Биполярный транзистор

Режимы работы

Нормальный активный режим

Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база — в обратном (закрыт):

UЭБ>0; UКБ<0 (для транзистора n-p-n типа), для транзистора p-n-p типа условие будет иметь вид UЭБ<0; UКБ>0.

Инверсный активный режим

Эмиттерный переход имеет обратное смещение, а коллекторный переход — прямое: UКБ>0; UЭБ<0 (для транзистора n-p-n типа).

Режим насыщения

Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ. нас) и коллектора (IК. нас).

Напряжение насыщения коллектор-эмиттер (UКЭ. нас) — это падение напряжения на открытом транзисторе (смысловой аналог RСИ. отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (UБЭ. нас) — это падение напряжения между базой и эмиттером на открытом транзисторе.

Режим отсечки

В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В).

Режим отсечки соответствует условию UЭБ<0,6—0,7 В, или IБ=0.

Барьерный режим

В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.

Сферы применения тех и других транзисторов

Различия между полевыми и биполярными транзисторами четко разделяют области их применений. Например в цифровых микросхемах, где необходим минимальный ток потребления в ждущем состоянии, полевые транзисторы применяются сегодня гораздо шире. В аналоговых же микросхемах полевые транзисторы помогают достичь высокой линейности усилительной характеристики в широком диапазоне питающих напряжений и выходных параметров.

Схемы типа reel-to-reel удобно реализуются сегодня с полевыми транзисторами, ведь легко достигается размах напряжений выходов как сигналов для входов, совпадая почти с уровнем напряжения питания схемы. Такие схемы можно просто соединять выход одной с входом другой, и не нужно никаких ограничителей напряжения или делителей на резисторах.

Что касается биполярных транзисторов, то их типичными сферами применения остаются: усилители, их каскады, модуляторы, детекторы, логические инверторы и микросхемы на транзисторной логике.

Полевые побеждают, почему?

Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные электронные часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет от одного миниатюрного источника питания — батарейки или аккумулятора, потому что практически не потребляют энергии.

В настоящее время полевые транзисторы находят все более широкое применение в различных радиоустройствах, где уже с успехом заменяют биполярные. Их применение в радиопередающих устройствах позволяет увеличить частоту несущего сигнала, обеспечивая такие устройства высокой помехоустойчивостью.

Обладая низким сопротивлением в открытом состоянии, находят применение в оконечных каскадах усилителей мощности звуковых частот высокой мощности (Hi-Fi), где опять же с успехом заменяют биполярные транзисторы и даже электронные лампы.

В устройствах большой мощности, например в устройствах плавного пуска двигателей, биполярные транзисторы с изолированным затвором (IGBT) — приборы, сочетающие в себе как биполярные, так и полевые транзисторы, уже успешно вытесняют тиристоры.

Разная реакция на нагрев

У биполярных транзисторов температурный коэффициент сопротивления коллектор-эмиттер отрицательный (т. е. с ростом температуры сопротивление уменьшается и ток коллектор — эмиттер растет). У полевых транзисторов все наоборот — температурный коэффициент сток-исток положительный (с ростом температуры сопротивление растет, и ток сток-исток уменьшается).

Важное следствие из этого факта — если биполярные транзисторы нельзя просто так включать параллельно (с целью умощнения), без токовыравнивающих резисторов в цепи эмиттера, то с полевыми все намного проще — благодаря автобалансировке тока сток-исток при изменении нагрузки/нагрева — их можно свободно включать параллельно без выравнивающих резисторов. Это связано с температурными свойствами p-n перехода и простого полупроводника p- или n-типа

По этой причине у полевых транзисторов гораздо реже случается необратимый выходной тепловой пробой, чем у биполярных.

Так для достижения высоких показателей коммутационных токов, можно легко набрать составной ключ из нескольких параллельных полевых транзисторов, что и используется много где на практике, например в инверторах.

