Тепловое реле: принцип работы, виды, схема подключения и регулировка и маркировка

Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

Особенности монтажа

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».

Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:

Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.

Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).

Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).

То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети. При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения. Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.

Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления. Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса. Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.

Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств. При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А. Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.

Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.

Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:

Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!

Будет интересно прочитать:

{SOURCE}

Подключение теплового реле в схему пускателя

Тепловое реле используется для защиты электродвигателя от перегрузки. Конечно, автоматическим выключателем он защищается при этом все равно, но его теплового элемента для этой цели недостаточно. И его нельзя настроить точно на номинальный ток мотора. Принцип работы теплового реле тот же, что и в автоматическом выключателе.

В этом есть еще одно отличие от автоматического выключателя: само тепловое реле ничего не отключает. Оно просто дает сигнал к отключению. Который нужно правильно использовать. Силовые контакты теплового реле позволяют подключать его к пускателю напрямую, без проводов. Для этого каждый модельный ряд изделий взаимно дополняет друг друга. Например, ИЭК выпускает тепловые реле для своих пускателей, АВВ – своих. И так у каждого производителя. Но изделия разных фирм не стыкуются друг с другом.

Тепловые реле также могут иметь два независимых контакта: нормально замкнуты и нормально разомкнутый. Нам понадобится замкнутый – как в случае с кнопкой «Стоп». Тем более, что и функционально он будет работать так же, как эта кнопка: разрывать цепь питания катушки пускателя, чтобы он отпал.

Теперь потребуется врезать найденные контакты в схему управления. Теоретически это можно сделать почти в любом месте, но традиционно он подключается после катушки.

Для возврата его в исходное состояние на панели прибора есть небольшая кнопочка, которая перекидывает контакты при нажатии. Но это нужно делать не сразу, а дать реле остыть, иначе контакты не зафиксируются. Перед включением в работу после монтажа кнопку лучше нажать, исключив возможное переключение контактной системы в ходе транспортировки из-за тряски и вибраций.

Ещё одно интересное видео о работе магнитного пускателя:

Проверка работоспособности схемы

Для того, чтобы понять, правильно собрана схема или нет, нагрузку к пускателю лучше не подключать, оставив его нижние силовые клеммы свободными. Так вы обезопасите коммутируемое оборудование от лишних проблем. Включаем автоматический выключатель, подающий напряжение на испытуемый объект.

Само собой разумеется, пока идет монтаж, он должен быть отключен. А также любым доступным способом предотвращено случайное его включение посторонними лицами. Если после подачи напряжения пускатель не включился самостоятельно – уже хорошо.

При диагностике неисправности помогает однополюсный указатель напряжения, которым можно легко проверить прохождение фазы через кнопку «Стоп» до кнопки «Пуск». Если при отпускании кнопки «Пуск» пускатель не фиксируется, а отпадает – неправильно подключены блок-контакты.

Проверьте – они должны подключиться параллельно этой кнопке. Правильно подключенный пускатель должен фиксироваться во включенном положении при механическом нажатии на подвижную часть магнитопровода.

Теперь проверяем работу теплового реле. Включаем пускатель и аккуратно отсоединяем любой проводок от контактов реле. Пускатель должен отпасть.

Основные типы реле

Совместимость релейного устройства с конкретным мотором зависит от его типа. Производители выпускают:

  • ТРП. Аппарат с одним полюсом и комби-системой нагрева, который защищает асинхронные моторы. Подходит для сети с постоянным током не более 440 В, нечувствителен к ударам.
  • РТЛ. Предотвращает неисправность двигателя в условиях выпадения фазы, токовой асимметрии и перегрузки, затяжного пуска, заклинивания. Монтируется на дин-рейке отдельно или совместно с пускателем.
  • РТТ. Основное назначение приборов – предотвращение затяжного старта, перегрузки, перекоса фазы асинхронных моторов с роторами короткозамкнутого типа.
  • ТРН. Двухфазный коммутатор для контроля пуска и функционала двигателя. Подходит под сеть переменного тока, контакты в исходное положение возвращаются вручную.
  • РТИ. Тепловое РТИ-реле отличается минимальным энергопотреблением, совместимы с автовыключателями или предохранители. Установка производится на специальный контактор.
  • Твердотельные. Компактные приборы без активных узлов. Принцип их функционала заключается в проверке тока работы и пуска, определении средних показателей температуры двигателя. Устанавливаются на аварийно опасных участках.
  • РТК. Пусковой аппарат, контролирующий температуру внутри корпуса оборудования. Задействуется в схемах с реле-частью комплектации автоматики.

