Расчет и подбор сопротивления для светодиода

Схемы соединения

При последовательной схеме расстановки светодиодов, когда они располагаются один за одним, обычно хватает одного резистора, если получится правильно рассчитать его сопротивление. Это объясняется тем, что в электрической цепи имеется один и тот же ток
, в каждом месте установки электрических приборов.

Но в случае параллельного соединения, для каждого светодиода требуется свой резистор. Если пренебречь этим требованием, то все напряжение придётся тянуть одному, так называемому «ограничивающему» светодиоду, то есть тому, которому необходимо наименьшее напряжение. Он слишком быстро выйдет из строя
, при этом напряжение будет подано на следующий в цепи прибор, который точно так же скоропостижно перегорит. Такой поворот событий недопустим, следовательно, в случае параллельного подключения какого-либо числа светодиодов требуется использование такого же количества резисторов, характеристики которых подбираются расчётом.

Другие варианты подключения

В предыдущих схемах защитный диод был включен встречно-параллельно, однако его можно разместить и так:

Это вторая схема включения светодиодов на 220 вольт без драйвера. В этой схеме ток через резистор будет в 2 раза меньше, чем в первом варианте. А, следовательно, на нем будет выделяться в 4 раза меньше мощности. Это несомненный плюс.

Но есть и минус: к защитному диоду прикладывается полное (амплитудное) напряжение сети, поэтому любой диод здесь не прокатит. Придется подобрать что-нибудь с обратным напряжением 400 В и выше. Но в наши дни это вообще не проблема. Отлично подойдет, например, вездесущий диод на 1000 вольт — 1N4007 (КД258).

Не смотря на распространенное заблуждение, в отрицательные полупериоды сетевого напряжения, светодиод все-таки будет находиться в состоянии электрического пробоя. Но благодаря тому, что сопротивление обратносмещенного p-n-перехода защитного диода очень велико, ток пробоя будет недостаточен для вывода светодиода из строя.

Внимание! Все простейшие схемы подключения светодиодов в 220 вольт имеют непосредственную гальваническую связь с сетью, поэтому прикосновение к ЛЮБОЙ точке схемы — ЧРЕЗВЫЧАЙНО ОПАСНО!

Для уменьшения величины тока прикосновения нужно располовинить резистор на две части, чтобы получилось как показано на картинках:

Благодаря такому решению, даже поменяв местами фазу и ноль, ток через человека на «землю» (при случайном прикосновении) никак не сможет превысить 220/12000=0.018А. А это уже не так опасно.

Расчёт сопротивления для светодиода

Замена ламп на светодиоды в автомобильных электрических схемах приобретает уже не статус тюнинговых работ, а превращается в необходимость. Причин этому множество, но сегодня мы поговорим не об этом, хотя некоторые вопросы светодиодного освещения, самые принципиальные, затронуть придется.

Зачем ставить светодиоды

Если смотреть на вопрос с практической стороны, то установка светодиодов принесет много хороших и приятных моментов:

  1. Светодиод имеет очень низкий ток потребления.
  2. У светодиодов мизерная теплоотдача.
  3. Количество света, отдаваемого светодиодом, намного больше, чем у ламп накаливания.
  4. Светодиод имеет длительный срок эксплуатации.

Отходя от теории и применив это к реальным условиям, мы получаем массу преимуществ — можно забыть о том, что лампочка посадит аккумулятор, даже если ее оставить включенной на сутки, да и оформление светодиодами подсветки приборов и освещения салона намного эффективнее и гибче.

Параметры светодиодов

Самое главное, что нужно усвоить — светодиод невозможно включить в электросхему без предварительной подготовки. Он попросту сгорит. Напряжение в электросети автомобиля 12-14 вольт, а стандартный светодиод работает от 3,5 В. Рабочее напряжение диода зависит от его цвета:

  • красные и желтые светодиоды — 2,4 В;
  • синие и зеленые — 2,8 вольта;
  • белые светодиоды — 3-3,6 В.

Отличаются светодиоды и по мощности. Маломощные светодиоды потребляют ток около 20 мА, а светодиоды повышенной мощности — 300 мА. Они могут отличаться и по характеру излучаемого света. Одни из них узконаправленные, другие заливные. Направленные светодиоды имеют встроенную линзу и используются для локальной подсветки. Каждый светодиод имеет плюс и минус, которые называют анодом и катодом соответственно.

