант заключается в том, что поплавок может попросту отсоединиться от рычага, на котором он закреплен и «уйти в самостоятельное плавание».
  • Деформация рычага, на котором держится поплавок. В результате этого поплавок может терять подвижность либо отражать не корректную информацию. Часто такая ситуация происходит при неаккуратном извлечении топливного модуля с бака, но иногда даже и как результат длительной эксплуатации машины на дорогах с неровным покрытием, то есть, при постоянных вибрациях при езде. Можно попытаться придать рычагу изначальную форму, однако чаще всего соответствующий рычаг просто меняют на новый.
  • Повреждение корпуса датчика. В результате этого может измениться показания резистивных элементов либо повреждение рычага, снимающего соответствующие показания. В данном случае причиной, почему датчик не правильно показывает уровень топлива — это использование некачественного бензина либо ударные механические нагрузки на деталь.
  • Выход из строя резистивных элементов. Это достаточно частая причина, почему датчик уровня топлива не работает. Элементы на реостате выходят из строя по естественным причинам, то есть, в результате стирания при длительной эксплуатации. Возможен вариант, когда износ частичный, например, посередине. В этом случае стрелка прибора будет дергаться. Также возможно, что между скользящим элементом и резистивной дорожкой пропал контакт вследствие повреждения либо износа резистивного напыления либо ослабления прижима лапки бегунка. При такой неисправности стрелка будет лежать на нуле.
  • Отсутствие электрического контакта на определенном участке цепи. Как правило, на контактах, которые окисляются либо влагой, либо топливом. Могут быть повреждены провода, их изоляция, обрыв. Также иногда возникают проблемы с электрическими разъемами.
  • Сигнальный провод «коротит» на «массу». В этом случае значение его сопротивления будет искажаться и стремиться к нулю. При такой неисправности датчик уровня неправильно показывает уровень передавая информацию, что бак полностью залит.
  • Перегорание предохранителя, отвечающего за работу датчика уровня топлива. Номер предохранителя необходимо смотреть в электрической схеме конкретного автомобиля.
  • Нарушение крепления датчика на корпусе топливного бака. Например, с перекосом. Как правило, в такой ситуации запах топлива распространяется наружу, в частности, в салоне будет слышен запах бензина.
  • Встречаются случаи, когда у резистивной платы, по которой движется бегунок, попросту отваливается крепежная пайка.
  • У трубчатых датчиков уровня топлива может быть оборван сигнальный провод. В этом случае стрелка будет постоянно показывать пустой бак.
  • Также трубчатым датчикам свойственен налет, который может образоваться на направляющей стойке. Это естественным образом приведет к затруднению (и даже невозможности) движения поплавка. Налет обычно образуется в результате использования некачественного топлива (с большим количеством парафина, газолина вместо бензина). В этом случае стрелка прибора замрет в одном положении, причем не обязательно в одном из крайних.
  • У бесконтактных датчиков может быть поврежден магнитный датчик и/или его проводка. На некоторых из них устанавливается специальная контрольная и управляющая плата. Проблема может быть и с ней. В этом случае обычно датчик полностью выходит из строя, то есть, не показывает уровень топлива вообще.

Чаще всего проблемы возникают с поплавками либо с резистивными элементами, которые со временем истираются и перестают передавать корректные данные. Но заметьте, что когда уровень топлива не показывается, то не всегда виноват именно датчик. Часто не работает стрелка, и тут виноват уже прибор на панели, который, по сути, является потенциоментром. Поэтому если датчик топливо неправильно показывает, то нужно его снять и проверить мультиметром и произвести визуальную дефектовку.

Современные мегаомметры

В настоящее время наряду с традиционными, но все еще работоспособными и надежными мегаомметрами, используются электронные аналоговые и цифровые приборы. Они имеют источники тока, это аккумуляторы или гальванические батареи. Использование цифрового табло позволяет более точно проводить измерения и фиксировать их. Многие модели оснащаются немало важными функциями такими как, например: автоматическое определение коэффициентов абсорбции и поляризации. Кроме этого, для большего удобства эксплуатации они конструируются с возможностью подсветки экрана, и сохранения измеренных показаний в память прибора с последующей передачей на компьютер, для отслеживания динамики измерений.

Как правильно пользоваться мегаомметром?

Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов

Пример такой таблицы приведен ниже.

Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.

Испытуемый объект Уровень напряжения (В) Минимальное сопротивление изоляции (МОм)
Проверка электропроводки 1000,0 0,5>
Бытовая электроплита 1000,0 1,0>
РУ, Электрические щиты, линии электропередач 1000,0-2500,0 1,0>
Электрооборудование с питанием до 50,0 вольт 100,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с номинальным напряжением до 100,0 вольт 250,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с питанием до 380,0 вольт 500,0-1000,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Оборудование до 1000,0 В 2500,0 0,5 или более в зависимости от параметров, указанных техническом паспорте

Перейдем к методике измерений.

Неисправности датчика парктроника

По статистике датчики парктроника достаточно редко выходят из строя, обычно это происходит из-за их повреждения, либо некорректной работы в теплую погоду. Самыми частыми неисправностями датчика парковки являются:

Датчик парктроника с проводкой и разъемом подключения

  • коррозия контактов, попадание влаги в корпус через трещины в корпусе;
  • поломка электронной составляющей датчика;
  • загрязнение рабочей поверхности датчика парктроника;
  • механическое повреждение датчика в результате аварии, удара;
  • повреждение проводки (особенно характерно для передних датчиков из-за попадания на них грязи и химических реагентов);
  • производственный брак датчика, либо его низкое качество (чаще всего подделка).

В результате повреждения одного или нескольких датчиков система парктроника может либо не работать вовсе, либо же, наоборот, постоянно пищать, срабатывая ложно. А при замыкании проводов датчика в дождливую погоду часто выскакивает “Ошибка датчика парковки”.

Также иногда автовладельцы думают что неисправность возникла вследствие попадания грязи на рабочую поверхность датчика либо того, что его закрасили под цвет бампера. Следовательно возникает логический вопрос: “Можно ли красить датчики парковки?”. Ответ — да, можно, однако есть несколько условий. В частности:

Процесс покраски датчиков

  • Красить датчики лучше еще до установки на машину. Если они уже установлены, то нужно вытянуть их немного из бампера (примерно на сантиметр), а бампер за ними оклеить малярным скотчем.
  • Перед покраской поверхность датчиков нужно зачистить с помощью наждачной бумаги (400-ой или 360-ой). Особенно это актуально, если на датчике имеются механические повреждения или царапины.
  • После зачистки поверхность датчиков нужно обезжирить.
  • Загрунтовать акриловым грунтом.
  • Если датчики новые и пластмассовые, то можно зачистить поверхность мелкой наждачной бумагой или серым скотч брайтом и нанести грунт по пластику.
  • После описанных процедур датчики можно красить.

В интернете немало отзывов о том, что датчик парктроника перестал работать после покраски. Однако большинство из них связано с тем, что в процессе работы была нарушена технология покраски и предварительной обработки их поверхности.

Стоит отметить, что те системы парковки, которые устанавливаются на автомобиль с конвейера являются более сложными. И чаще всего при выходе из строя даже одного датчика система полностью теряет работоспособность. Те же системы парковки, которые были установлены дополнительно являются более простыми. У них при выходе одного из датчиков парктроника из строя работоспособность частично сохраняется.

Восстановление датчика

Перед началом работ в автомобиле необходимо деактивировать зажигание и отсоединить от регулятора фишку с проводами.

Что понадобится?

Для проведения процедуры потребуется:

  • ветошь;
  • набор гаечных ключей;
  • очистительное средство;
  • отвертка, если ее применение требует демонтажа расходомера.

Выбор очистителя

Средства, которые можно приобрести в магазине для того, чтобы почистить контроллер:

  1. WD-40. Универсальное средство, использующееся в том числе для чистки.
  2. Liqui Moly. Применение такого состава актуально на работающих датчиках. Средство является универсальным и может применяться как на дизельных, так и бензиновых моторах.
  3. Спирт.
  4. Средство для очистки карбюраторных двигателей.
  5. Жидкий ключ. Данный продукт поставляется в продажу в виде спрея.
  6. Air Senso Clean.

Полезно знать

Для очистки устройства нельзя использовать ватные палочки или сжатый воздух

Важно, чтобы в составе очистительного средства не было ацетона или эфира

Изображение Шаг

Пользователь должен снять подведенный к датчику шланг, для этого гаечным ключом выкручиваются винты крепления устройства к корпусу воздухофильтра. Алгоритм демонтажа может отличаться в зависимости от конструктивных особенностей авто.

