Точность лабораторных измерений
Факторы влияющие на старение проводки
Измерения сопротивления необходимо проводить при соответствующих условиях окружающей среды: температура, влажность, наличие пыли и даже освещенность существенным образом влияют как на результаты замеров, так и на работу приборов. Возможно, именно по этой причине считается идеальным проводить все измерения в лабораторных условиях. Тем более что в распоряжении электрика, производящего замер, может быть измерительный прибор MIC-2500. В настоящее время этот прибор считается наиболее точным для проведения описываемых измерений. Как правило, такие приборы проходят тщательную ежегодную проверку и калибровку, поэтому в их точность можно верить.
Основываются они на том, что каждый материал имеет определенную диэлектрическую проницаемость. Достаточно только знать толщину диэлектрика и материал, из которого изготовлена изоляция. Для замера толщины изоляции снимают небольшой ее кусок и с помощью штангенциркуля определяют толщину. А потом уже используется таблица. На пересечении соответствующих колонок можно найти сопротивление изоляции. Такой способ замеров только кажется надежным. В реальности отклонения в расчетах могут быть очень большими, потому что любой материал со временем теряет свои физические свойства. А это значит, что материал изоляции может уже иметь совершенно другие параметры. Пообщавшись с опытным электриком, вы в этом легко убедитесь.
Как измеряется сопротивление
Порядок проверки состояния изоляционного слоя зависит от типа проверяемого электрического проводника. На начальной стадии выполняются идентичные действия:
- Проверяется работоспособность мегаомметра. Понадобится соединить два зажима устройства, и сделать замер. Прибор должен показать ноль. Затем концы проводов измерительного устройства разводятся в сторону, и выполняется замер. Если в результате получится бесконечность, то прибор исправен.
- Измерения ведутся со стороны кабельной линии, где установлено переносное заземление. В процессе работы необходимо использовать диэлектрические перчатки.
- На другом конце кабельной линии следует развести жилы проводника в стороны. Для обеспечения безопасности людей от поражения электрическим током во время проведения испытания, следует поставить человека для предупреждения об опасности.
На завершающем этапе необходимо сравнить полученные результаты с допустимыми значениями, и составить протокол. В нем отражается последовательность выполненных действий, используемые измерительные средства, температурный режим и заключение о состоянии электрического проводника.
Методика измерения сопротивления изоляции высоковольтных силовых кабелей
Прозвонить высоковольтные проводники необходимо с использованием мегаомметра на 2500 В. Последовательность действий следующая:
- Один конец измерительного устройства цепляется к контуру заземления, а второй к фазе «А» кабеля.
- Снимается заземляющий проводник с фазы «А», и делается замер на протяжении 60 секунд.
- Далее понадобится установить заземление на фазу «А», и снять зажим мегаомметра.
- В дальнейшем аналогичные операции проводятся для фаз «В» и «С».
Схема измерения изоляции высоковольтного кабеля
При значительной длине кабельной линии испытания производятся с учетом коэффициента абсорбции. Потребуется зафиксировать показания прибора после 15 и 60 секунд измерений. Отношение значения сопротивления после 60 секунд к показанию после 15 секунд должно быть не менее 1.3. При меньшем значении делается вывод об увлажнении изоляционного слоя. Для устранения неисправности потребуется выполнить сушку проводника.
Методика измерения сопротивления изоляции низковольтных силовых кабелей
Для проведения работ потребуется использовать мегаомметр на 1000 В. После выполнения первоначальных пунктов, необходимо приступить к выполнению следующих мероприятий:
- Делается измерение сопротивления между фазами кабельной линии, соответственно «А»-«В», «В»-«С» и «А»-«С».
- Поочередно проверяется изоляция фаз кабеля относительно нулевого провода (N).
- Далее выполняется поочередные измерения между каждой фазой и заземляющим контуром (PE) при проверке пятижильного проводника.
- Отсоединяется нулевой провод от нулевой шинки и осуществляется измерение между N и PE.