Что делать, если щелчки не удается устранить самостоятельно

В ряде случаев пользователь не может не только избавиться от щелчков, но и диагностировать их причину. Вариантов, как поступить, здесь всего два:

  1. Покупка нового HDD. Если проблемный винчестер еще работает, то можно попытаться сделать клонирование системы со всеми пользовательскими файлами. По сути, вы замените только сам носитель, а все ваши файлы и ОС будут работать, как и прежде.

    Подробнее: Как клонировать жесткий диск

    Если такой возможности пока нет, можно хотя бы сохранить самые важные данные на другие источники хранения информации: USB-flash, облачные хранилища, внешний HDD и др.

  2. Обращение к специалисту. Ремонтировать физические повреждения жестких дисков очень затратно и обычно не имеет смысла. В особенности, если речь идет о стандартных винчестерах (установленных в ПК на момент его покупки) или купленных самостоятельно за небольшие деньги.

    Однако если на диске есть очень важная информация, то специалист поможет «достать» ее и скопировать на новый HDD. При ярко выраженной проблеме щелканий и других звуков рекомендуется обратиться к профессионалам, которые смогут восстановить данные, используя программно-аппаратные комплексы. Самостоятельные действия могут только усугубить ситуацию и привести к полной потере файлов и документов.

Мы разобрали основные проблемы, из-за которых жесткий диск может щелкать. На практике все очень индивидуально, и в вашем случае может возникнуть нестандартная проблема, например, заклинивший двигатель.

Выявить самостоятельно, что же вызвало щелчки, может быть очень нелегко. Если у вас нет достаточных знаний и опыта, мы советуем обратиться к специалистам или же приобрести и установить новый жесткий диск самостоятельно.

Опишите, что у вас не получилось.
Наши специалисты постараются ответить максимально быстро.

Технические характеристики

Самая важная характеристика теплового реле для электродвигателя – это зависимость скорости отключения контактов от величины тока. Она показывает быстродействие устройства при перегрузках и называется время-токовым показателем.

К основным характеристикам относят:

  • Номинальный ток. Это рабочий ток, на который рассчитано срабатывание устройства.
  • Номинальный ток рабочей пластины. Ток, при котором биметалл способен деформироваться в рабочем пределе без необратимых нарушений.
  • Пределы регулировки уставки по току. Диапазон тока, в котором реле будет срабатывать, выполняя защитную функцию.

Что делать, если паспортные данные не известны?

В том случае, когда на таблице частично читаются данные, размещаем таблицу с паспортными данными асинхронных двигателей широко распространенных в народном хозяйстве (тип АИР). С помощью нее возможно определить In.

Кстати, недавно мы рассмотрели , с чем настоятельно рекомендуем вам ознакомиться!

В зависимости от токовой нагрузки будет различаться и время срабатывания защиты, при 125% должно быть порядка 20 минут. В диаграмме ниже указана векторная кривая зависимости кратности тока от In и времени срабатывания.

Для защиты электродвигателей переменного и постоянного тока от сильного перегрева, который возникает из-за долговременной перегрузки, применяется тепловое реле перегрузки.

Принцип действия данного устройства состоит в том, что при длительном, сильном перегреве, биметаллические пластины, находящиеся внутри реле разогреваются, возникает деформация, которая и воздействует на блок-контакты. После чего блок-контакты, при помощи , полностью отключают электропитание потребителя.

Чтобы обеспечить гарантированную защиту электродвигателя не только от перегрузки тока, но и от перегрева необходимо осуществить оптимальную подборку теплового реле. В таком случае полностью исключается , заклинивание ротора, продолжительный затяжной пуск.

Всегда нужно помнить, что тепловое реле не обеспечивает защиту электродвигателя от короткого замыкания.

Типы схем работы термоэлемента

Тепловое реле действует по двум схемам:

  • коммутирующие контакты обратно замыкаются принудительно;
  • схема возвращается в исходное состояние самостоятельно.