  1. Производится снятие датчика с патрубка и его извлечение из места установка. Для демонтажа на автомобилях ВАЗ пользователю необходим ключ звездочка необходимого размера.
  2. Чтобы снять расходомер, пользователю надо открутить саморезы, фиксирующие его.

  1. Производится очистка регулятора, красными стрелками указаны места, которые надо обработать средством.
  2. Внутри датчика находится пленка, на которой располагаются сами регуляторы, сделанные в виде проволоки. Фиксация элементов осуществляется посредством специальной смолы.
  3. Пользователь должен очистительным средством обработать чувствительный элемент, после чего несколько минут подождать, пока средство не высохнет. Процедура очистки может быть выполнена несколько раз в зависимости от загрязнений. Для более быстрого высыхания возможно использование компрессора.

Порядок проверки сопротивления изоляции кабеля мегаомметром

Приходишь на объект, и видишь например следующую картину.

Перед непосредственно проверкой сопротивления изоляции надо убедиться, что:

  • на жилах кабеля, куда будем подавать напряжение нет грязи, нагори, краски (на жиле кабеля такого нет, но это может быть на заземлении, которое окрашивают или же оно может быть покрыто слоем ржавчины, тогда надо отскрести отверткой или ножом)
  • на другом конце кабеля никто не работает и кабель отсоединен от нагрузки и источника питания (не стоит подавать напряжение на монтажника, который может разделывать кабель с другой стороны, или замерять Rx кабеля с нагрузкой, также стоит проследить, чтобы мы не подали высокое напряжение на вторичные цепи и элементы, которые могут от 2500В прийти в негодность, поэтому иногда их просто мегерят на 500В)
  • кабель обесточен и предусмотрены меры, не допускающие случайную подачу напряжения на испытуемый кабель (замки, плакаты, выкачены ячейки)
  • если мегер-тест (измерение сопротивления изоляции) идет в комплексе с высоковольтными испытаниями, то нужно убедиться, что на втором конце кабеля (второй конец — противоположный от места испытания) выставлен человек или помещение заперто и огорожено с вывешенными плакатами
  • мегаомметр находится в исправном состоянии и годен к эксплуатации (клеймо поверки на корпусе и концы прибора испытаны)
  • вы имеете право и квалификацию работать с мегаомметром и производить данный вид работ (3 группа по электробезопасности и не просроченная проверка специальных знаний, плюс медосмотр)
  • провода мегаомметра должны иметь высокую изоляцию (тут можно еще сделать следующее: свести два провода мегаомметра и подать напряжение — значение должно быть нулевым, так как изоляции между проводами нет, а если развести — то бесконечность — так как сопротивление воздуха велико)

После того, как вышеприведенные пункты стали очевидно реализованы, можно приступать к делу. Помегерим!

ДТОЖ – что это такое в машине?

Датчик температуры охлаждающей жидкости в автомобиле представляет собой компактное устройство, расположенное в корпусе радиатора или, нередко, во внешней части корпуса силового агрегата – так называемой «рубашке» системы охлаждения.

Назначение

Датчик предназначается для определения температуры охлаждающей жидкости, которая выводится на информационный индикатор, расположенный в панели приборов авто.

Также функцией датчика является активация включения вентилятора охлаждения, который понижает температуру антифриза в случае, если она превышает критические значения (более 80 градусов Цельсия). Делается это для того, чтобы избежать вскипания антифриза и, как результат, перегрева мотора.

Видео — нюансы, связанные с датчиками температуры охлаждающей жидкости на Фольксваген Пассат Б3:

Подобное назначение датчика было характерно для карбюраторных двигателей. Сегодня, с развитием инжекторных систем впрыска, на ДТОЖ возлагается значительно большее число функций. К ним можно отнести:

  • увеличение оборотов двигателя на этапе прогрева для оптимизации выхода мотора на рабочий режим;
  • открытие либо закрытие клапана рециркуляции выхлопных газов;
  • установка угла опережения зажигания и т.д.

Принцип работы

Функционирование ДТОЖ осуществляется на основе физических свойств материала датчика менять собственное электрическое сопротивление в зависимости от степени нагрева.

