Последовательность диагностики
Первым делом рекомендуется сразу обращать внимание на состояние щеток, проводки. Нагар на токоведущих частях говорит о ненормальных режимах работы двигателя
Сами токосъемники должны быть ровными, без сколов и трещин. Царапины также приводят к искрению, что для обмоток двигателя губительно.
У стиральных машинок часто ротор перекашивается, из-за этого происходит скол или поломка ламелей. Управляющая плата постоянно отслеживает положение ротора через или тахогенератор, добавляя или уменьшая приложенное на рабочую обмотку напряжение. Отсюда появляется сильный шум при вращении, искрение, нарушение режимов работы при отжиме.
Такое явление можно заметить только при отжиме, а режим стирки проходит стабильно. Диагностика работы машинки не всегда проходит через анализ состояния электрической части. Механика может быть причиной неправильной работы. Без нагрузки двигатель может крутиться вполне равномерно и стабильно набирать обороты.
Как определить неисправность
На представленных фото обмотки электродвигателей видно, что нередко поломку можно заметить невооруженным взглядом: провода плавятся, чернеют, присутствует влага, запах гари, сломанные детали. В случае обнаружения неприятных признаков сомнения о необходимом ремонте отпадают, а движок отправляется в ремонтную мастерскую.
Помимо осмотра существуют и другие способы, как проверить обмотку электродвигателя, если отсутствуют внешние “симптомы”. Для этого требуется специальный прибор, который в домашних условиях можно заменить обычным мультиметром. К примеру, сообщить о проблемах с обмоткой может следующее:
Сравнить токи на фазах двигателя под нагрузкой (если механизм исправен, то значения будут одинаковыми).
Измерить показатели на различных значениях тока на каждом участке с обмоткой, занести сведения в таблицу или представить в виде графика. Сравнить данные, которые в нормальном режиме не должны иметь сильные отклонения от единой схемы.
Как узнать частоту вращения вала двигателя
Для определения частоты по первому способу вам потребуется обычный китайский стрелочный мультиметр (аналоговый, не электронный!).
Определять частоту нужно при положении переключателя мультиметра в режиме измерения тока (100мА). Далее подключаете измерительные щупы в соответствующие разъемы:
один в COM (общий)
другой в V, Ом, мА (замер напряжения, сопротивления, тока)
Вскрываете распредкоробку БРНО (блок расключения начала обмоток движка).
Обязательно отключаете питание и проверяете на клеммах отсутствие напряжения!
После этого одним щупом дотрагиваетесь до начала обмотки (любой), а другим до провода, являющегося концом этой же обмотки. Чтобы ничего не перепутать ориентируйтесь по обозначениям на бирках.
Вручную медленно проворачиваете вал на один оборот. В этот момент стрелка на мультиметре начнет отклоняться от своего нулевого значения.
Причем несколько раз. Вам нужно посчитать количество таких отклонений. Что это в итоге дает?
Дело в том, что количество отклонений на один оборот вала соответствует количеству полюсов и напрямую связано с синхронной частотой вращения двигателя (1500 об/мин, 3000 об/мин и т.д.)
Вот таблица такой зависимости:
Помимо такого простейшего есть и более технологичный способ определения частоты вращения вала.
Как произвести обмотку
Пошаговая инструкция для обмотки двигателя выглядит следующим образом:
- Произвести осмотр механизма по представленным выше схемам, выявить проблемные участки, наметить фронт работы.
- Приготовить расходные материалы (подходящий вид проволоки, изоляции и соединяющей пропитки).
- Подготовить к работе кантователь (станок для намотки).
- Надежно зафиксировать на машине стартер движка.
- Произвести соответствующую намотку.
- Густо обработать всю поверхность пропиточным средством.
- Установить изоляционный слой.
- Пропитать изоляцию.
- Высушить устройство в специальном сушильном шкафу.
- Проверить качество произведенной обмотки.
Обмотка электродвижка – это важный элемент системы, обеспечивающий непрерывную и равномерную подачу тока от стартера до всех остальных частей мотора. Ее повреждение ставит под угрозу всю работоспособность устройства, а несвоевременный ремонт способен и вовсе погубить механизм.
Регулярная диагностика позволит сразу определить неполадку, устранить ее, тем самым повысив срок службы двигателя.
Тип соединения «звезда-треугольник»
В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.
Двигатели с повышенной мощностью обладают большими пусковыми токами, и как следствие при пуске часто вызывают перегорание предохранителей, отключению автоматов. Для снижения линейного напряжения в обмотках статора применяют автотрансформаторы, универсальные дросселя, пусковые реостаты или соединение типа «звезда».