Измерение сопротивления изоляции между жилами кабеля
После каждого испытания следует снимать потенциал посредством установки заземления.
Методика измерения сопротивления изоляции контрольных кабелей
Процесс проверки состояния изоляционного слоя указанной категории токопроводящих жил идентичен предыдущему пункту, за одним исключением. Жилы кабеля, которые не участвуют в проверке, необходимо закоротить и подсоединить к заземляющему контуру.
Нормируемые показатели
Для современных кабельных изделий действующие нормативы по сопротивлению изоляции в режиме проверки постоянным током выглядят следующим образом:
- для силового кабеля, эксплуатируемого в сетях с напряжениями более 1000 Вольт, величина сопротивления строго не нормируется; при этом её рекомендуемое значение должно превышать 10 МОм;
- для образцов кабельной продукции, работающих в сетях с максимумом напряжения до 1000 Вольт, нормируемое сопротивление не должно быть меньше, чем 0,5 МОм;
- для проводных изделий контрольного назначения сопротивление не должна быть менее 1 МОм.
При изучении вопроса о том, какова периодичность проведения испытаний изоляции, необходимо отметить, что этот показатель определяется нормативами, приводимыми в ПТЭЭП.
Дополнительная информация! В наружных электрических сетях, а также в особо опасных помещениях проверка изоляции проводки организуется ежегодно.
Такие же сроки должны соблюдаться и в случаях, когда испытывают проводку промышленного оборудования специального назначения (краны, лифты и тому подобное).
Условия эксплуатации электрических сетей
В процессе эксплуатации электрических сетей происходит воздействие множества различных факторов:
Возможны повреждения, допущенные в ходе проведения ремонтных работ.
Внешнее воздействие погодных условий (повышенной и отрицательной температуры, воздействия солнечных лучей, осадков).
Повышенной нагрузки по причине подключения приборов большой мощности.
Разрушается изоляции электропроводки в результате длительной эксплуатации.
Выявления скрытых дефектов изоляции.
Для выявления повреждений изоляции необходима регламентная ревизия, проводимая строго по графику с осуществлением диагностики состояния электропроводки на объекте.
Протокол замера сопротивления изоляции содержит:
— дата проведенных исследований;
— область и населенный пункт, в котором расположен объект заказчика;
— название собственника строения и самого объекта;
— полный адрес расположения здания, в котором проводились испытания;
— место проведения замеров;
— номер договора между собственником и электролабораторией;
— рабочее напряжение в электрической системе;
— параметры сопротивления изоляции, полученные в ходе испытаний.
Помимо этих данных, профессиональный протокол о проведенных исследованиях в электросистеме должен содержать в себе таблицу, в которой указывают следующую информацию:
— название прибора или кабеля, на котором проводились испытания;
— диаметр сечения кабеля;
— уровень сопротивления изоляции между отдельными жилами кабеля, а также между каждой жилой и землей;
— вывод электроизмерительной бригады.
Важно помнить, что для испытания электрических систем следует использовать только разрешенные измерительные приборы, которые входят в государственный реестр допустимых измерительных средств. Для подтверждения соответствия измерительного устройства законодательству, в отчете принято указывать марку, тип шкалы, модель прибора, его категорию точности, а также дату последнего испытания измерительного устройства
В протоколе об измерениях должны быть перечислены ответственные за испытания лица, то есть, сотрудники измерительной бригады. Все они должны иметь необходимую профессиональную подготовку, высокую квалификацию и требуемый уровень по электрической безопасности.
Принцип работы
Тестирование состояния изоляции, было разработано в начале 20-го века и является старейшим и наиболее широко используемым измерительным процессом в современной электротехнике и проводится согласно государственным стандартами электробезопасности. Это вызвано тем, что даже без видимых повреждений в изоляции кабельных сетей, ее сопротивление может стать недостаточным, чтобы защитить человека от воздействия токов высокого напряжения.