Первый вариант относится к защитным тепловым реле (электромагнитные пускатели, автоматические выключатели и др.). Второй применяется в системах регулирования температурой объектов (холодильник, утюг, теплый пол и др.).

Биметаллическая пластина при прогибе действует на группу контактов, которыми размыкается электрическая цепь. Из-за низкой скорости срабатывания устройство не гасит электрическую дугу с должным эффектом. На современных реле применяются устройства, увеличивающие скорость разрыва цепи.

Особенности выбора теплового реле

Выбор ТР должен начинаться с изучения инструкции. Технический документ аппарата содержит следующую информацию:

  • связь тока нагрузки и периода срабатывания;
  • состояние для старта – охлаждение или перегрев;
  • номинальная нагрузка электромотора – оптимальный показатель перегрузки составляет 20-30 %;
  • время постоянной нагрузки – от 5 до 10 мин;
  • период продолжительной нагрузки – от 40 мин до 1 часа;
  • зависимость нагревания пластины от температуры воздуха.

Релейные приборы теплового типа характеризуются высокой скоростью и большим диапазоном срабатывания. Их легко устанавливать самостоятельно. Для обеспечения своевременного выключения двигателя в случае перегрузки ТР настраивается на специальном стенде.

{SOURCE}

Что такое электромагнитное реле

Это электромеханическое коммутационное устройство, основанное на принципе электромагнитной силы. При подаче электричества, внутри него образуется магнитное поле, благодаря которому, с помощью специального механизма происходит замыкание или размыкание коммутируемой электрической цепи.

Проще говоря, это устройство для управления другой электрической цепью, выполняющее управление через замыкание и размыкание контактов. Бывают реле постоянного и переменного тока, постоянного тока подразделяются на поляризованные и нейтральные, каждое из них предназначено для своих целей. Более подробно обо всем далее.

Конструкция и устройство

Конструкция состоит из трех главных частей, основным элементом которой является электромагнитная медная катушка с закрепленным внутри ферритовым сердечником (соленоидом), выполняющая роль электромагнита, закрепленная на неподвижной площадке – ярмо.

Вторая часть называется якорь, являющая металлической пластиной с контактной площадкой на конце, в разомкнутом положении удерживающейся пружиной. Контактная часть реле является исполнительным изолированным органом, при перемещении которого контакты замыкаются или размыкаются.

Бывают однопарные, двуполярные, многопарные, исходно замкнутые (NC) или разомкнутые (NO).

Три основные элемента:

  1. Первичный или воспринимающий элемент (катушка с сердечником) – воспринимает электричество и преобразует его в магнитное поле.
  2. Промежуточный, подвижный элемент (якорь) – в результате появления магнитного поля возникает ЭДС, изменяющая положение якоря или механического привода механизма, который служит для замыкания контактов.
  3. Исполнительный орган (нормально замкнутый контакт или разомкнутый) – воздействует на другую электрическую схему включая или отключая ее.

Принцип работы

При подаче напряжения на обмотку катушки создается ЭДС, сила магнитного поля притягивает якорь с исходного положения, преодолевая усилие пружины, удерживающей якорь, тем самым замыкая контакт управляющей цепи.

В зависимости от конструкции реле, якорь замыкает или размыкает эклектическую цепь. После прекращения подачи электричества магнитное поле исчезает и якорь возвращается в свое обратное положение обратным сжатием пружины.

Сама катушка соленоид, в зависимости от количества витков проволоки, может срабатывать на разную силу тока, маркировка обычно указана на корпусе.

Примечание. УЗО представляет из себя обычное размыкающееся реле.

Виды реле

Помимо электромагнитных устройств, сегодня существует большое количество видов реле различного назначения и отличного принципа действия, использующихся для управления системами защиты от перепадов напряжения в бесперебойных системах защиты, автоматических приборах, интегральных электросхемах. К таким типам относятся:

  1. Электронные, в качестве ключа используется резистор, не щелкает при переключении
  2. Электротепловые
  3. Герконовые
  4. Времени
  5. Приорита
  6. Твердотельные – отсутствует соленоид, роль якоря выполняет мощный симистор или тиристор
  7. Индукционные
  8. Световые (совместно с датчиком света)

Также их следует различать по виду входящего сигнала, в зависимости от конструкции включение и выключение может происходить под воздействием:

  1. Напряжения
  2. Частоты электрической цепи
  3. Изменения мощности
  4. Света
  5. Температуры
  6. Давления
  7. Звука
  8. Давления газа

Принцип работы теплового реле

На сегодняшний день наибольшую популярность приобрели тепловые реле, чье действие основано на использовании свойств биметаллических пластин. Для изготовления биметаллических пластин в таких реле используют, как правило, инвар и хромоникелевую сталь. Сами пластины между собой крепко соединяются посредством сварки или же проката. Поскольку одна из пластин обладает большим коэффициентом расширения при нагревании, а другая меньшим, то в случае воздействия на них высокой температуры (например, при прохождении тока через металл), происходит изгиб пластины в ту сторону, где располагается материал с меньшим коэффициентом расширения.

Таким образом, при определенном уровне нагревания биметаллическая пластина прогибается и оказывает воздействие на систему контактов реле, что приводит к его срабатыванию и размыканию электрической цепи. Также необходимо отметить, что в результате низкой скорости процесса прогиба пластины она не может эффективно гасить дугу, которая возникает в случае размыкания электрической цепи. Для того чтобы решить данную проблему, необходимо ускорить воздействие пластины на контакт. Именно поэтому на большинстве современных реле предусмотрены также ускоряющие устройства, которые позволяют эффективно разорвать цепь в минимальные сроки.

Необходимые материалы

Прежде чем приступить к самим работам, давайте рассмотрим, какие материалы потребуются в процессе:

  • Гипсокартонные листы. Естественно вам потребуются гипсокартонные листы, чтобы сделать гипсокартонный потолок. Однако тут потребуются специальные потолочные гипсокартонные листы. Длина такого листа составляет двести пятьдесят сантиметров, а его ширина – сто двадцать сантиметров. Толщина – показатель непостоянный. Она может варьироваться от шестидесяти до восьмидесяти миллиметров.
  • Металлические профили. Чтобы закрепить гипсокартонные листы на потолке, потребуется металлический каркас. Делается он из металлических профилей. Нам потребуется два вида профилей: CD и UD. Их длина составляет примерно триста пятьдесят – четыреста сантиметров.
  • Для фиксации элементов потолка потребуются специальные П-образные крепления. Их довольно часто называют пЭшками.
  • Естественно все материалы и элементы, которые были перечислены выше, не обойдутся без крепежа в виде разнообразных дюбелей и шурупов.
  • Для того, чтобы в конце заделать все стыки на швах, углубления от шурупов и другие мелкие дефекты гипсокартонного покрытия, придется использовать шпаклевку.
  • Электрические провода, для того, чтобы провести по потолку проводку, а также светильники. Назначение последних не требует объяснений.
  • Для того чтобы сделать правильную разметку перед установкой каркаса, которая поможет смонтировать конструкцию без ошибок в планировке, потребуется водяной уровень. Идеальным вариантом будет уровень, длина которого превышает на несколько метров длину вашей спальни. Эту нужно для того, чтобы вы могли сделать все важные отметки, опираясь на одну изначальную. Для такой работы, конечно, потребуется напарник, чтобы один мог держать отметку, пока другой отмеряет следующую.

Сборка потолка из гипсокартона для спальни

Схема подключения

Схемы подключения теплового реле в цепь могут существенно отличаться в зависимости от устройства. Однако ТР подключаются последовательным соединением с обмоткой двигателя или катушкой магнитного пускателя к нормально разомкнутому контакту, т.к. подключение такого рода позволяет защитить устройство от перегрузок. При превышении показателей потребления тока ТР отключает устройство от питания электросети.

В большинстве схем при подключении применяется постоянно разомкнутый контакт, который работает при последовательном соединении со стоповой кнопкой на управляющем пульте. В основном этот контакт маркируется буквами NC или Н3.

Нормально замкнутый контакт может применяться при подключении сигнализации о срабатывании защиты. Кроме того, в более сложных схемах этот контакт применяется для осуществления программного управления аварийной остановкой устройства с использованием микропроцессоров и микроконтроллеров.

Термореле подключить достаточно просто. Для этого нужно руководствоваться следующим принципом: ТР размещается после контакторов пускателя, но перед электродвигателем, а постоянно замкнутый контакт включается последовательным соединением со стоповой кнопкой.

No tags for this post.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.