Схемы подключения звездой и треугольником
В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».
В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.
Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.
Основные преимущества комбинации:
- Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
- Возможность создания двух уровней мощности.
Условия для подключения электродвигателя
Основным условием для нормальной работы трехфазных двигателей является стабильность напряжения и тока в каждой из фаз электрической сети. Обрыв хотя бы одной фазы приведет к тому, что двигатель потеряет значительную часть мощности и при нагрузке на валу свыше 50 % нормативной остановится и выйдет из строя. Пуск на двух фазах возможен только при полном отсутствии нагрузки и только в то время, когда ротор сохраняет хотя бы небольшую угловую скорость.
Асинхронный двигатель
К сведению! В момент пуска асинхронный двигатель потребляет ток, в 3-5 раз превышающий номинальный до тех пор, пока ротор не наберет определенные обороты. Это явление исходит из принципа работы двигателя.
Таким образом, если в рабочем режиме ток двигателя позволяет использовать обычные автоматические выключатели, то для обеспечения нормального пуска коммутацию следует производить через мощный контактор (магнитный пускатель).
Магнитный пускатель
В отдельных случаях возможно подключение трехфазного двигателя в бытовую однофазную сеть. При этом сильно падают мощностные характеристики. Такая ситуация возникает очень часто, когда необходимо использовать промышленный привод в бытовых условиях. Используя специальную схему включения, обеспечивают нормальную работу мотора с учетом снижения мощности.
Схема подключения электродвигателя 380 на 220 вольт с конденсатором
Есть еще один вариант подключения электродвигателя мощность в 380 Вольт, который приходит в движение без нагрузки. Для этого также необходим конденсатор в рабочем состоянии.
Один конец подключается к нулю, а второй — к выходу треугольника с порядковым номером три. Чтобы изменить направление вращения электромотора, стоит подключить его к фазе, а не к нулю.
Схема подключения электродвигателя 220 вольт через конденсаторы
В случае когда мощность двигателя более 1,5 Киловатта или он при старте работает сразу с нагрузкой, вместе с рабочим конденсатором необходимо параллельно установить и пусковой. Он служит увеличению пускового момента и включается всего на несколько секунд во время старта. Для удобства он подключается с кнопкой, а все устройство — от электропитания через тумблер или кнопку с двумя позициями, которая имеет два фиксированных положения. Для того чтобы запустить такой электромотор, необходимо все подключить через кнопку (тумблер) и держать кнопку старта, пока он не запустится. Когда запустился – просто отпускаем кнопку и пружина размыкает контакты, отключая стартер
Специфика заключается в том, что асинхронные двигатели изначально предназначаются для подключения к сети с тремя фазами в 380 В или 220 В.
Важно! Для того чтобы подключить однофазный электромотор в однофазную сеть, необходимо ознакомиться с данными мотора на бирке и знать следующее:
Р = 1,73 * 220 В * 2,0 * 0,67 = 510 (Вт) расчет для 220 В
Р = 1,73 * 380 * 1,16 * 0,67 =510,9 (Вт) расчет для 380 В
По формуле становится понятно, что электрическая мощность превосходит механическую. Это необходимый запас для компенсации потерь мощности при старте — создании вращающегося момента магнитного поля.
Существуют два типа обмотки — звездой и треугольником. По информации на бирке мотора можно определить какая система в нем использована.
Как отличить на однофазном двигателе
Однофазные двигатели оснащаются двумя типами обмотки для того, чтобы их ротор мог вращаться, поскольку только одной для этого недостаточно. Поэтому перед подключением двигателя необходимо разобраться, какой моток является основным, а какой вспомогательным. Сделать это можно несколькими способами.
По цветовой маркировке
К какому типу относится конкретный моток, можно определить по цветовой маркировке во время визуального осмотра двигателя. Как правило, красные провода относятся к рабочему типу, а вот синие – вспомогательному.
Но во всех правилах есть свои исключения, поэтому всегда необходимо обращать внимание на бирку электродвигателя, на которую наносится расшифровка всех маркировок
Однако если двигатель уже был в ремонте или на нем отсутствует бирка, данный способ проверки является не эффективным. В первом случае во время ремонтных работ могло полностью поменяться внутреннее содержимое мотора, а во втором – нет возможности безошибочно расшифровать цветные обозначения. К тому же иногда маркировка может вообще отсутствовать. Поэтому в таких ситуациях, лучше прибегнуть к другому, более достоверному способу.
По толщине проводов
Толщина проводов, которые выходят из электромашины небольшой мощности, поможет отличить пусковую катушку от рабочей. Поскольку вспомогательная работает непродолжительное время и не испытывает серьезной нагрузки, то провода, относящиеся к ней, будут более тонкими.