А вот биполярные транзисторы нельзя просто так параллелить, им нужны обязательно токовыравнивающие резисторы в цепях эмиттеров. Иначе, из-за разбаланса в мощном составном ключе, у одного из биполярных транзисторов рано или поздно случится необратимый тепловой пробой. Полевым составным ключам названная проблема почти не грозит. Эти характерные тепловые особенности связаны со свойствами простого n- и p-канала и p-n перехода, которые кардинально отличаются.

Схема включения биполярного транзистора с общим эмиттером.

Эта схема заслужила популярность своими усилительными свойствами. Из всех схем она дает наибольшее усиление по току и по напряжению, соответственно, велико и увеличение сигнала по мощности. Недостатком схемы является то, что усилительные свойства сильно подвержены влиянию роста температуры и частоты сигнала.

Со всеми схемами познакомились, теперь рассмотрим подробнее последнюю (но не последнюю по значимости) схему усилителя на биполярном транзисторе (с общим эмиттером). Для начала, давайте ее немножко по-другому изобразим:

Тут есть один минус – заземленный эмиттер. При таком включении транзистора на выходе присутствуют нелинейные искажения, с которыми, конечно же, нужно бороться. Нелинейность возникает из-за влияния входного напряжения на напряжение перехода эмиттер-база. Действительно, в цепи эмиттера ничего «лишнего» нету, все входное напряжение оказывается приложенным именно к переходу база-эмиттер. Чтобы справиться с этим явлением, добавим резистор в цепь эмиттера. Таким образом, мы получим отрицательную обратную связь.

А что же это такое?

Если говорить кратко, то принцип отрицательной обратной связи заключается в том, что какая то часть выходного напряжения передается на вход и вычитается из входного сигнала. Естественно, это приводит к уменьшению коэффициента усиления, поскольку на вход транзистора из-за влияния обратной связи поступит меньшее значение напряжение, чем в отсутствие обратной связи.

И тем не менее, отрицательная обратная связь для нас оказывается очень полезной. Давайте разберемся, каким образом она поможет уменьшить влияние входного напряжения на напряжение между базой и эмиттером.

Итак, пусть обратной связи нет, Увеличение входного сигнала на 0.5 В приводит к такому же росту U_{бэ}. Тут все понятно А теперь добавляем обратную связь! И точно также увеличиваем напряжение на входе на 0.5 В. Вслед за этим возрастает U_{бэ}, что приводит к росту тока эмиттера. А рост I_э приводит к росту напряжения на резисторе обратной связи. Казалось бы, что в этом такого? Но ведь это напряжение вычитается из входного! Смотрите, что получилось:

Выросло напряжение на входе – увеличился ток эмиттера – увеличилось напряжение на резисторе отрицательной обратной связи – уменьшилось входное напряжение (из-за вычитания U_{ос}) – уменьшилось напряжение U_{бэ}.

То есть отрицательная обратная связь препятствует изменению напряжения база-эмиттер при изменении входного сигнала. В итоге наша схема усилителя с общим эмиттером пополнилась резистором в цепи эмиттера:

Есть еще одна проблема в нашем усилителе. Если на входе появится отрицательное значение напряжения, то транзистор сразу же закроется (напряжения базы станет меньше напряжения эмиттера и диод база-эмиттер закроется), и на выходе ничего не будет. Это как то не очень хорошо… Поэтому необходимо создать смещение. Сделать это можно при помощи делителя следующим образом:

Получили такую красотищу Если резисторы R_1 и R_2 равны, то напряжение на каждом из них будет равно 6В (12В / 2). Таким образом, при отсутствии сигнала на входе потенциал базы будет равен +6В. Если на вход придет отрицательное значение, например, -4В, то потенциал базы будет равен +2В, то есть значение положительное и не мешающее нормальной работе транзистора.

Чем бы еще улучшить нашу схему… Пусть мы знаем, какой сигнал будем усиливать, то есть знаем его параметры, в частности частоту. Было бы отлично, если бы на входе ничего, кроме полезного усиливаемого сигнала не было. Как это обеспечить? Конечно, же при помощи фильтра высоких частот! Добавим конденсатор, который в сочетании с резистором смещения образует ФВЧ:

Вот так схема, в которой почти ничего не было, кроме самого транзистора, обросла дополнительными элементами Пожалуй, на этом и остановимся, скоро будет статья, посвященная практическому расчету усилителя на биполярном транзисторе. В ней мы не только составим принципиальную схему усилителя, но и рассчитаем номиналы всех элементов, а заодно и выберем транзистор, подходящий для наших целей. До скорой встречи!

