Установка ограничителя перенапряжений
Стандартный разрядник B или C (возможно, B + C) состоит из двух компонентов:
- Основа ограничителя
- Сменная вставка с защитным элементом
Основа
Основание защитного устройства установлено на DIN-рейке TS35. Оно имеет два хомута. Подключите провод фазы ( L ) или нейтральный ( N ) на котором может появиться слишком большой электрический потенциал. С другой стороны подсоедините защитный провод PE, который подключен к защитной линии распределительного устройства.
Защитный проводник должен иметь минимальное поперечное сечение 4 мм2, но не повредит взять ещё больше. В конце концов есть вероятность, что будет течь очень высокий ток.
Есть 3 контакта под терминалом PE. По стандарту в комплект входит вилка, которая вставлена в нужное место и позволяет соединять провода. Благодаря этим зажимам есть возможность удаленного уведомления в случае повреждения вставки или ее перегорания. Этот сигнал может быть подключен, например, к входу блока управления сигнализацией (смотрите схему). В этом случае панель управления будет проинформирована о повреждении вставки размыканием электрической цепи между красным и зеленым проводами.
Вставка
Вставка содержит все наиболее важные элементы, благодаря которым защитник правильно функционирует:
- Класс B (тип I) — основным элементом является просто искровой промежуток.
- Класс C (тип II) — здесь деталь варистор является основным элементом.
Кремниевые ограничители напряжения
Для защиты цепей постоянного тока от импульсов ЭП по напряжению применяются полупроводниковые ограничители напряжения, или стабилитроны с несимметричной вольт-амперной характеристикой (рис. 1а). Несимметричность ВАХ обеспечивает защиту от импульсных ЭП определенной полярности на разных потенциальных уровнях. Пороговое напряжение этих приборов ниже напряжения ограничения, что обеспечивает их автоматическое отключение от цепи постоянного тока после прохождения импульса ЭП. Время включения этих приборов меньше времени самых быстрых переходных процессов, что также определяет предпочтительность их применения в цепях постоянного тока.
Отличие защиты цепей питания переменного тока от цепей постоянного тока — в необходимости использования ограничителей напряжения с симметричной ВАХ (рис. 1б).
Для защиты информационных цепей и цепей переменного тока высокой частоты применяются так называемые малоемкостные ограничители напряжения (рис. 1в), в конструкции которых предусматривается встроенный высоковольтный диод с емкостью не более 100 пФ.
В мире выпускается множество типов кремниевых ограничителей напряжения, различающихся по напряжению пробоя (от 0,7 до 3100 В), рассеиваемой импульсной мощности (от 0,15 до 600 кВт), а также по исполнению — симметричные и несимметричные, в металлостеклянных и пластмассовых диодных корпусах, диодных, транзисторных и микросхемных корпусах для поверхностного монтажа, малоемкостные, малоиндуктивные и пр. Объемы продаж ОН ведущими странами — США, Японией, Германией, Францией, Голландией, Китаем — исчисляются сотнями миллионов долларов .
Ограничители напряжения, рассчитанные на напряжения пробоя от 6 до 400 В, способные «срезать» паразитные электромагнитные импульсы с мощностью до 15 кВт, разработаны в различном конструктивном исполнении и выпускаются рядом известных фирм: Thomson CSF, Motorola, General Semiconductors Industries, Inc., Simens и др. .
История развития ОН начинается с создания первых приборов этого класса фирмой General Semiconductors Industries, Inc. (США): в 1968 г. спроектировано устройство для подавления импульсов перегрузки, наводимых грозовыми разрядами в системах дальней связи, в 1969 г. — для подавления переходных процессов в самолетной аппаратуре, в 1974 г. разработана серия приборов для защиты интегральных микросхем, в 1971 г. — симметричные ОН. С 1971 г. ОН используются в военных целях, в 1972 г. они применены для защиты от ЭМИ ядерного взрыва.
По функциональному назначению из массива ОН, созданных зарубежными фирмами, можно выделить несколько самостоятельных видов :
- ОН общего применения с напряжением пробоя (Uпроб) от 0,7 до 3100 В и мощностью (Ри) от 0,15 до 600 кВТ.
- Малоемкостные ОН с емкостью менее 100 пФ, что позволяет использовать их для защиты линий связи с частотой до 100 МГц. Минимизация емкости ОН достигается за счет встроенного в конструкцию ОН малоемкостного высоковольтного (Uпроб~1000 В) диодного кристалла. Простое последовательное включение для этой цели ограничителя напряжения и высоковольтного корпусного диода приводит к возрастанию индуктивного сопротивления.