Установка светодиодов

Если появилось желание установить светодиоды на автомобиль, можно пойти по простому пути. В продаже есть небольшие блоки из светодиодов, которые называют кластерами. Они собраны с таким расчетом, чтобы обеспечить из работу в сети 12 В. Но у них есть один существенный недостаток — при изменении количества оборотов двигателя, они меняют яркость. Не критично, но изменение яркости очень отчетливо видно на глаз, и это не самый приятный эффект. Каждый кластер состоит из трех светодиодов, соединенных последовательно, и спаянных с резистором, который должен убирать лишнее напряжение.

Можно пойти по другому пути — собрать кластеры самостоятельно. Мы выбираем нужные нам диоды, последовательно их соединяем, а затем подключаем к бортовой сети через резистор. В большинстве случаев для сети 12 вольт используют резисторы 100-150 Ом на 0,5 Вт. Но не всегда все так гладко, и именно на этом этапе нам пригодится расчет сопротивления для светодиода.

Как правильно рассчитать сопротивление для светодиода

Поскольку светодиоды разные и напряжение в каждом автомобиле может отличаться, то идеальным вариантом подбора резистора будет вычисление его номинала по закону Ома. Если с математикой у вас не все гладко, можно пойти по простому пути. Есть простое правило, которое позволит избежать ошибок — на один светодиод нужен резистор номиналом 500 Ом, на два — около 300 Ом, на три — 150 Ом. Но если подобрать сопротивление правильно, то освещение будет стабильным и долговечным.

Рассмотрим ситуацию, когда мы озадачились действительно точным подбором резистора. Берем светодиод, к примеру, белый. Его данные нам известны — напряжение питания 3,5 вольта, ток примерно 20 мА. Далее действуем по алгоритму, как калькулятор Электроника.

Снимаем показания по напряжению именно в том месте, где мы хотим установить диод. Делаем это при помощи обычного тестера

Причем важно снять не общее напряжение сети, а именно локальное. Получаем некую величину, к примеру, 13 В.
Из общего напряжения отнимаем напряжения питания светодиода

Получилось 9,5 В. Вспоминаем закон Ома — R=U/I, где R — искомое сопротивление, а U и I, соответственно, напряжение и ток. Подставляем наши данные в формулу и получаем значение сопротивления 475 Ом.
Теперь нужно сделать так, чтобы резистор не грелся. Для этого вычисляем его мощность. Рабочее напряжение резистора — 9,5 В, ток — 20 А. Умножив эти показатели, получим номинальную мощность резистора — 0,19 Вт. Всегда нужно подбирать резистор с запасом, чтобы избежать перегрева, поэтому идем в магазин за резистором мощностью не менее 0,5 Вт.

Таким образом удастся подобрать идеальный резистор для светодиода, который будет иметь оптимальную яркость, и не перегорит в самый неожиданный момент.

Расчет сопротивления для светодиода

Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор. Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока. По полученному значению и подбирается мощность резистора. 

Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов. . Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор

Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне. 

Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне. 

Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя

Это приведет к разрыву электрической цепи. 

Когда нужно использовать токоограничивающий резистор:

когда вопрос эффективности схемы не является основным – например, индикация; 

лабораторные исследования. 

В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах.

Онлайн – сервисы и калькуляторы для расчета резистора:

Схемы подключения светодиодов

Если для последовательного подключения нескольких светодиодов к источнику питания для ограничения тока достаточно одного резистора, то при параллельном подключении следуем избегать использования одного гасящего резистора (см. схемы).

Связано это с тем, что из-за даже небольшой разности собственных сопротивлений СД для корректной работы каждого требуется индивидуальное значение напряжения.

В противном случае один или несколько светодиодов будут светиться заметно ярче остальных, потребляя, соответственно больше тока, что чревато ускорением процесса деградации кристаллов диодов и быстрым выходом их из строя.

Поэтому, при параллельном подключении для каждого СД следует предусмотреть свой токоограничивающий резистор.