По сути, он состоит из двух электропроводящих контактов и конусообразного рабочего элемента из чувствительного материала. Изменение степени электропроводности фиксируется и, таким образом, датчик «выдает» информацию о температуре и достижении ее критических значений.

На современных авто за считывание такой информации «отвечает» электронный блок управления ЭБУ, который и отдает управляющие команды для системы зажигания, а также анализирует работоспособность самого датчика.

Механический

Механический ДТОЖ представляет собой простой узел, где передача информации об изменении сопротивления материала выполняется, так сказать, в «аналоговой» форме – посредством электрического сигнала. Такой датчик напрямую соединен с указателем температуры охлаждающей жидкости, который является, по сути, простым омметром со шкалой, проградуированной в градусах Цельсия.

С узлом соединено реле, которое замыкается при достижении критической температуры и вызывает срабатывание вентилятора охлаждения. Такие датчики встречаются на автомобилях с карбюраторными моторами, включая все отечественные «Жигули».

Цифровой

Цифровой ДТОЖ по своей конструкции не сильно отличается от механического, но передача сигнала происходит посредством шины непосредственно в цифровой блок управления ЭБУ.

Встроенный процессор производит первичный анализ информации, выводя данные о температуре на приборную панель, а также давая команды системе зажигания. Включение вентилятора в этом случае производится также посредством команды от ЭБУ.

СИГНАЛИЗАТОР ОБРЫВА ТОРМОЗНОЙ МАГИСТРАЛИ С ДАТЧИКОМ № 418

Сигнализатор обрыва тормозной магистрали с датчиком № 418
устанавливается между главной частью и двухкамерным резервуаром
воздухораспределителей усл.№ 483 и предназначен для сигнализации машинисту о
нарушении целостности тормозной магистрали поезда и одновременного выключения
тягового режима локомотива.

Устройство состоит из алюминиевого корпуса 2, фланца 4, корпуса 15 промежуточной
части и угловой вставки 13. Между корпусом 2 и фланцем 4 помещены две резиновые диафрагмы 5, под которыми
находятся металлические шайбы 6, входящие своими хвостовиками в выточки стержней-толкателей
7. Шайбы 7 нагружены пружинами 3. В нижней части корпуса 2 расположены
микропереключатели 8, закрепленные в планках 9. Регулировку положения
микропереключателей относительно корпуса осуществляют винтами 1.
Выводы микропереключателей соединены с контактами 10, расположенными на
изоляционной колодке 11. В угловой вставке 13 помещена изоляционная колодка 14 с
контактами 12.
Полость над левой диафрагмой 5 сообщается с каналом дополнительной разрядки (КДР)
воздухораспределителя, а полость над правой диафрагмой — с каналом ТЦ. Толкатель 16 одним концом упирается в эксцентрик вала переключателя режимов
торможения воздухораспределителя, расположенного в двухкамерном резервуаре, а
вторым — в режимную упорку главной части.

Электрическая схема устройства приведена на рисунке.