Принцип работы
Факторы, способствующие ухудшению изоляции:
- Температурный. Перепады температур с холодной на горячую, и наоборот с течением времени вызывают растрескивание изоляции.
- Электрический. Все кабели изготавливаются для определенных условий эксплуатации. Нарушений заводских условий использования может подвергнуть кабель к перенапряжению с потерей изоляции своих защитных свойств.
- Физический. Повреждение изоляции из-за нарушений эксплуатации или других неправомерных действий обслуживающего персонала.
- Химический. Моторное масло, грязь и пыль могут оказывать неблагоприятное химическое воздействие на изоляцию проводов.
- Окружающая среда. Этот фактор всегда воздействует на защитное покрытие кабелей: ультрафиолетовые лучи, влажность, снег и природные факторы, что должно учитываться разработчиками кабельной продукции.
Измерение сопротивления
Принцип работы меггера:
- Напряжение для тестирования ручным мегомметром получают путем вращения кривошипа, электронного типа — аккумулятором.
- 500В DC достаточно для выполнения тестирования систем работающих с напряжением до 440 В, а режим 1000 В до 5000 В — для испытаний высоковольтных электрических систем.
- Отклоняющая или токовая катушка соединена последовательно и позволяет пропускать электрический ток, принимаемый проверяемой цепью.
- Катушка управления, подключена к цепи.
- Токоограничивающий резистор (CCR и PCR) соединен последовательно с катушкой управления для защиты от повреждения в случае очень низкого сопротивления во внешней цепи.
- В мегомметре с ручным управлением эффект электромагнитной индукции используется для создания тестового напряжения. По мере увеличения его во внешней цепи, отклонение указателя увеличивается и уменьшается с увеличением тока.
- Работа тестера базируется на принципе омметра. Крутящий момент создается мегомметром из-за магнитного поля, создаваемого напряжением и током, аналогично закону Ома. Крутящий момент мегомметра меняется пропорционально V/I: V = IR или R = V / I, единица 1 Ом.
- Измеряемое электрическое сопротивление подключается через генератор и последовательно с отклоняющей катушкой. Когда проверяемая электроцепь разомкнута, крутящий момент из-за катушки напряжения будет максимальным, а стрелка показывать «бесконечность», что означает отсутствие короткого замыкания во всей цепи и имеет максимальное сопротивление в проверяемой цепи.
Важно! Если имеется КЗ, указатель показывает «ноль», что означает полное отсутствие сопротивление изоляционного покрытия
Измерительные средства
Для проведения испытаний электрического провода или кабеля на целостность изоляции используются специальные приборы, называемые мегомметрами (делают замер высокого сопротивления).
Они работают по принципу воздействия на измеряемую цепь высоковольтным напряжением, формируемым встроенной в устройство схемой.
Современные образцы этих приборов работают от аккумулятора с формирователем высокого напряжения.
Известные модели мегомметров различаются по величине испытательного напряжения, подаваемого на изоляцию проверяемой цепи. Согласно этому показателю они делятся на устройства с номинальными контрольными напряжениями из следующего ряда: 100, 500, 1000 и 2500 Вольт.
Сразу оговоримся, что померить сопротивление изоляционной оболочки с помощью обычного цифрового прибора не представляется возможным. Указанное ограничение объяснятся тем, что изоляция электропроводки обладает высоким сопротивлением и напряжение, выдаваемое прибором в соответствующем режиме, очень мало для оценки защитных свойств оболочки провода.
Мультиметром удаётся проверить лишь целостность оболочки силовых проводов, для чего сначала следует внимательно осмотреть их изоляцию, а затем зачистить места вывода контактных групп.
И только после этого можно будет подсоединять к ним щупы мультиметра, переведённого в режим замера «Ω» (на пределе десятки кОм). При исправной изоляции прибор будет показывать сопротивление в пределах 3,5-10 кОм.