Говоря о подключении СД нельзя не упомянуть об обязательности соблюдения полярности подключения: к аноду диода должен подключаться “плюсовой”, к катоду — “минусовой” проводники от источника питания.

Светодиод как нелинейный элемент

Рассмотрим семейство вольт-амперных характеристик (ВАХ) для светодиодов различных цветов. Эта характеристика показывает зависимость тока, проходящего через светоизлучающий диод, от напряжения, приложенного к нему. Как видно на рисунке, характеристики имеют нелинейный характер.

Это означает, что даже при небольшом изменении напряжения на несколько десятых долей вольта, ток может измениться в несколько раз. Однако при работе со светодиодами обычно используют наиболее линейный участок (т.н. рабочую область) ВАХ, где ток изменяется не так резко. Чаще всего производители указывают в характеристиках светодиода положение рабочей точки, то есть значения напряжения и тока, при которых достигается заявленная яркость свечения.

Представленные выше характеристики были получены для светоизлучающих диодов, включенных в прямом направлении. То есть отрицательный полюс питания подключен к катоду, а положительный – к аноду

Последовательное подключение

При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.

Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).

Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:

Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ — конечно, последовательным!

Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.

Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.

Вот пример готового устройства:

Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64…106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток — это от него уже не зависит.

Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.

Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:

Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) — либо через токоограничительный резистор, либо через токозадающий драйвер.

Как подключить светодиод к 220в через резистор

Светодиоды пропускают через себя ток в одном направлении. При переменном напряжении его направление меняется 2 раза за период, то есть в одном случае ток протекает через диод, а в ином — нет. Так как ток протекает в половине случаев, для определения среднего значения тока, который проходит через диод, нужно разделить U пополам.
Соответственно, U = 110В.
Допустим, собственное сопротивление у диода: 1,7 Ом.

Ток, проходящий через диод:
I=U/ ULED
110/1,7=65А.

Высокий ток, пройдя через полупроводник, сожжёт его, поэтому нужно использовать дополнительный прибор с сопротивлением, чтобы он, по принципу рассеивания, уменьшал количество тока, подаваемого на диод.

Использование встречно-параллельного соединения диодов с резистором:

После соединения пересчитайте ёмкость конденсатора, потому что на светодиодах должно увеличиться напряжение.

Какой резистор нужен для светодиода на 12 вольт

12-вольтовая система — стандартная в автомобиле. В подключении LED-элемента к 12 вольтовой системе нет ничего сложного

Важно правильно провести расчёты сопротивления диода через токоограничивающий резистор.
Перед началом вычислений надо узнать характеристики имеющихся светодиодов: падение напряжения и требуемый им ток.
Сопротивление резистора рассчитывается по формуле:
R = U/I

1 светодиод
ULED = 3.3 Вольт
ILED = 0,02А
При таком внутреннем сопротивлении диода, он будет отлично работать в системе, напряжение которой ограничивается значением 3,3 Вольт.
Возьмём напряжение с запасом, так как скачки бывают до максимального значения 14,5.
Максимально возможное напряжение отличается от допустимого для исправной работы светящегося элемента на 11,2 Вольта. Значит, перед включением диода, нужно снизить подаваемый ему ток на это значение.

Сперва нужно посчитать сопротивление, необходимое резистору:
R=U/I. R=560 Ом.
Для того, чтобы расчёты были более надёжными, надо вычислить мощность резистора:
P = U * I Мощность — 0,224Вт.
При выборе резистора, необходимо округлять значения в большую сторону и выбирать более мощный вариант.

  • 2 и 3 светодиода
    Рассчитывается аналогичным образом, светодиодное напряжение будет умножаться на количество светящихся элементов
  • От 4 светодиодов
    При подключении больше трёх светодиодов к такой сети не нужен будет резистор, так как напряжение не будет сильно превышать допустимое и светодиоды будут работать исправно.

Вольтамперная характеристика светодиода (ВАХ)

Светодиод – нелинейный элемент электрической цепи, его ВАХ по форме практически идентична  обычному кремниевому диоду. На рисунке 1 приведена ВАХ мощного белого светодиода, одного из ведущих мировых производителей.