- Безиндуктивные ОН. Особенно эффективны для защиты от перенапряжений с наносекундной длительностью фронта импульса перегрузки. Исключение собственной индуктивности в такого типа ОН достигается за счет применения в конструкции так называемых контактов Кельвина.
- «Матричные» ОН в микросхемных корпусах.
Конструкция
Кроме основного элемента — варистора с нелинейными характеристиками, ограничитель перенапряжения отличает специальный корпус из фарфора или полимера. Сам варистор изготавливается в большинстве случаев из вилитовых дисков (из особого керамического состава с основой в виде оксидов цинка со специальными добавками). Диски покрываются изолирующей обмазкой и устанавливаются в корпусе.
В зависимости от условий эксплуатации ограничители перенапряжения могут иметь различные исполнения.
- Для установки на линиях электропередач и защиты оборудования на промышленных объектах.
- Защита от пиковых импульсов бытового оборудования дома или квартиры обеспечивается компактными, с привлекательным дизайном устройствами.
На изображении цифрами обозначены следующие конструктивные элементы:
- 1 — корпус;
- 2 — предохранитель, срабатывающий после прохождения импульса напряжения, с параметрами силы тока короткого замыкания;
- 3 — варисторный модуль, легко сменяемый без отключения базового элемента;
- 4 — индикатор, показывающий текущий ресурс работы устройства;
- 5 — насечки на контактных зажимах, увеличивающие плотность и площадь соприкосновения с целью предотвращения оплавления проводов в результате нагрева.
Как подключить УЗИПы в домашних условиях
Правила устройства энергоустановок регламентируют обязательную установку УЗИП в домах, где электроснабжение производится проводами воздушных линий и с относительно длительным периодом наличия гроз. На рынке присутствует большое количество моделей УЗИП таких, например, как ограничители импульсных напряжений ОИН 1, ОПС 1, ОПН — РВ и много других, габариты которых позволяют разместить их во вводном щитке электроснабжения частного дома.
Электроснабжение дома может быть организовано по однофазной или трехфазной схемах. Различными могут быть и организация системы заземления домашней электросети.
На представленном ниже изображении — схема подключения УЗИП в однофазную электрическую схему. Система заземления с двумя нулевыми проводами: один выступает в качестве нейтрального проводника соединенного с землей, а второй используется как защитный провод.
В схеме:
- фаза — обозначена черным проводом;
- нулевой — обозначен синим проводом;
- зеленый — защитный заземляющий провод.
На следующем изображении представлена схема подключения УЗИП в трехфазную электрическую схему. Конструкция устройства защиты и счетчика выполнены для трехфазной сети. Заземление оборудовано по тому же принципу, что и в примере с подключением в однофазную цепь.
В схеме:
- черный провод — первая из трех фаз;
- красный провод — вторая из трех фаз;
- коричневый — третья фаза;
- синий — нулевой заземляющий провод;
- зеленый — защитный провод заземления.
Трехфазная установка
В трехфазной схеме увеличивается ширина ограничителя и количество защищаемых соединений. Однако принцип функционирования ограничителя остается неизменным. Наиболее часто используемые трехслойные системные защитные устройства, работающие в системе 4 + 0, что означает присоединение к разряднику следующих линий:
- 3-фазные провода
- 1 нейтральный провод
Каждый из проводов подлежащих защите имеет равные права, то есть возможные перенапряжения устраняются путем подачи тока на защитную установку и, как результат, на землю.
Конечно для установок TN-C (установка без отдельного защитного провода) можно приобрести защитные устройства только с 3 защищаемыми разъемами. Затем с нижней стороны подключите ограничитель к полосе PEN (нейтральная защита).
Применение
В некоторых случаях оборудование может оказаться под влиянием завышенного, по сравнению с номинальным, напряжения (при грозе или коммутациях электрических цепей). В этом случае возрастает вероятность пробоя изоляции установки. Нелинейные ограничители перенапряжений предназначены для использования в качестве основных средств защиты электрооборудования станций и сетей среднего и высокого классов напряжения переменного тока промышленной частоты от коммутационных и грозовых перенапряжений. Ограничители применяются вместо вентильных разрядников соответствующих классов напряжения и включаются параллельно защищаемому устройству или установке.