Какие бывают измерения сопротивления изоляции:
Лабораторные измерения проводятся c определенной периодичностью, в случае:
- Приемо-сдаточные испытания;
- Выполняются после того, как завершены все электромонтажные мероприятия (новое строительство или реконструкция).
- Эксплуатационные испытания;
- Проводятся на промышленных или торговых объектах в соответствии с требованиями пожарного надзора, Ростехнадзора, прочих контролирующих организаций, с периодичностью, необходимой для нормального функционирования объекта, согласно ПУЭ.
- Профилактические испытания.
Измерения электрики осуществляются для предотвращения возгорания или поражения человека электрическим током. Периодичность проведения определяется ответственным за электрохозяйство. Профессионально замерить сопротивление изоляции могут только опытные инженеры лаборатории по электрике, имеющие необходимый допуск, к производству электроизмерительных работ.
Также, организация оказывающая услуги электроизмерения обязана иметь действующее Свидетельство о регистрации электролаборатории выданное Ростехнадзором. Свидетельство выдается сроком на 3 года и должно быть актуально на момент исследования.
Нормы сопротивления изоляции для различных кабелей
Встречаются следующие виды электрических проводников:
- Высоковольтные — используются при уровне напряжения более 1 кВ. С их помощью прокладываются линии электропередач, и подается питание на шести киловольтные электродвигатели. Допустимой величиной сопротивления изоляционного слоя считается один мОм на кВ. Например, при уровне напряжения 6 кВ норма составит 6 мОм.
- Низковольтные — используются в электрических схемах напряжением менее 1 кВ. Наиболее часто применяются для прокладки сети освещения, подключения электродвигателей на 220 и 380 В. Минимальный показатель сопротивления для указанных токопроводящих жил — 0.5 мОм.
- Контрольные — предназначены для подключения измерительных приборов, устройств РЗА, а также для формирования схем вторичной коммутации. Для данной категории проводов нижний предел изоляции равняется 1 мОм.
Нормы сопротивления изоляции для различных видов электрооборудования
Конкретные показатели сопротивлений для определенных марок кабеля можно узнать в следующей технической литературе:
- ПУЭ — таблица 1.8.34;
- ПТЭ — таблица 37.
Как производится измерение
Замеры производятся мегаомметром для измерения сопротивления изоляции кабелей
При измерениях сопротивления силовых кабелей всегда нужно учитывать температуру окружающей среды и производить их при температуре не ниже +5.
Такие ограничения введены по той причине, что в кабеле может присутствовать влага, которая при отрицательных температурах превратится в лед, не проводящий электрический ток. Сами замеры производятся мегаомметром, внесенным в госреестр приборов, разрешенных для измерения сопротивления изоляции кабелей и проходящим ежегодную поверку.
Перед началом измерений следует обесточить линию, убедиться в отсутствии напряжения на тестируемом кабеле. Другой конец кабеля отключается от потребителя, жилы его разводятся на максимальное расстояние, а рядом выставляется человек для предотвращения непредвиденных ситуаций. Также вывешиваются запрещающие («Не включать, работают люди!») и указательные («Заземлено») плакаты. Непосредственно измерение производится мегомметром на 2500 В в течении 1 мин в нижеприведенной последовательности:
- Измерение сопротивления между фазными жилами: (А-В, В-С, А-С).
- Между фазными жилами и нулем: (А-N, В-N, С-N).
- В случае. если кабель пятижильный, также замеряют сопротивление между жилами и землей (А-РЕ, В-РЕ, С-РЕ).
- Между нулем и землей, предварительно отключив нуль от шинки (N-PE).
Мегаомметр цифровой 2500 В
По окончания измерений результаты записываются и сравниваются с допустимыми значениями, после чего составляется протокол, в котором отображаются:
- последовательность произведенных действий;
- тип использовавшихся для измерений средств;
- температурный режим.
В конце пишется заключение о состоянии кабелей.
Алгоритм измерения сопротивления изоляции высоковольтных силовых кабелей
Высоковольтными силовыми кабелями называют кабели с напряжением 1000 В и выше. Сопротивление изоляции высоковольтных силовых кабелей должно быть не ниже 10 МОм (10 000 000 Ом).