Рисунок 1

По графику видно, что при увеличении напряжения всего на 0,2 В (например, участок 2,9…3,1 В), сила тока увеличивается более чем в два раза (с 350 мА до 850 мА). Справедливо и обратное: при изменении тока в достаточно широких пределах, падение напряжения изменяется весьма незначительно

Это очень важно

Второй важный момент – падение напряжения от образца к образцу в одной партии может отличаться на несколько десятых долей вольта (технологический разброс). По этой причине источник питания светодиодов должен иметь стабилизацию  по току, а не по напряжению. Световой поток, кстати, нормируется также в зависимости от прямого тока. Теперь посмотрим, как эта информация пригодится при выборе схемы подключения.

Последовательное соединение (рисунок 2).

Рисунок 2

На схеме показано последовательное включение трех светодиодов HL1…HL3 к источнику постоянного тока J. Для простоты возьмем идеальный источник тока, т.е. источник, обеспечивающий  постоянный ток одинаковой величины, независимо от нагрузки. Поскольку сила тока в замкнутом контуре одинакова, через каждый элемент, последовательно включенный в этот контур, протекает ток одинаковой величины I1=I2=I3=J. Соответственно обеспечивается одинаковая яркость свечения. Разница в падениях напряжения на отдельных светодиодах не имеет в этом случае никакого значения и отражается только на величине разности потенциалов между точками 1 и 2.

Рассмотрим конкретный пример расчета подобной схемы. Пусть требуется обеспечить питание трех последовательно включенных светодиодов током 350 мА. Падение напряжения при этом токе по данным производителя может составлять значение от 2,8 В до 3,2 В.

Рассчитаем требуемый диапазон выходного напряжения источника тока:

Umin=2,8×3=8,4 В;

Umax=3,2×3=9,6 В.

Максимальная мощность потребляемая светодиодами составит P=9,6×0,35=3,4 Вт.

Таким образом источник должен иметь следующие параметры:

Выходной стабильный ток – 350 мА;

Выходное напряжение – 9 В ±0,6В (или ±7%);

Выходная мощность – не менее 3,5 Вт.

Все предельно просто.

Серийно выпускающиеся источники питания для светодиодов (драйверы) обычно имеют более широкий диапазон выходного напряжения, чтобы разработчик светотехнического устройства не был привязан к конкретному количеству излучающих диодов, а имел некоторую свободу действий. В таком случае можно к одному и тому же источнику подключать последовательно, например, от 1-го до  8-ми светодиодов.

Тем не менее, последовательная схема включения имеет свои недостатки.

  1. Во-первых, при выходе из строя одного из диодов в цепи – по понятным причинам гаснут и все остальные. Исключение – короткое замыкание светодиода – в этом случае цепь не обрывается.
  2. Во-вторых, при большом количестве светодиодов, сложнее реализовать низковольтное питание.

Например, в случае если стоит задача запитать 10 светодиодов последовательно (это падение напряжения порядка 30 В) от автомобильного аккумулятора, то без повышающего преобразователя не обойтись. А это уже дополнительные затраты, габариты и снижение КПД.

Параллельное соединение (рисунок 3).

Рисунок 3

Рассмотрим теперь параллельное соединение тех же светоизлучающих диодов.

Согласно первому закону  Кирхгофа:

J=I1+I2+I3,

Чтобы обеспечить каждому светодиоду одноваттный режим (I=350мА), источник тока должен выдавать 1050 мА при выходном напряжении порядка 3 В.

Как уже говорилось выше, светодиоды имеют некоторый технологический разброс параметров, поэтому на самом деле токи поделятся не поровну, а пропорционально своим дифференциальным сопротивлениям.

К примеру, если прямое падение напряжения, измеренное на этих светодиодах при токе 350 мА, составляло 2,9 В, 3 В, 3,1 В для HL1, HL2  и HL3 соответственно. То при включении по представленной схеме токи распределятся следующим образом:

I1≈360 мА;

I2≈350 мА;

I3≈340 мА.

Это значит, что и яркость свечения будет разная. Для выравнивания токов в такие цепи обычно последовательно светодиодам включают резисторы (рисунок 4).

Рисунок 4

Выравнивающие резисторы увеличивают потребляемую мощность общей схемы, а следовательно снижают эффективность.

