Индуктивность и явление самоиндукции

ЭДС в быту и единицы измерения

Другие примеры встречаются в практической жизни любого рядового человека. Под эту категорию попадают такие привычные вещи, как малогабаритные батарейки, а также другие миниатюрные элементы питания. В этом случае рабочая ЭДС формируется за счет химических процессов, протекающих внутри источников постоянного напряжения.

Когда оно возникает на клеммах (полюсах) батареи вследствие внутренних изменений – элемент полностью готов к работе. Со временем величина ЭДС несколько снижается, а внутреннее сопротивление заметно возрастает.

В результате если вы измеряете напряжение на не подключенной ни к чему пальчиковой батарейке вы видите нормальные для неё 1.5В (или около того), но когда к батарейке подключается нагрузка, допустим, вы установили её в какой-то прибор — он не работает.

Почему? Потому что если предположить, что у вольтметра внутреннее сопротивление во много раз выше, чем внутреннее сопротивлении батарейки — то вы измеряли её ЭДС. Когда батарейка начала отдавать ток в нагрузке на её выводах стало не 1.5В, а, допустим, 1.2В — прибору недостаточно ни напряжения, ни тока для нормальной работы. Как раз вот эти 0.3В и упали на внутреннем сопротивлении гальванического элемента. Если батарейка совсем старая и её электроды разрушены, то на клеммах батареи может не быть вообще никакой электродвижущей силы или напряжения — т.е. ноль.

Этот пример наглядно демонстрирует в чем отличие ЭДС и напряжения. То же рассказывает автор в конце видеоролика, который вы видите ниже.

Подробнее о том, как возникает ЭДС гальванического элемента и в чем оно измеряется вы можете узнать в следующем ролике:

Совсем небольшая по величине электродвижущая сила наводится и в рамках антенны приемника, которая усиливается затем специальными каскадами, и мы получаем наш телевизионный, радио и даже Wi-Fi сигнал.

Применение катушек индуктивности

Индуктивности широко используются в аналоговых схемах и схемах обработки сигналов. Они в сочетании с конденсаторами и другими радиокомпонентами образуют специальные схемы, которые могут усилить или отфильтровать сигналы определенной частоты.

Катушки индуктивности получили широкое применение начиная от больших катушек индуктивности, таких как дроссели в источниках питания, которые в сочетании с конденсаторами фильтра устраняют остаточные помехи и другие колебания на выходе источника питания, и до столь малых индуктивностей, которые располагаются внутри интегральных микросхем.

Две (или более) катушки индуктивности, которые соединены единым магнитным потоком, образуют трансформатор, являющимся основным компонентом схем работающих с электрической сетью электроснабжения. Эффективность трансформатора возрастает с увеличением частоты напряжения.

По этой причине, в самолетах используется переменное напряжение с частотой 400 герц вместо обычных 50 или 60 герц, что в свою очередь позволяет значительно сэкономить на массе используемых трансформаторов в электроснабжении самолета.

Так же индуктивности используются в качестве устройства для хранения энергии в импульсных стабилизаторах напряжения, в высоковольтных электрических системах передачи электроэнергии для преднамеренного снижения системного напряжения или ограничения ток короткого замыкания.

Индуктивность в электрических цепях

В то время как конденсатор оказывает сопротивление изменению переменного напряжения, индуктивность же сопротивляется переменному тока. Идеальная индуктивность не будет оказывать сопротивление постоянному току, однако, в реальности все индуктивные катушки сами по себе обладают определенным сопротивлением.

В целом, отношение между изменяющимися во времени напряжением V(t) проходящим через катушку с индуктивностью L и изменяющимся во времени током I(t), проходящим через нее можно представить в виде дифференциального уравнения следующего вида:

Когда переменный синусоидальной ток (АС) протекает через катушку индуктивности, возникает синусоидальное переменное напряжение (ЭДС). Амплитуда ЭДС зависит от амплитуды тока и частоте синусоиды, которую можно выразить следующим уравнением:

где ω является угловой частотой резонансной частоты F:

Причем, фаза тока отстает от напряжения на 90 градусов. В конденсаторе же все наоборот, там ток опережает напряжение на 90 градусов. Когда индуктивная катушка соединена с конденсатором (последовательно либо параллельно), то образуется LC цепь, работающая на определенной резонансной частоте.

 Индуктивное сопротивление ХL определяется по формуле:

где ХL — индуктивное сопротивление, ω — угловая частота, F — частота в герцах, и L индуктивность в генри.