Высоковольтные силовые кабеля
Условия и подготовка к измерениям такие же, как и при измерении низковольтных силовых кабелей: отключается электропитание и потребители, учитывается температура воздуха (также не ниже +5), вывешиваются плакаты и оставляется человек у другого конца испытуемого кабеля.
Алгоритм измерения высоковольтных кабелей отличается от низковольтного, измерения тут проводят не непосредственно между жилами, а между жилой и землей, предварительно заземлив прочие жилы.
Измерение производится как и в случае проверки низковольтного кабеля мегомметром на 2,5 кВ в нижеприведенной последовательности. Каждое измерение должно длиться по 1 минуте.
- Заземлить все жилы кабеля.
- Один зажим мегомметра подключить на землю, второй — на проверяемую жилу.
- Заземлить проверенную жилу и снять заземление со следующей проверяемой.
Вышеописанные действия повторяются с каждой проверяемой жилой, проверенные при этом нужно обязательно заземлять, делается этого для того. чтобы снять остаточное либо наведенное напряжение. Как и в случае с низковольтным кабелем, данные записываются и протоколируются.
Измерение сопротивления изоляции контрольных кабелей
Контрольными называют кабели, не предназначенные для работы в цепях с большой нагрузкой. В основном они предназначены для работы во вторичных цепях и управления различными коммутационными устройствами — реле, пускателями, а также устройствами контроля и защиты.
Сопротивление изоляции контрольных кабелей должно быть не менее 1 МОм.
Подготовительные работы те же, что и при измерении прочих типов кабеля:
- Отключение питания.
- Проверка отсутствия напряжения.
- Вывешивание табличек) — обязательны!
Измерение производится также мегомметром на 2500 В по тому же алгоритму, что и высоковольтные кабели, единственным отличием является необязательность отключения потребителей. Как и в предыдущих случаях, время измерения сопротивление каждой жилы составляет 1 минуту. По завершении измерительных работ результаты также записываются, а в конце составляется протокол и заключение о допустимости дальнейшей эксплуатации кабеля.
Нормы сопротивления изоляции кабеля
Для сопротивления изоляции кабеля существуют определенные госты, приведенные в данной таблице:
Наименьшее допустимое сопротивление изоляции аппаратов вторичных цепей и электропроводки
Нормы сопротивления изоляции для различных кабелей
- Высоковольтные силовые кабели — сопротивление не нормировано, но не не ниже 10 МОм.
- Низковольтные силовые кабели — не менее 0,5 МОм.
- Контрольные кабели — не ниже 1 МОм.
Правила безопасности при работе с мегаомметром
Во время работы аналоговый мегаомметр генерирует напряжение от 500 до 1 500 вольт. Оно передается через диагностические провода и щупы на кабели и приборы, которые тестирует монтер.
Напряжение более 500 вольт опасно для здоровья и жизни человека. Поэтому работать с тестером изоляции может только профессиональный электромонтер, который прошел инструктаж по технике безопасности и имеет третью и выше группы допуска по электробезопасности.
При работе с мегаомметром соблюдайте следующие правила:
- В приборе может сохраняться остаточный заряд, поэтому перед и после работы его нужно разряжать. Для этого используйте переносное заземление.
- Держать кабели и щупы нужно за изолированные ручки.
- Во время работы пользоваться диэлектрическими перчатками.
- Перед тестированием выключить приборы, обесточить сеть.
- До начала работы вывесить предупредительные знаки, чтобы исключить случайную подачу электричества в сеть посторонними людьми.
Напоследок
Регулярное и своевременное измерение сопротивления изоляции — главное условие надежной, безопасной и длительной эксплуатации всех электроприборов и электрических сетей. Проводить такие работы должны в обязательном порядке специалисты, имеющие большой опыт таких работ и соответствующие разрешительные документы.