Источники возникновения импульсных помех
Импульсная помеха (ИП) создается мгновенным всплеском напряжения в электросети с амплитудой более 4–6 тыс. В. ИП бывают в виде одиночного или множества (пачки) чередующихся импульсов. Это самая распространенная «болезнь» электросетей и наносит непоправимый вред электронным компонентам бытовой техники. Защита от ИП — питание оборудования с помощью сетевых фильтров. Другие системы защиты электрооборудования практически не настроены на защиту от ИП, поэтому не могут ее обеспечить.
Различают источники ИП:
- Природные источники — удары молний поблизости с электросетями (воздушными или подземными), зона действия до 20 км.
- Техногенные источники — процессы коммутации в период оперативного управления системами электропередач (включения/выключения) и аварийных ситуаций на трансформаторных подстанциях.
Согласно оперативным данным, наиболее часто встречаются ИП техногенного характера, что объяснимо уровнем изношенности сетей и большой потребительской нагрузкой.
Как работает защитник от перенапряжений
Защитой обеспечиваются устройства, питаемые от шнуров сети 220V, подключенных к разряднику в распределительной коробке. Это касается как фазных, так и нейтральных проводников (в зависимости от выбранного типа защиты).
Общее правило заключается в том, что на одной стороне защитного устройства соединяем фазные проводники и, возможно, нейтральный проводник, а с другой стороны — защитный провод.
Когда напряжение в системе в норме, сопротивление между проводами очень велико, порядка нескольких ГигаОм. Благодаря этому ток не течет через разрядник.
Когда происходит скачок напряжения в сети, ток начинает протекать через ограничитель на землю.
В защитных устройствах класса B основным элементом является искровой промежуток. При нормальной работе сопротивление его очень велико. В случае искрового промежутка это сопротивление является гигантским, поскольку искровой промежуток это фактически разрыв цепи. Когда молния ударяет в элемент электрической установки напрямую, сопротивление искрового промежутка падает почти до нуля благодаря электрической дуге. Из-за появления очень большого электрического потенциала в искровом промежутке между ранее разделенными элементами создается электрическая дуга.
Благодаря этому, например, фазовый провод, в котором имеется большой всплеск напряжения и защитный провод, создают короткое замыкание и большой ток протекает прямо на землю, минуя внутреннюю электрическую установку. После разряда искровой промежуток возвращается в нормальное состояние — то есть разрывает цепь.
Ограничитель класса C имеет внутри варистор. Варистор представляет собой специфический резистор, который обладает очень высоким сопротивлением при низком электрическом потенциале. Если в системе происходит скачок напряжения из-за разряда, его сопротивление быстро уменьшается вызывая протекание тока на землю и аналогичную ситуацию, как в случае искрового промежутка.
Разница между классом B и классом C заключается в том, что последний способен ограничивать всплески напряжения с меньшим потенциалом, чем прямой удар молнии. Недостатком этого решения является довольно быстрый износ варисторов.
Устройство
Если посмотреть на фото ограничителя от перенапряжения, то можно быстро разобраться даже на глаз во многих частях, из которых он состоит. Во главе угла тут варистор, который берет на себя роль переменного нелинейного резистора. Их в составе несколько штук. Все они размещаются в корпусе, которые выполнен из фарфоровой части и полимеров высокой прочности.
По конструкции ОПН создается таким образом, чтобы вся система была полностью безопасна от возгораний и взрывов. Особенно это характерно в моменты, когда происходит замыкание.
Очень многое в данном случае зависит от того, куда вы хотите поставить этот прибор. Из-за этого фактора подбираются виды ограничителей перенапряжения. Есть те, кто созданы для защитных функций на линиях электропередач и на оборудовании громоздких промышленных объектах.
Если же говорим про приборы, используемые в квартирах, частных домах и дачах, то они компактны. Их главная функция – предохранение электрических устройств от пиковых показателей.
У них всегда есть удобные крепежные элементы, да и над дизайном уже стали неплохо работать, хотя обычно это элементы находятся далеко от человеческих глаз. Уже есть специальные пульты дистанционного управления и индикаторы, которые влияют на режимы работы.
Что входит в модульный ограничитель:
- Корпус
- Предохраняющая часть
- Сменный варистор
- Указывающий износ модуль варистора
- Зажимные насечки
- Принципы работы
Некоторые технические характеристики опн вам уже известны, а вот принципы их жизнедеятельности не совсем. Вольтамперные характеристики (ВАХ) действуют нелинейно у варисторов. Для их трудоспособности необходим материал с примесями окиси цинка и оксидами иных металлов.