Индуктивное сопротивление — это положительная составляющая импеданса. Оно измеряется в омах. Импеданс катушки индуктивности (индуктивное сопротивление) вычисляется по формуле:

«Электромагнитная индукция»

Электромагнитная индукция — это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.

Описанный в опытах Фарадея принцип получения переменного тока используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока.

Вихревые токи, или токи Фуко

Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко.

Вихревые токи возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.

Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.

Электромагнитное поле

Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.

Явление электромагнитной индукции демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.

Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем. Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.

Классическая электродинамика — одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.

Краеугольным камнем теории Максвелла явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно — электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.

Электромагнитная индукция в схемах и таблицах

(Явление электромагнитной индукции, опыты Фарадея, правило Ленца, закон электромагнитной индукции, вихревое электрическое поле, самоиндукция, индуктивность, энергия магнитного поля тока)

Дополнительные материалы по теме:

Конспект урока по физике в 11 классе «Электромагнитная индукция».

Следующая тема: «».

Влияние числа витков и способа намотки

Катушка индуктивности – это спираль, созданная из проводящего материала. Рабочие параметры изделий будут зависеть от особенностей конструкции. Индуктивность увеличивают:

  • большим количеством витков на единицу длины;
  • укрупнением поперечного сечения;
  • установкой в центральной части сердечника с ферромагнитными характеристиками.

От чего зависит индуктивность катушки, примеры типовых решений

Индуктивность одновиткового контура и индуктивность катушки

Для расчета элементарной конструкции подойдет преобразованная первая формула:

Ф = L * I.

Если рассматривается катушка, это выражение трансформируют в суммарное выражение магнитных потоков (Ψ), образованных отдельными витками:

Ψ = n * Ф.

Аналогичным образом:

Ln = L1 * n.

В действительности для точных расчетов учитывают различия силовых линий в центральной части и на краях конструкции. Для коррекции применяют более сложные выражения.

Индуктивность соленоида

Достаточно длинная электрическая катушка формирует внутри параллельные силовые линии. Для создания равномерного распределения энергии необходимо применять проводник с толщиной намного меньше, по сравнению с диаметром поперечного сечения. Разумеется, необходимо установить одинаковое расстояние между отдельными витками.

Такую конструкцию называют соленоидом. Плотность магнитного потока (B) в центральной рабочей части будет зависеть прямо пропорционально от длины (l) и следующих параметров:

  • количества витков (N);
  • тока (i);
  • плотности намотки (n – число контуров на единицу длины);
  • площади поперечного сечения (S);
  • объема (V = S * l).

Ниже приведены основные формулы для вычислений при отсутствии сердечника с учетом магнитной постоянной (m ≈ 1,257 *10-6 Гн/ м):

  • В = m0 * N * (i/l) = m0 * n * I;
  • Ψ = m0 * N2 * (I * S/l) = m0 * n2 * i *V;
  • L = m0 * N2 * (S/l) = m0 * n2 * V.

Индуктивность тороидальной катушки (катушки с кольцевым сердечником)

Для вычисления индукции катушки с сердечником в представленные выше формулы добавляют корректирующий множитель «m». С учетом особой формы изделия необходимо сделать следующие изменения:

L = N2 * ((m0 * m * S)/2π * rL), либо L = N2 * ((m0 * m * h)/2π) * ln(R/r),

где:

  • 2π * rL – длина рабочего элемента со средним радиусом rL;
  • R (r) и h – наружный (внутренний) радиус и высота тора, соответственно.

Коэффициентом «m» учитывают относительный показатель магнитной проницаемости определенного материала к значению для нейтральной среды (вакуума). Если m намного больше единицы, допускается не учитывать искажения поля, которые создает толстый проводник.

Материал сердечника

Как и в предыдущем примере, для вычисления индукции катушки с сердечником в представленные выше формулы добавляют множитель относительной магнитной проницаемости «m

L = m0 * m * N2 * (S/l) = m0 * m * n2 * V.

С помощью этого коэффициента учитывают ферромагнитные свойства определенного материала.

Если для примера взять бесконечный (очень длинный) прямой провод с круглым сечением, то он будет обладать определенной индуктивностью:

L = (m0/2π) * l *(mc * ln(l/r) +1/4m,

где:

  • mc – магнитная проницаемость (относительная) среды;
  • r – радиус, который намного меньше длины (l) проводника.