Такой способ соединения чаще всего применяют с низковольтными источниками питания, например в портативных устройствах с электрохимическими источниками тока (аккумуляторами, батарейками). В других случаях рекомендуется соединить светодиоды последовательно.

Работа с сетью 220 В

Самый простой указатель напряжения электросети без источника питания делается из резистора, ограничителя тока (транзистора), выпрямителя (диода) и любого светодиода. Сопротивление резистора 100 – 150 кОм.

Характеристики диода:

  • ток
    10-100 мА;
  • напряжение
    1-1,1 В;
  • обратное
    напряжение 30-75 В.

При 220 В частоте 3 Гц светодиод
загорается. Корректировать частоту и повысить яркость можно изменением емкости
конденсатора. Такой индикатор срабатывает при минимальном напряжении 4,5 В.
Кроме тока сети он может определить исправность, включенное и выключенное
состояние электроприбора.

Проверка
постоянного напряжения

Для проверки сети на 12 вольт и целостности соединений можно сделать другой светодиодный индикатор (нужны 2 разноцветных светодиодных элемента). Для ограничения тока можно использовать резистор с сопротивлением 50-100 Ом или лампочку накаливания с небольшой мощностью. Один из светодиодов загорается при подключении напряжения соответствующей полярности.

В самодельный индикатор для сети 12 В можно добавить конденсатор, диод и 2 транзистора. Полевой транзистор стабилизирует ток. Конденсатор, защищающий диод от скачков напряжения, нужен с емкостью 0,1 мкФ, неполярный. Резистор с сопротивлением 1 Мом является нагрузкой биполярного транзистора. При проверке сети с постоянным напряжением диод проверяет полюса. Если ток переменный, этот элемент срезает минусовую половину. При подаче напряжения значение тока определяет биполярный транзистор и сопротивление резистора (500-600 Ом).

Такой прибор подходит для работы с переменной и постоянной сетью с напряжением 5-600 В.

Индикатор
для микросхем – логический пробник

Приборы для индикации микросхем называются логическими пробниками. Такой индикатор трехуровневый (в схему включаются 3 светодиода).

Логический пробник дает возможность:

  • определить
    фазу, короткое замыкание, сопротивление электросети;
  • установить
    наличие напряжения 12 – 400 В;
  • определить
    полюса при постоянном токе;
  • проверить
    состояние диодов, транзисторов и других деталей;
  • определить
    целостность электросети прозвоном;
  • диагностировать
    обрывы реле и катушек;
  • прозвонить
    дроссели и моторы;
  • определить
    выводы трансформаторов.

Источник питания батарейка на 9 В. При
замкнутых щипах потребляется ток 110 мА. После размыкания ток не потребляется,
устанавливать выключатель и переключатель режимов не нужно.

При проверке сети с сопротивлением 0 –
150 Ом горят 2 светодиода, при повышении показателя один. При 220-380 вольтах
загорается третий, остальные мерцают. Если цепь порвана, светодиоды не
загораются. При нуле на контакте 0,5 В, открывается один транзистор (КТ315Б),
при 2,4 В – второй (КТ203Б).

Допускается замена транзисторов на другие, имеющие аналогичные параметры.

Индикатор
напряжения на двухцветном светодиоде

Еще одна простая микросхема индикатора – с двухцветным светодиодом. Некоторые домашние мастера используют ее для определения режима работы лампы. Например, выключатель осветительного прибора в подвале, оснащенный индикатором, установлен на лестнице. Если она горит, свечение красное, после выключения – зеленое.

Вариант
для автомобиля

Схема
для индикации заряда аккумулятора и напряжения сети автомобиля состоит из:

  • RGB-светодиода;
  • 3-х
    стабилитронов;
  • 3-х
    биполярных транзисторов (BC847C);
  • 9-и
    резисторов;

Уровень определяется по цвету. Зеленое свечение при 12-14 В, синее – при 11,5 В, красное – при 14,4 В).

Если при сборке схемы не допущены ошибки, один из резисторов (на 2,2 кОм) и транзистор (на 8,2 В) определяют минимальный предел вольтажа. При снижении показателя транзистор, соответствующий синему свечению, подключает кристалл.