Но даже если она бросается в глаза, опираться только на это не стоит. Поэтому многие всегда измеряют сопротивление проводов.
При помощи мультиметра
Мультиметр – специальный прибор, позволяющий измерить сопротивление проводов, а также их целостность. Для этого необходимо следовать следующему алгоритму:
- Возьмите мультиметр и выберите нужную функцию.
- Снимите изоляцию с проводов двигателя, и соедините два любые из них со щупами прибора. Так происходит замер силы сопротивления между двумя проводами мотора.
- Если на экране прибора не появилось никаких числовых значений, то необходимо заменить один из проводов, и после этого повторить процедуру. Полученные показания будут относиться к выводам одного мотка.
- Подключите щупы измерительного прибора к оставшимся жилам и зафиксируйте показания.
- Сравните полученные результаты. Электропровода с более сильным сопротивлением будут относиться к пусковой катушке, а с более слабым – к рабочей.
После того, как замеры будут определены и станет понятно, какие электропровода к какой катушке относятся, рекомендовано промаркировать их любым удобным способом. Это позволит в дальнейшем пропускать процедуру измерения сопротивления при подключении двигателя.
Отличить, где находиться пусковая, а где рабочая обмотка однофазного мотора, можно несколькими способами. Однако наиболее действенным из них является измерение сопротивления электропроводов, отходящих из электромотора малой мощности, с помощью мультиметра.
Первым делом нужно определить обмотки двигателя
Названия обмоток тоже абсолютно условны. Хотя, если принимать в расчёт такое понятие, как фазировка, то правильное включение дает точное представление о том, в какую сторону будет вращаться вал двигателя и не более того. Выставляете мультиметр в режим , один щуп прикладываете к любому из шести проводов, вторым щупом находите конец, который будет прозваниваться. И эту пару звонящихся концов маркируете. Пусть это будут U1 и U2. Остается четыре конца. Повторяете операцию и еще одну пару снова маркируете. Пусть это будут V1 и V2. Осталась еще пара концов, их проверяете на всякий случай, чтобы быть уверенными, что обмотка в исправном состоянии и тоже маркируете оставшимися маркерами W1 и W2. Теперь у вас есть три обмотки и вы знаете их выводы. Но не знаете, где начало, а где конец каждой обмотки. Другими словами, вы не знаете, как направлены магнитные потоки этих обмоток согласно имеющейся маркировке, поскольку она сейчас носит случайный характер.
Статор асинхронного двигателя
Статор асинхронного двигателя представляет из себя сердечник, состоящий из пластин электротехнической стали и содержащий в себе медные обмотки, которые определенным образом уложены в пазах статора.
Как было упомянуто, сердечник статора состоит из пластин, которые изолированы друг от друга. С внутренней стороны статора есть пазы
в которые укладывается изоляция
Далее в эти пазы наматывается медный лакированный провод определенным образом, который представляет из себя обмотки статора
Асинхронный двигатель имеет три “куска” медного провода
Которые определенным образом уложены в пазы статора под углом в 120 градусов друг относительно друга.
Все 6 концов обмоточных проводов выведены в клеммную коробку, которая находится на корпусе двигателя.
Статор двигателя, а точнее, размеры сердечника, количество катушек в каждой обмотке и толщина моточного провода из которого намотаны катушки определяют основные параметры двигателя. Например, от числа катушек в каждой обмотке зависит номинальное число оборотов двигателя, а от толщины провода, которым они намотаны, зависит номинальная мощность двигателя. Количество обмоток для трехфазного асинхронного двигателя всегда равно трем. А вот количество катушек в каждой из этих обмоток разное. Катушки могут наматывать в один или два провода. Учитывая, что номинальное число оборотов двигателя обратно пропорционально номинальной нагрузке, можно смело сказать, что скорость вращения вала асинхронного двигателя будет уменьшаться при увеличении нагрузки. Если при работе двигателя начнут уменьшаться его обороты из-за роста нагрузки, то не остановка этого процесса может привести к полной остановке двигателя. Двигатель начнет сильно гудеть, вал ротора не будет крутиться – возникнет сильный нагрев катушек, с последующим разрушением изоляции моточного провода, что приведет к короткому замыканию и возгоранию обмоток.
Реальное фото статора одного из асинхронного двигателя выглядит вот так.
Типы однофазных моторов
Различают бифилярный и конденсаторный механизм.
- Бифилярный пуск
Бифилярная обмотка не используется при постоянном режиме. Иначе значение КПД снижается. Набирая обороты, она обрывается. Обмотка пуска включается на несколько секунд. Расчет работы по 3 секунды до 30 раз в 60 минут. Превышение запусков могут привести к перегреву витков.