P-N переход

Германий (Ge) и кремний (Si) – это полупроводники. Сейчас главным образом используют кремний. Валентность Si и Ge равна четырем. Поэтому если добавить в кристаллическую решетку кремния пятивалентный мышьяк (As), мы получим “лишний” электрон, а если добавить трехвалентный бор (B) – мы получим вакантное место для электрона. В первом случае говорят о “донорном” материале, дающем электроны, во втором случае – об “акцепторном”, принимающем электроны. Также первый тип материала называют N (negative), а второй – P (positive).

Если привести в контакт материалы P и N типов, то между ними возникнет ток и установится динамическое равновесие с обедненной областью, где концентрация носителей заряда – электронов и вакантных мест (“дырок”) – мала. Этот слой обладает односторонней проводимостью и служит основой прибора, называемого диод. Непосредственный контакт материалов не создаст качественный переход, необходимо сплавление (диффузия) или “забивание” в кристалл ионов легирующих примесей в вакууме.

Схемы включения

Для характеристики включающей транзисторной схемы применяются два значимых показателя:

  • Величина коэффициента фиксирующего усиление по току, которое вычисляется через отношение тока выхода (Iвых) к току входа (Iвх);
  • Значение входного сопротивления (Rвх), которое вычисляется через отношение входного напряжения (Uвх) к току входа (Iвх).

Включение с общей базой (ОБ)

Рис.4: Усилитель с ОБ

Характеристика:

  • Вариант схемы, при котором уровень сопротивления на входе является самым низким, а выходе – самым высоким;
  • По α (коэффициенту усиления по току) приближается к 1;
  • Обладает большим Кu (коэффициентом усиления по напряжению);
  • Не происходит инвертации фазы сигнала.

Для определения коэффициента α необходимо вычислить отношение тока коллектора к току эмиттера (иначе – отношение тока выхода к току входа).

Для определения входного сопротивления Rвх следует вычислить соотношение входного напряжения и входного тока (иначе – соотношение напряжения на переходе Э-Б и эмиттерного тока). Значение этого параметра для схем с ОБ достигает максимум 100 Ом (в биполярном транзисторе малой мощности).

Минусы применения схем включения с ОБ

  • Незначительная степень усиления по току (поскольку, значение коэффициента α не достигает единицы);
  • Низкий уровень входного сопротивления;
  • Работа обеспечивается двумя разными источниками напряжения.

Включение с общим эмиттером (ОЭ)

Характеристика:

  • Ток на выходе соответствует току коллектора;
  • Ток на входе соответствует току базы;
  • Напряжение на входе соответствует напряжению на Б-Э переходе;
  • Напряжение на выходе соответствует напряжению на К-Э переходе.

Вычислить коэффициент β (усиление по току) для данной схемы можно, через отношение тока выхода к току входа (тока коллектора к току базы; тока коллектора к разности эмиттерного и коллекторного токов).

Для определения входного сопротивления (Rвх) высчитывается отношение напряжения на входе к току на входе (напряжения на Б-Э переходе к току на базе).

Плюсы применения схем включения с ОЭ

  • Большое значение коэффициента β;
  • Большое значение коэффициента усиления по напряжению;
  • Самый высокий уровень усиления мощности;
  • Задействуется только один источник питания;
  • Происходит инвертация выходного напряжения (по отношению к входному).

Плюсы применения схем включения с ОЭ

Температурное и частотное значение гораздо ниже относительно схем включения с ОБ.

Включение с общим коллектором (ОК)

Характеристика:

  • Ток на выходе соответствует току на эмиттере;
  • Ток на входе соответствует величине тока в области базы;
  • Напряжение на входе соответствует напряжению на Б-К переходе;
  • Напряжение на выходе соответствует напряжению на К-Э переходе.