Если вольтаж не снижается и не повышается, ток проходит через 2 резистора, стабилитрон на 5,6 В и светодиод, появляется свечение зеленого цвета (транзисторы, соответствующие красному и синему цвету, закрываются). При повышении напряжения до 14,4 В загорается красный свет.

Примеры расчета резистора для светодиода

Как рассчитать показатели для имеющихся светодиодов, чтобы осуществить подбор ограничителя (или нескольких)?

Пример: имеется блок питания 12 В и небольшая партия лампочек на 0,02А.

Расчет сопротивления ограничителя (для одного диода): R = U/I = 12/0,02=600 Ом.

Расчет оптимальной нагрузки на гасящий резистор: P = U*I = 12*0,02 = 0,24 В.

Это значит, что у продавца нужно попросить резистор на 600 Ом с мощность 0,5 В (чтобы был запас).

С повышением мощности увеличиваются размеры детали.

При параллельном подключении 3-х диодов с U=2 В и I=0,03А сила электротока будет равна сумме тока всех лампочек, то есть I=0,09А.

Пример: имеются 3 цепочки по 3 диода на 0,03 А и источник питания 12 В, нужно подключить цепочки параллельно.

Необходимо рассчитать не только параметры 4-х резисторов (на каждой цепочке и общий для схемы), но и параметры лампочек.

Сопротивление светодиода – это соотношение вольтажа к току: Rд = U/I = 2/0,03 = 66,7 (берется 70) Ом.

В последовательной цепочке сопротивление ограничителя: R1=R2=R3= U/I=12/0,03=400 Ом.

Мощность: P= U*I=12*0,03=0,36 В.

К сопротивлению резисторов плюсуется сопротивление лампочек, чтобы получить сопротивление одной цепочки: 400+70+70+70 = 610 Ом.

Сопротивление общего ограничителя схемы: 1/R = 1/R1+1/R2+1/R3 = 3/R1 или R= R1/3=610/3=23,33 Ом.

Входной ток: 3*0,03=0,09 В.

Мощность входного ограничителя: P = U*I=12*0,09=1,08 В.

Нужно купить детали на 400 Ом и 0,5 В, одну – на 24 Ом и 1,5 В.

Вычисление светодиодного резистора с использованием Закон Ома

Закон Ома гласит, что сопротивление резистора R = V / I, где V = напряжение через резистор (V = S – V L в данном случае),  I = ток через резистор.  Итак R = (V S – V L) / I. Если вы хотите подключить несколько светодиодов сразу – это можно сделать последовательно. Это сокращает потребление энергии и позволяет подключать большое количество диодов одновременно, например в качестве какой-то гирлянды. Все светодиоды, которые соединены последовательно, долдны быть одного типа. Блок питания должен иметь достаточную мощность и обеспечить соответствующее напряжение.

Пример расчета: Красный, желтый и зеленый диоды – при последовательном соединении необходимо напряжение питания – не менее 8V, так 9-вольтовая батарея будет практически идеальным источником.  V L = 2V + 2V + 2V = 6V (три диода, их напряжения суммируются).  Если напряжение питания V S 9 В и ток диода = 0.015A, Резистором R = (V S – V L) / I = (9 – 6) /0,015 = 200 Ом. Берём резистор 220 Ом (ближайшего стандартного значения, которое больше).

Избегайте подключения светодиодов в параллели!

AL9910

Diodes Incorporated создала одну весьма интересную микросхему драйвера светодиодов: AL9910. Любопытна она тем, что ее рабочий диапазон напряжений позволяет подключать ее прямо к сети 220В (через простой диодный выпрямитель).

Вот ее основные характеристики:

  • входное напряжение — до 500В (до 277В для переменки);
  • встроенный стабилизатор напряжения для питания микросхемы, не требующий гасящего резистора;
  • возможность регулировки яркости путем изменения потенциала на управляющей ноге от 0.045 до 0.25В;
  • встроенная защита от перегрева (срабатывает при 150°С);
  • рабочая частота (25-300 кГц) задается внешним резистором;
  • для работы необходим внешний полевой транзистор;
  • выпускается в восьминогих корпусах SO-8 и SO-8EP.

Драйвер, собранный на микросхеме AL9910 не имеет гальванической развязки с сетью, поэтому должен использоваться только там, где невозможно прямое прикосновение к элементам схемы.