- Конденсаторный пуск
Фаза расщепленная, цепь вспомогательной обмотки включается во время запуска. Для достижения пускового момента необходимо создать круговое магнитное поле. Использование конденсатора обеспечивает лучший пусковой момент. Двигатели с включенными конденсаторами в цепи являются конденсаторными. Работают на основе вращения поля магнитов. У конденсаторного устройства две катушки, которые всегда под напряжением.
Как определить мощность электродвигателя?
При отсутствии техпаспорта или бирки на двигателе возникает вопрос: как узнать мощность электродвигателя без таблички или технической документации? Самые распространенные и быстрые способы, о которых мы расскажем в статье:
- По диаметру и длине вала
- По габаритам и крепежным размерам
- По сопротивлению обмоток
- По току холостого хода
- По току в клеммной коробке
- С помощью индукционного счетчика (для бытовых электродвигателей)
Определение мощности двигателя по диаметру вала и длине
Простейшие способы определения мощности и марки двигателя – габаритные размеры – вал или крепежные отверстия. В таблице указаны длины и диаметры валов (D1) и длина (L1) для каждой модели асинхронного промышленного трехфазного мотора. Перейти к подробным габаритным размерам электродвигателей АИР
Р, кВт |
3000 об. Мин |
1500 об. мин |
1000 об. мин |
750 об. мин |
||||
D1, мм |
L1, мм |
D1, мм |
L1, мм |
D1, мм |
L1, мм |
D1, мм |
L1, мм |
|
1,5 |
22 |
50 |
22 |
50 |
24 |
50 |
28 |
60 |
2,2 |
24 |
28 |
60 |
32 |
80 |
|||
3 |
24 |
32 |
80 |
|||||
4 |
28 |
60 |
28 |
60 |
38 |
|||
5,5 |
32 |
80 |
38 |
|||||
7,5 |
32 |
80 |
38 |
48 |
110 |
|||
11 |
38 |
48 |
110 |
|||||
15 |
42 |
110 |
48 |
110 |
55 |
|||
18,5 |
55 |
60 |
140 |
|||||
22 |
48 |
55 |
60 |
140 |
||||
30 |
65 |
|||||||
37 |
55 |
60 |
140 |
65 |
75 |
|||
45 |
75 |
75 |
||||||
55 |
65 |
80 |
170 |
|||||
75 |
65 |
140 |
75 |
80 |
170 |
|||
90 |
90 |
|||||||
110 |
70 |
80 |
170 |
90 |
||||
132 |
100 |
210 |
||||||
160 |
75 |
90 |
100 |
210 |
||||
200 |
||||||||
250 |
85 |
170 |
100 |
210 |
||||
315 |
– |
– |
Проверить мощность по габаритам и крепежным размерам
Таблица подбора мощности двигателя по крепежным отверстиям на лапах (L10 и B10):
Р, кВт |
3000 об. |
1500 об. |
1000 об. |
750 об. |
||||
L10, мм |
B10, мм |
L10, мм |
B10, мм |
L10, мм |
B10, мм |
L10, мм |
B10, мм |
|
1,5 |
100 |
125 |
100 |
125 |
125 |
140 |
140 |
160 |
2,2 |
125 |
140 |
140 |
160 |
190 |
|||
3 |
125 |
140 |
112 |
160 |
190 |
|||
4 |
112 |
160 |
140 |
216 |
||||
5,5 |
140 |
190 |
216 |
178 |
||||
7,5 |
190 |
216 |
178 |
254 |
||||
11 |
178 |
216 |
178 |
254 |
210 |
|||
15 |
254 |
254 |
210 |
241 |
279 |
|||
18,5 |
210 |
210 |
241 |
279 |
267 |
318 |
||
22 |
203 |
279 |
203 |
279 |
267 |
318 |
310 |
|
30 |
241 |
241 |
310 |
311 |
356 |
|||
37 |
267 |
318 |
267 |
318 |
311 |
356 |
406 |
|
45 |
310 |
310 |
406 |
349 |
||||
75 |
311 |
406 |
311 |
406 |
368 |
457 |
419 |
457 |
90 |
349 |
349 |
419 |
406 |
508 |
|||
110 |
368 |
457 |
368 |
457 |
406 |
508 |
547 |
|
132 |
419 |
419 |
457 |
610 |
355 |
|||
160 |
406 |
508 |
406 |
508 |
610 |
355 |
||
200 |
457 |
457 |
560 |
610 |
||||
250 |
610 |
355 |
610 |
355 |
560 |
610 |
||
315 |
630/800 |
686/630 |
– |
– |
Для фланцевых электродвигателей
Таблица для подбора мощности электродвигателя по диаметру фланца (D20) и диаметру крепежных отверстий фланца (D22)
P, кВт |
3000 об. |
1500 об. |
1000 об. |
750 об. |
||||
D20, мм |
D22, мм |