Отправьте нам свой вопрос и менеджер ответит Вам в кратчайшие сроки
Измерение сопротивления изоляции электропроводки должно выполняться во время приемо-сдаточных работ; периодически, согласно нормам и установленным правилам, а также после проведения ремонтов сети освещения. При этом производится не только замер сопротивления изоляции между фазных и нулевых проводов, но и сопротивление изоляции между ними и проводником заземления.
Это позволяет вовремя диагностировать и устранять возможные повреждения изоляции, что снижает риск коротких замыканий и пожаров.
Что такое мегаомметр?
Прибор для замера сопротивления изоляции электропроводки называется мегаомметр
. Принцип его действия основан на измерении токов утечки между двумя точками электрической цепи. Чем они выше, тем ниже сопротивление изоляции, и, соответственно, данная электроустановка требует повышенного внимания.
Итак:
На данный момент на рынке представлены мегаомметры двух основных типов. Приборы, работающие от встроенного в прибор генератора, и более современные мегаомметры с наличием аккумулятора.
По типоразмеру мегаомметры можно разделить на устройства с номинальным напряжением в 100В, 500В, 1000В и 2500В
. Самые маленькие мегаомметры применяются для испытания электроустановок до 50В.В зависимости от номинальных нагрузок для цепей напряжением до 660В обычно применяют устройства на 500 или 1000В. Для цепей напряжением до 3кВ — мегаомметры на 1000В, а для электроустановок и проводников большего напряжения приборы на 2500В.
Кто и когда имеет право производить замеры мегаомметром
Приборы замера сопротивления изоляции электропроводки имеют определенные требования по работе с ними. Так для самостоятельной работы мегаомметром в электроустановках до 1000В
вам необходима третья группа допуска по электробезопастности.Итак:
Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) и для электропроводки осветительной сети составляет 1 раз в три года. Такие же нормы действуют для электропроводки офисных помещений и торговых павильонов.
Как работать с мегаомметром?
Для подключения к электрической сети прибор зaмерa сопротивления изоляции электропроводки имеет два вывода длиной до трех метров. Они дают возможность подключать прибор к электрической цепи.
Итак:
- Перед применением мегаомметр должен быть проверен на работоспособность. Для этого сначала закорачиваем выводы прибора накоротко. Затем вращаем ручку генератора и проверяем наличие цепи по показаниям прибора. После этого изолируем выводы друг от друга и проверяем максимально возможные показания на приборе.
- После этого приступаем непосредственно к замерам. Для замеров трехпроводной однофазной цепи последовательность операций должна быть следующей:
- В сети освещения выкручиваем все лампы и отключаем все электроприборы от розеток.
- После этого включаем все выключатели сети освещения.
- Согласно ПБЭЭ (Правил безопасной эксплуатации электроустановок), все работы с мегаомметром должны выполняться в диэлектрических перчатках. Ведь напряжение на выводах прибора — минимум 500В
, поэтому данным требованием не стоит пренебрегать. - Подключаем выводы к фазному и нулевому проводу сети освещения. Производим замер. Согласно ПТЭЭП
, он должен показать значение не меньше 0,5 МОм
.
- После выполнения замера фазный провод следует разрядить, прежде чем прикасаться к нему. Вообще емкость проводников освещения не велика и этот пункт можно бы было опустить, но, в случае наличия в вашей сети больших индуктивных или емкостных сопротивлений, снятие заряда с проводника обязательно, ведь цена невыполнения этого действия, может быть очень велика. Кстати по этой же причине мы не измеряем коэффициент абсорбции изоляции.
- Затем производим такие же замеры по отношению между фазным проводом и заземлением и нулевым проводом и заземлением. Во всех случаях показания должны быть выше 0,5МОм
.
Если необходимо выполнить замер сопротивления изоляции трехфазной цепи, то последовательность операций такая же. Только количество замеров больше, ведь нам необходимо замерить изоляцию между всеми фазными проводниками, нулевым проводом и землей.