Вычисление β показателя осуществляется через отношение тока на выходе к току на входе (тока в области эмиттера к току в области базы; тока эмиттерной области к разнице Э и К тока).

Величина сопротивления на входе определяется по отношению напряжения на входе к току на входе (отношению суммы напряжений на Б-Э и К-Э переходах к токовому показателю на базе).

Схема с данным типом подключения носит название эмиттерного повторителя.

Плюсы эксплуатации схем включения с ОК

  • Значительный уровень сопротивления на входе;
  • Низкий уровень сопротивления на выходе.

Минусы эксплуатации схем включения с ОК

Величина показателя, характеризующего усиление по напряжению, не достигает единицы.

Основные параметры

  • Коэффициент передачи по току.
  • Входное сопротивление.
  • Выходная проводимость.
  • Обратный ток коллектор-эмиттер.
  • Время включения.
  • Предельная частота коэффициента передачи тока базы.
  • Обратный ток коллектора.
  • Максимально допустимый ток.
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:

  • коэффициент усиления по току α;
  • сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:
    • rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
    • rк — сумму сопротивлений коллекторной области и коллекторного перехода;
    • rб — поперечное сопротивление базы.

Эквивалентная схема биполярного транзистора с использованием h-параметров.

Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».

Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.

h11 = Um1/Im1, при Um2 = 0.

Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.

h12 = Um1/Um2, при Im1 = 0.

Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.

h21 = Im2/Im1, при Um2 = 0.

Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.

h22 = Im2/Um2, при Im1 = 0.

Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:

Um1 = h11Im1 + h12Um2;
Im2 = h21Im1 + h22Um2.

В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.

Для схемы ОЭ: Im1 = I, Im2 = I, Um1 = Umб-э, Um2 = Umк-э. Например, для данной схемы:

h21э = I/I = β.

Для схемы ОБ: Im1 = I, Im2 = I, Um1 = Umэ-б, Um2 = Umк-б.

Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:

h11∍=rδ+r∍1−α{\displaystyle h_{11\backepsilon }=r_{\delta }+{\frac {r_{\backepsilon }}{1-\alpha }}};

h12∍≈r∍rκ(1−α){\displaystyle h_{12\backepsilon }\approx {\frac {r_{\backepsilon }}{r_{\kappa }(1-\alpha )}}};

h21∍=β=α1−α{\displaystyle h_{21\backepsilon }=\beta ={\frac {\alpha }{1-\alpha }}};

h22∍≈1rκ(1−α){\displaystyle h_{22\backepsilon }\approx {\frac {1}{r_{\kappa }(1-\alpha )}}}.

С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе.
Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.

В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τф. Временем включения транзистора называется τвкл = τз + τф.

Другие виды транзисторов

Основные, уже описанные виды транзисторов, не ограничивают их устройство. Выпускают составные транзисторы (схема Дарлингтона). Их β очень большой и равен произведению коэффициентов обеих транзисторов, поэтому их называют еще “супербета” транзисторами.

Электротехника уже хорошо освоила IGBT-транзисторы (insulated gate bipolar transistor), с изолированным затвором. Затвор полевого транзистора, действительно, изолирован от его канала. Правда, есть вопрос перезарядки его входной емкости при переключениях, так что, без тока и здесь не обходится.

Такие транзисторы используют в мощных силовых ключах: импульсные преобразователи, инверторы и т.д. По входу IGBT очень чувствительны, за счет высокого сопротивления затворов полевых транзисторов. По выходу – дают возможность получать огромные токи и могут быть изготовлены на высокое напряжение. Например, в США есть новая солнечная электростанция, где такие транзисторы в мостовой схеме нагружены на мощные трансформаторы, отдающие энергию в промышленную сеть.

В заключение отметим, что транзисторы, говоря простыми словами, являются “рабочей лошадкой” всей современной электроники. Их используют везде: от электровозов до мобильников. Любой современный компьютер состоит практически из одних транзисторов. Физические основы работы транзисторов хорошо изучены и обещают еще немало новых достижений.