D20, мм |
D22, мм |
D20, мм |
D22, мм |
D20, мм |
D22, мм |
|
1,5 |
165 |
11 |
165 |
11 |
215 |
14 |
215 |
14 |
2,2 |
215 |
14 |
265 |
|||||
3 |
215 |
14 |
365 |
|||||
4 |
265 |
300 |
19 |
|||||
5,5 |
265 |
300 |
19 |
|||||
7,5 |
265 |
300 |
19 |
|||||
11 |
300 |
19 |
||||||
15 |
350 |
|||||||
18,5 |
350 |
400 |
||||||
22 |
350 |
350 |
400 |
|||||
30 |
500 |
|||||||
37 |
400 |
400 |
500 |
|||||
45 |
400 |
|||||||
55 |
500 |
500 |
550 |
24 |
||||
75 |
500 |
550 |
24 |
|||||
90 |
500 |
28 |
||||||
110 |
550 |
24 |
550 |
24 |
28 |
|||
132 |
550 |
680 |
||||||
160 |
550 |
28 |
28 |
680 |
||||
200 |
550 |
740 |
24 |
|||||
250 |
680 |
680 |
740 |
24 |
– |
|||
315 |
680 |
– |
Расчет по току
Электродвигатель подключается к сети и замеряется напряжение. С помощью амперметра поочередно замеряем ток в цепи каждой из обмоток статора. Сумму потребляемых токов умножаем на фиксированное напряжение. Полученное число – мощность электродвигателя в ваттах.
Как проверить мощность электродвигателя по току холостого хода
Проверить мощность по току холостого хода можно с помощью таблицы.
Р двигателя, кВт |
Ток холостого хода (% от номинального) |
||||
Обороты двигателя, об/мин |
|||||
600 |
750 |
1000 |
1500 |
3000 |
|
0,75-1,5 |
85 |
80 |
75 |
70 |
50 |
1,5-5,5 |
80 |
75 |
70 |
65 |
45 |
5,5-11 |
75 |
70 |
65 |
60 |
40 |
15-22,5 |
70 |
65 |
60 |
55 |
30 |
22,5-55 |
65 |
60 |
55 |
50 |
20 |
55-110 |
55 |
50 |
45 |
40 |
20 |
Расчет по сопротивлению обмоток
Соединение звездой. Измеряем сопротивление между выводами (1-2, 2-3, 3-1). Делим на 2 – получаем сопротивление одной обмотки. Мощность одной обмотки расчитывается так: P=(220V*220V)/R. Цифру умножаем на 3 (количество обмоток) – получаем мощность двигателя.
Соединение треугольником. Измеряем сопротивление в начале и в конце каждой обмотки. По той же формуле определяем мощность и умножаем на 6.
Статья о схемах подключения электродвигателей к сети
Если нет возможности определить мощность двигателя самостоятельно
Мы все же рекомендуем доверить определение мощности электродвигателя или подбор профессионалам. Это существенно сэкономит Ваше время и позволит избежать досадных ошибок в эксплуатации оборудования.
Сервисный центр «Слобожанского завода» – профессиональный подбор двигателя, дефектовка, капитальный и текущий ремонт и перемотка электродвигателей любых типов и любой мощности. Доверяйте профессионалам.
Выводы асинхронного двигателя. Маркировка выводов асинхронного двигателя
Встречаются различные маркировки выводов обмоток двигателя. Отечественная маркировка от С1 до С6 и международная, которую вы видите на рисунке.
В наше время встречаются обе маркировки, но для «обучения» мы будем применять новые обозначения, как более наглядные. Ранее, я уже говорил, что понятия абсолютно условные, главное условие, которое играет важную роль это такое соединение обмоток, когда магнитные потоки не направлены встречно. Если два одинаковых потока направить встречно, они как бы уничтожают друг друга. Нам же надо получить согласованное направление магнитных потоков. В двигателе находятся три обмотки. Грубо говоря, двигатель, это трансформатор с тремя обмотками и сердечником в виде статора. Таким образом, обмотки в двигателе связывает магнитный поток, который протекает по статору, а его создает ток, который протекает по обмоткам. Ротор – это лишь приятная «вкусняшка», наличие которой позволяет получить из электрической энергии механическую.