При обрыве тормозной магистрали, открытии стоп-крана или открытии концевого
крана хвостового вагона воздухораспределители в поезде срабатывают на торможение.
В головной части поезда и на локомотиве вследствие питания ТМ через кран
машиниста, ручка которого находится в поездном положении, воздухораспределители
производят кратковременную частичную дополнительную разрядку ТМ на величину
примерно 0,2 – 0,25 кгс/см2, а затем отпускают. В процессе начавшейся
дополнительной разрядки будет возрастать давление в КДР воздухораспределителя,
воздух из которого воздействует на левую диафрагму 6 сигнализатора. Когда
давление в КДР достигнет величины примерно 1,1 – 1,3 кгс/см2, диафрагма,
преодолевая усилие пружины, прогнется настолько, что стержнем-толкателем 7
замкнет контакты ДДР левого микропереключателя. При срабатывании
воздухораспределителя на дополнительную разрядку контакты ДТЦ правого
микропереключателя остаются замкнутыми, так как давление воздуха, поступающего в
канал ТЦ не превышает 0,3 кгс/см2, что недостаточно для перемещения вниз левой
диафрагмы сигнализатора. При этом на катушку реле Р1 (на каждой серии локомотива
оно имеет свой схемный номер) подается питание через замкнувшиеся контакты ДДР и
замкнутые контакты ДТЦ правого микропереключателя. Сработавшее реле Р1 своим
контактом Р1/1 замыкает цепь сигнальной лампы «Обрыв ТМ» на пульте машиниста, а
размыкающим контактом Р1/2 разбирает цепь управления тяговым режимом локомотива.
После прекращения дополнительной разрядки давление в КДР падает и контакты ДДР
размыкаются. Однако катушка реле Р1 будет продолжать получать питание через свои
замкнутые контакты Р1/1. диод и замкнутые контакты ДТЦ, то есть сигнальная лампа
на пульте будет продолжать гореть.
При выполнении ступени торможения 0,6 – 0,7 кгс/см2 в ТЦ локомотива появляется
скачковое давление не менее 0,5 кгс/см2. Давлением из канала ТЦ правая диафрагма
5 сигнализатора, преодолев усилие пружины, переместит стержень-толкатель 7 вниз
и контакты ДТД правого микропереключателя размыкаются. Катушка реле Р1 теряет
питание, сигнальная лампа «Обрыв ТМ» гаснет, электрическая цепь управления тягой
восстанавливается.
При выполнении регулировочных торможений в пути следования сигнальная лампа
загорается кратковременно и гаснет, что свидетельствует об исправной работе
датчика.
Однако, если обрыв ТМ произошел вблизи локомотива, то его воздухораспределитель
может наполнить ТЦ до давления 1,0 – 1,2 кгс/см2. При этом также происходит
кратковременное загорание и погасание сигнальной лампы, но электрическая цепь
управления режимом тяги будет отключена, то есть в данном случае будет
отсутствовать световая сигнализация нарушения целостности ТМ.

<<Назад ——————————— Дальше >>

Проверка электрического датчика давления масла

Проверка датчика мультиметром

Электронные датчики давления масла, используемые, как на иномарках, так и отечественных авто, в частности, на автомобилях ВАЗ-2114 и других современных «Ладах», проверить несложно. Их устройство аналогично тому, где используется реостат, однако они попросту размыкают цепь при определенном давлении. Соответственно, его проверка еще проще. Для этого нужно:

  • Установить мультиметр в режим «прозвонки» (разрыва) электрической цепи.
  • Обеспечить герметичное соединение воздушного насоса и входного (чувствительного) отверстия, куда подается воздух. Тут аналогично необходимо обеспечить качественную герметизацию, поскольку от этого напрямую зависит результат эксперимента.
  • Один щуп мультиметра установить на центральный выходной контакт датчика, а второй — его корпус, «массу».
  • Одновременно с этим с помощью насоса подать на датчик давление воздуха около 1…1,5 атмосфер. Сильно дуть не нужно, чтобы не повредить мембрану. Если датчик исправен, то электрическая цепь разомкнется почти сразу, под механическим воздействием штока, находящемся в жесткой связи с изгибаемой чувствительной мембраной датчика давления масла.

Как понятно из схемы работы датчика, если цепь разомкнулась (фиксируется мультиметром), значит, датчик исправен. В противном случае — нет. В редких случаях вместо датчика проблему, почему горит лампочка масла, необходимо искать в неисправной (перебитой или с поврежденной изоляцией) проводке.

Также работоспособность датчика давления масла можно проверить и другим методом. Так, нужно снять питающий провод с датчика и замкнуть его на «массу». Если датчик исправен, то сигнальная лампочка на приборной панели загораться не должна. В противном случае датчик неисправен.

Проверка двух датчиков

На некоторых современных машинах устанавливают два однотипных («новых») датчика давления. Первый рассчитан на значение абсолютного давления в диапазоне около 0,15…0,45 атмосфер, и предназначен для размыкания контрольной лампы после запуска двигателем. Его проверка аналогична, и соответствует описанной выше процедуре. То есть, подключение такое же. Его цепь должна размыкаться при нагнетании в нем давления в указанном диапазоне.

Второй датчик предназначен для контроля давления масла на работающем двигателе. Он по типу аналогичен первому, но его отличие заключается в том, чтобы контролировать верхнюю границу масла (дабы не допустить его возрастания до критического значения). Верхнее значение может быть разным, и отличается у конкретных моделей автомобилей. Однако в большинстве случаев оно находится около 1,8 атмосферы. При достижении этого уровня давления или выше цепь контакта должна замыкаться, и соответственно, на приборной панели должна активироваться сигнальная лампа давления масла в системе двигателя.