Материалы по теме:

  • Что такое диодный мост — простое объяснение
  • Что такое резистор и для чего он нужен в электрической цепи
  • Для чего нужен транзистор-тестер и что он меряет

Опубликовано:
25.10.2019
Обновлено: 25.10.2019

Виды транзисторов

В первых транзисторах применялся германий, который работал не совсем стабильно. Со временем от него отказалось в пользу других материалов: кремния (самый распространённый) и арсенида галлия. Но все это традиционные полупроводники.

В настоящее время начинают набирать популярность триоды на основе органических материалов и даже веществ биологического происхождения: протеинов, пептидов, молекул хлорофилла и целых вирусов. Биотранзисторы используются в медицине и биотехнике.

Другие классификации транзисторов:

  1. По мощности подразделяются на маломощные (до 0,1 Вт), средней мощности (от 0,1 до 1 Вт) и просто мощные (свыше 1 Вт).
  2. Также разделяются по материалу корпуса (металл или пластмасса), типу исполнения (в корпусе, бескорпусные, в составе интегральных схем).
  3. Нередко их объединяют друг с другом для улучшения характеристик. Такие транзисторы называются составными или комбинированными и могут состоять из двух и более полупроводниковых приборов. Строение и у них простое: эмиттер первого является базой для второго и так далее до необходимого количества триодов. Бывает нескольких типов: Дарлинга (все составляющие с одинаковым типом проводимости), Шиклаи (тип проводимости разный), каскодный усилитель (два прибора, работающие как один с подключением по схеме с общим эмиттером).
  4. К составным относится также и IGBT-транзистор, представляющий собой биполярный, который управляется при помощи полярного триода с изолированным затвором. Такой тип полупроводниковых приборов применяется в основном там, где нужно управлять большим током (сварочные аппараты, городские электросети) или электромеханическими приводами (электротранспорт).
  5. В качестве управления может применяться не ток, а другое электромагнитное воздействие. К примеру, в фототранзисторах в качестве базы используется чувствительный фотоэлемент, а в магнитотранзисторах – материал, индуцирующий ток при воздействии на него магнитного поля.

Технологический предел для транзисторов еще не достигнут. Их размеры уменьшаются с каждым голом, а различные научно-исследовательские институты ведут поиск новых материалов для использования в качестве полупроводника. Можно сказать, что эти полупроводниковые приборы еще не сказали миру своего последнего слова.

Схемы включения

Для корректного применения и подключения БТ нужно знать их классификацию и тип. Классификация биполярных транзисторов:

  1. Материал изготовления: германий, кремний и арсенидогаллий.
  2. Особенности изготовления.
  3. Рассеиваемая мощность: маломощные (до 0,25 Вт), средние (0,25-1,6 Вт), мощные (выше 1,6 Вт).
  4. Предельная частота: низкочастотные (до 2,7 МГц), среднечастотные (2,7-32 МГц), высокочастотные (32-310 МГц), сверхвысокочастотные (более 310 МГц).
  5. Функциональное назначение.

Функциональное назначение БТ делится на следующие виды:

  1. Усилительные низкочастотные с нормированным и ненормированным коэффициентом шума (НиННКШ).
  2. Усилительные высокочастотные с НиННКШ.
  3. Усилительные сверхвысокочастотные с НиННКШ.
  4. Усилительные мощные высоковольтные.
  5. Генераторные с высокими и сверхвысокими частотами.
  6. Маломощные и мощные высоковольтные переключающие.
  7. Импульсные мощные для работы с высокими значениями U.

Кроме того, существуют такие типы биполярных транзисторов:

  1. Р-n-p.
  2. N-p-n.

Watch this video on YouTube

Существует 3 схемы включения биполярного транзистора, каждая из которых обладает своими достоинствами и недостатками:

  1. Общая Б.
  2. Общий Э.
  3. Общий К.

Включение с общей базой (ОБ)

Схема применяется на высоких частотах, позволяя оптимально использовать частотную характеристику. При подключении одного БТ по схеме с ОЭ, а потом с ОБ его частота работы усилится. Эту схему подключения применяют в усилителях антенного типа. Уровень шумов на высоких частотах снижается.