Микросхема выпускается в двух модификациях: AL9910 и AL9910a. Отличаются минимальным напряжением запуска (15 и 20В соответственно) и выходным напряжением внутреннего стабилизатора ((7.5 или 10В соответственно). Еще у AL9910a немного выше потребление в спящем режиме.

Стоимость микросхем — около 60 руб/шт.

Типовая схема включения (без диммирования) выглядит так:

Здесь светодиоды всегда горят на полную мощность, которая задается значением резистора Rsense:

Rsense = 0.25 / (ILED + 0.15⋅ILED)

Для регулировки яркости 7-ую ногу отрывают от Vdd и вешают на потенциометр, выдающий от 45 до 250 мВ. Также яркость можно регулировать, подавая ШИМ-сигнал на вывод PWM_D. Если этот вывод посадить на землю, микросхема отключается, выходной транзистор полностью закрывается, потребляемый схемой ток падает до ~0.5мА.

Частота генерации должна лежать в диапазоне от 25 до 300 кГц и, как уже было сказано ранее, она определяется резистором Rosc. Зависимость можно выразить следующим уравнением:

fosc = 25 / (Rosc + 22), где Rosc — сопротивление в килоомах (обычно от 75 до 1000 кОм).

Резистор включается между 8-ой ногой микросхемы и «землей» (или выводом GATE).

Индуктивность дросселя рассчитывается по страшной на первый взгляд формуле:

L ≥ (VIN — VLEDs)⋅VLEDs / (0.3⋅VIN⋅fosc⋅ILED)

Пример расчета

Для примера давайте рассчитаем параметры элементов обвязки микросхемы для двух последовательно включенных светодиода Cree XML-T6 и минимального напряжения питания (15 вольт).

Итак, допустим, мы хотим, чтобы микросхема работала на частоте 240 кГц (0.24 МГц). Значение резистора Rosc должно быть:

Rosc = 25/fosc — 22 = 25/0.24 — 22 = 82 кОм

Идем дальше. Номинальный ток светодиодов — 3А, рабочее напряжение — 3.3В. Следовательно, на двух последовательно включенных светодиодах упадет 6.6В. Имея эти исходные данные, можем рассчитать индуктивность:

L ≥ (VIN — VLEDs)⋅VLEDs / (0.3⋅VIN⋅fosc⋅ILED) = (15-6.6)⋅6.6 / (0.3⋅15⋅240000⋅3) = 17 мкГн

Т.е. больше или равно 17 мкГн. Возьмем распространенную фабричную индуктивность на 47 мкГн.

Осталось рассчитать Rsense:

Rsense = 0.25 / (ILED + 0.15⋅ILED) = 0.25 / (3 + 0.15⋅3) = 0.072 Ом

В качестве мощного выходного MOSFET’а возьмем какой-нибудь подходящий по характеристикам, например, всем известный N-канальник 50N06 (60В, 50А, 120Вт).

И вот, собственно, какая схема у нас получилась:

Не смотря на указанный в даташите минимум в 15 вольт, схема прекрасно запускается и от 12, так что ее можно использовать в качестве мощного автомобильного прожектора. На самом деле, приведенная схема — это реальная схема драйвера светодиодного прожектора 20 ватт YF-053CREE, которая была получена методом реверс-инжиниринга.

Рассмотренные нами микросхемы драйверов светодиодов PT4115, CL6808, CL6807, SN3350, AL9910, QX5241 и ZXLD1350 позволяют быстро собрать драйвер для мощных светодиодов своими руками и широко применяются в современных LED-светильниках и лампах.

В статье были использованы следующие радиодетали:

Светодиоды
Cree XM-L T6 (10Вт, 3А) 135 руб/шт.
Cree XM-L2 T6 (10Вт, 3А, медь) 360 руб/шт.
Транзисторы
40N06 11 руб/шт.
IRF7413 14 руб/шт.
IPD090N03L 14 руб/шт.
IRF7201 17 руб/шт.
50N06 12 руб/шт.
Диоды Шоттки
STPS2H100A (2А, 100В) 15 руб/шт.
SS34 (3А, 40В) 90 коп/шт.
SS56 (5А, 60В) 3.5 руб/шт.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.