Резистор находится в состоянии покоя, когда напряжение соответствует значениям по номиналу. В варисторах совсем незначительные величины, что объясняется характером емкости.
Если возникает какой-то импульс, который может в конечном итоге привести к поломке изоляционных свойств, то ОПН переносит серьезные колебания тока. Перенапряжения не происходит, а величина в электрооборудовании быстро снижается до безопасных величин.
5.7. Выбор типа ограничителя.
5.7.1. Выбор типа ограничителя осуществляют в
соответствии с определенными в пп. — . значениями параметров ОПН.
5.7.2. Для случая установки ОПН в районах с
повышенной гололедно-ветровой нагрузкой, где возможны частые обрывы проводов,
необходимо проверить выбранный тип ОПН на устойчивость к воздействию
квазиустановившегося перенапряжения, возникшего в результате неполнофазного
режима.
Если при обрыве
провода длина ВЛ, присоединенная к трансформатору менее величины
, где
IХХ % — ток холостого
хода в %,
SН, UН — номинальные
мощность и напряжение трансформатора.
С1 —
погонная емкость прямой последовательности [мкф/км], то перенапряжения не
превышают величины линейного напряжения и не представляют опасности для
электрооборудования.
Если L > LПР, то повышение
напряжение определяется по изложенной ниже методике.
На рис.
приведена обобщенная зависимость фазного напряжения на линии UФЛ от тока
намагничивания трансформатора Im с изолированной
нейтралью при обрыве фазы этой линии (отпайки от нее). Параметры зависимости
приведены в о.е.: напряжения — по отношению к номинальному напряжению
трансформатора и тока по отношению к номинальному току намагничивания
трансформатора (току холостого хода).
По двум точкам
строят зависимость напряжения на емкости линии U`ФЛ, рассчитывая ее
значения по формуле:
U`ФЛ = Imн´ I*mн/Y ´ L ´ UФН, о.е
где Y — удельная
проводимость линии по нулевой последовательности, сим;
L — длина линии от места обрыва до
трансформатора, км;
Imн — номинальный ток намагничивания
трансформаторов, А;
I*mн — номинальный ток
намагничивания, о.е. по отношению к номинальному току трансформатора, о.е. — из
рис. ;
UФН — номинальное
фазное напряжение трансформатора, кВ.
Пересечение
построенной прямой U`ФЛ с обобщенными
зависимостями UФЛ дает значение
установившегося перенапряжения на линии. Эти перенапряжения могут существовать
несколько часов.
По зависимости
«допустимые повышения напряжения — время» (Приложение ) для случая без предварительного
нагружения энергией при длительности 11000 сек определяют значение Кt, рассчитывают U**НРО
= Uy/Кt. Полученное
значение U**НРО сравнивают с
выбранным в п. . UНРО.
Если UНРО³ U**НРО, то выбранный тип ОПН удовлетворяет
всем условиям.
Если UНРО£ U**НРО, то выбирают ОПН с новым UНРО, удовлетворяющим
условию:
UНРО³ U**НРО.
Для вновь выбранного UНРО проводят
проверку остающегося напряжения по п. .
.
Особенности выбора ОПН для защиты от грозовых перенапряжений.
6.1. Для защиты от грозовых перенапряжений
ограничитель должен быть установлен там, где в соответствии с рекомендациями ПУЭ должен быть
установлен вентильный разрядник.
6.2. Ограничитель должен быть отстроен от
работы при перенапряжениях, вызванных однофазными дуговыми замыканиями на
землю. Это требование выполняется при условии, если величина остающегося
напряжения на ограничителе при импульсе тока 30/60 мкс с амплитудой 500 А не
менее приведенных в таблице значений.
3 |
6 |
10 |
15 |
20 |
35 |
|
Напряжение |
9,0 |
18 |
29 |
43 |
59 |
99 |
В этом случае
пропускная способность ограничителя (I2000) должна быть не
менее 250 А.
6.3. Если параметры ограничителя по
условиям выбора защитного уровня при грозовых перенапряжениях не удовлетворяют
требованиям п. ., то
энергоемкость и наибольшее длительно допустимое рабочее напряжение ограничителя
выбирают с учетом его работы при однофазном дуговом замыкании (ОДЗ), (см. п. , ).
6.4. Наибольшее длительно допустимое
рабочее напряжение ограничителя, устанавливаемого на выводах электрических машин,
присоединенных к ВЛ, выбирают в зависимости от времени существования
однофазного замыкания на землю и характеристики «допустимое повышение
напряжения — время» ОПН.