Достоинства:

  1. Оптимальные значения температуры и широкий диапазон частот (f).
  2. Высокое значение Uк.

Недостатки:

  1. Низкое усиление по I.
  2. Низкое входное R.

Включение с общим эмиттером (ОЭ)

При подключении по этой схеме происходит усиление по U и I. Схему можно запитать от одного источника. Часто применяется в усилителях мощности (P).

Достоинства:

  1. Высокие коэффициенты усиления по I, U, P.
  2. Один источник питания.
  3. Происходит инвертирование выходного переменного U относительно входного.

Обладает существенными недостатками: наименьшая температурная стабильность и частотные характеристики хуже, чем при подключении с ОБ.

Включение с общим коллектором (ОК)

Входное U полностью передается обратно на вход, и Кi аналогичен при подключении с ОЭ, но по U он низкий.

Этот тип включения применяют для согласования каскадов, выполненных на транзисторах, или при источнике входного сигнала, который имеет высокое выходное R (микрофон конденсаторного типа или звукосниматель). К достоинствам можно отнести следующие: большое значение входного и малого выходного R. Недостатком является низкий коэффициент усиления по U.

Принцип действия для чайников

Транзистор — это сложный прибор, физические процессы проходящие в котором сложны для понимания начинающим радиолюбителям (чайникам). Как работает транзистор, можно объяснить следующим образом: транзистор — это электронный ключ, степень открывания которого зависит от уровня тока или напряжения, приложенного к его управляемому выводу (база или затвор).

Зачем нужен транзистор, можно описать в обобщённой форме. Например, база (затвор) прибора — это дверь. Она открывается внешним воздействием, т. е. напряжением той же полярности, что и коллектор (исток). Чем больше напряжение, тем дверь больше откроется. Перед дверью стоит очередь людей (носители заряда), которые хотят пробежать через неё (коллектор-эмиттер или исток-сток). Чем больше воздействие на дверь, тем больше она открыта, а значит, и больше пробежит людей.

Поэтому, представляя дверь в виде сопротивления перехода, можно сделать вывод: чем больше воздействие на базу (затвор), тем меньше сопротивление основным носителям заряда (людям) в случае прямой полярности. Если полярность поменяется (дверь закроется на замок), то никакого движения зарядов (людей) не будет.

Originally posted 2018-04-18 12:29:48.

Принцип действия транзистора

В активном режиме работы, транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении. Для определённости рассмотрим npn транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку.

В npn транзисторе электроны, основные носители тока в эмиттере проходят через открытый переход эмиттер-база в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер.

Однако, из-за того что базу делают очень тонкой и очень слабо легированной, большая часть электронов, инжектированная из эмиттера диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб+Iк).

Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк=α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999, чем больше коэффициент, тем лучше транзистор. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер.

В широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β=α/(1-α)=(10-1000). Т.о. изменяя малый ток базы можно управлять значительно большим током коллектора.

Биполярный транзистор – электропреобразовательный полупроводниковый прибор с одним или несколькими электрическими переходами, предназначенный для усиления, преобразования и генерации электрических сигналов. Вся конструкция выполняется на пластине кремния, либо германия, либо другого полупроводника, в которой созданы три области с различными типами электропроводности.

Средняя область называется базой, одна из крайних областей – эмиттером, другая – коллектором. Соответственно в транзисторе два p-n-перехода: эмиттерный – между базой и эмиттером и коллекторный – между базой и коллектором.

Область базы должна быть очень тонкой, гораздо тоньше эмиттерной и коллекторной областей (на рисунке это показано непропорционально). От этого зависит условие хорошей работы транзистора. Транзистор работает в трех режимах в зависимости от напряжения на его переходах.

При работе в активном режиме на эмиттерном переходе напряжение прямое, на коллекторном – обратное. В режиме отсечки на оба перехода подано обратное напряжение. Если на эти переходы подать прямое напряжение, то транзистор будет работать в режиме насыщения.

Типы биполярных транзисторов.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.