Проверка датчика давления с помощью лампочки

Для проверки электрического (нового) датчика давления масла вместо мультиметра можно воспользоваться лампочкой, рассчитанной на работу под напряжением 12 В постоянного напряжения, а также блока питания (аккумулятора) и компрессора (желательно с манометром). Алгоритм проверки следующий:

Схема подключения

  • К контактам лампочки необходимо присоединить два провода.
  • Один из концов провода, идущий на лампочку, присоединить к выводному контакту датчика давления.
  • Массу от блока питания (или минус от аккумулятора) соответственно присоединить на корпус (массу) датчика.
  • К другому проводу на лампочке присоединить плюс от блока питания или аккумулятора.
  • Если датчик исправен, то после включения блока питания (или просто при возникновении контакта от аккумулятора) лампочка должна засветиться. В противном случае датчик сразу можно считать неисправным.
  • Далее для проверки необходимо с помощью компрессора или насоса подать на чувствительный элемент датчика давление около 0,5 атмосферы. Значение давления может быть разным, и это зависит от того, на какое именно давление рассчитан датчик. Обычно оно находится около уже упомянутой 0,5 атмосферы.
  • При возрастании давления до указанного значения (критического для датчика) лампочка должна потухнуть, поскольку при этом в корпусе датчика разомкнется контрольная электрическая цепь. Если этого не произошло, то датчик также можно считать негодным.

Вместо компрессора вполне можно обойтись обычным автомобильным и даже велосипедным насосом, которые без проблем выдадут необходимые полатмосферы давления воздуха.

Как подключить

Монтаж датчика температуры StarLine A91 проводится в 2 этапа:

  • установка измерительной части;
  • подсоединение проводов к блоку сигнализации.

Подключение датчика температуры проводят через сигнализатор открытия капота. Провод от сенсора подсоединяется к нештатному концевому выключателю капота и коммутируется с оранжево-серым проводом, идущим к блоку автосигнализации. Т. е. для корректной работы системы автозапуска двигателя крышка моторного отсека должна быть закрыта (концевик нажат).

В случае, если датчик подключен неверно, то вместо температуры двигателя брелок будет показывать Lo или Hi. Это значит, что измеряемый параметр имеет либо слишком низкое, либо высокое значение. Если такая индикация появилась в процессе эксплуатации системы автозапуска, то это свидетельствует о выходе из строя измерителя температуры двигателя StarLine A91.

При монтаже нужно помнить, что система сигнализации не связана с бортовой электросетью и получает питание от аккумулятора. Соединение датчиков должно быть только с проводами относящимися к Старлайн. В противном случае возможна не только некорректная работа автозапуска, но и отказ всех или некоторых функций системы. При монтаже необходимо хорошо закрепить провода датчика, т. к. наиболее слабым узлом является место пайки проводников с измерительным элементом.

Как проверить мегаомметр на исправность

Осуществить проверку мегаомметра на исправность необходимо по следующему способу. К выводам устройства сделать подключение проводов и закоротить выходы. Потом подать энергию и проследить за результатами. Исправный прибор покажет ноль. Потом разъединить и попробовать заново. Во второй раз должна появиться бесконечность. Это показатель — воздушный промежуток.

Неисправности мегаомметра

Неисправности заключаются в отсутствии горения индикаторного табло измерительных результатов в момент включения омметра питания. Также они заключаются в нестабильности измерительных результатов. Причина этих явлений в перегорании предохранителя, неисправности кабеля сетевого питания, ненадежном заземлении и ненадежном контактировании с измерительным объектом.

Неправильная эксплуатация прибора и заводской брак как неисправность

Ремонт мегаомметра

Ремонт заключается в замене предохранителя, устранении неисправности кабельного повреждения, восстановления надежного заземления и достижения надежного контакта для измерительного объекта. Стоит отметить, что техническое обслуживание является лучшей профилактикой для бесперебойной работы. Также оно нужно, чтобы поддержать эксплуатационную надежность и повысить эффективность омметра.

Обратите внимание! В случае обнаружения брака, следует сделать замену оборудования или обратиться в сервисный центр для оказания профессиональной помощи. Необходимость обращения к мастерам для ремонта оборудования

Необходимость обращения к мастерам для ремонта оборудования

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.