Однако простые зависимости действуют только до определенной частоты. С определенного уровня волны малой длины начинают распространяться в поверхностной части проводников (скин-эффект). Дополнительно приходится учитывать влияние вихревых составляющих, экранирующих излучение и меняющих силовые параметры поля.

Современные магнитные материалы

Катушка будет работать в точном соответствии с расчетом, если правильно подобраны все функциональные компоненты конструкции. Как показано выше, существенное значение имеют параметры сердечника. Ниже отмечены важные особенности соответствующих материалов:

  • Сталь с низким содержанием примесей стоит недорого. Ее рекомендуется применять в цепях постоянного тока, так как при повышении частоты значительно увеличиваются потери.
  • В специальные сорта (трансформаторную сталь) добавляют кремний. Для уменьшения вредного влияния поверхностных эффектов сердечник собирают из пластин. Однако и такие решения не следует использовать при частоте более 1 кГц.
  • Сплавы из железа с никелем отличаются увеличенной магнитной проницаемостью. Рабочий диапазон – до 80-120 кГц.
  • Порошковые материалы создают со слоем диэлектрика на поверхностях отдельных микроскопических гранул. Они хорошо приспособлены для работы с высокочастотными сигналами, однако не обладают большой магнитной проницаемостью.
  • Ферриты – это материалы, созданные на основе керамических компонентов. Они отличаются хорошими техническими характеристиками, малыми потерями. Следует учитывать значительную зависимость от температуры, а также ухудшение рабочих параметров при длительной эксплуатации.

Измерение индуктивности катушки, созданной из медного провода на ферритовом сердечнике

Вариометр

Что такое катушка, показано выше на простых примерах. На практике для обозначения однотипных групп применяют специфическую терминологию. Вариометром, например, называют деталь с переменной индуктивностью. В типовой конструкции применяют две катушки, установленные одна внутри другой. Необходимый результат получают регулировкой взаимного положения функциональных компонентов. Для перемещения применяют ручной привод или автоматизированный механизм с внешней схемой управления.

К сведению. Не следует путать определения. Мультипликаторная катушка, например, – это приспособление для рыбной ловли. Такое устройство будет обладать индуктивностью при наматывании лески из проводящего материала. Однако в радиотехнических схемах подобные устройства не используют.

Мультипликаторные катушки

Особенности других конструкций:

  • Дроссель обеспечивает высокое сопротивление цепи переменному току, поэтому такой пассивный индуктивный элемент часто применяют для создания фильтров. При подключении к сети питания 220В/ 50 Гц используют железные сердечники. При повышении частоты – ферритовые аналоги.
  • Контурные катушки магнитные устанавливают в комбинации с конденсаторами для создания схем с определенной полосой пропускания.
  • Электрическим реактором называют крупные конструкции, которые применяют в силовых сетях.
  • Сдвоенные катушки применяют для разделения цепей по постоянной составляющей.

Токовый реактор ограничивает сильный ток, предотвращает развитие аварийной ситуации при КЗ

Выше отмечены типовые области применения элементов с индуктивными характеристиками. Они пригодны для создания фильтров, ограничения тока и разделения цепи прохождения постоянных и переменных составляющих сигнала. Магнитное поле катушки с током распространяется в пространстве. Чтобы предотвратить паразитное воздействие, отдельные компоненты размещают на достаточном расстоянии.

Применение на практике

Закон Ампера является одним из важнейших законов электротехнике. Давайте рассмотрим примеры из его практического применения. Основой почти любого предприятия является электропривод. Двигателя и электромагнитные исполнительные механизмы используются для перемещения или приведения в действие различных узлов:

  • автоматизированных задвижек трубопроводов;
  • грузоподъемных механизмов;
  • электротранспорта (электровозы на жд);
  • трамваи;
  • троллейбусы;
  • электрокары и прочее.

Сила Ампера заставляет двигатель вращаться, из-за взаимодействия между обмотками ротора и статора. Для того чтобы обмотки вращались, их либо переключают с помощью щеточного узла и коллектора в двигателях постоянного тока, либо используют переменный ток.

В динамиках и громкоговорителях тоже закон Ампера нашел свое применение. Там происходит движение мембраны, на которой расположена обмотка из медной проволоки в магнитном поле постоянного магнита.

Её действие наблюдается при коротких замыканиях на ЛЭП. Где под воздействием сверхбольших токов шины и провода начинают изгибаться.

В момент выстрела из рельсотрона у него раздвигаются рельсы. Это обусловлено уже перечисленными причинами.

Напоследок рекомендуем просмотреть полезное видео по теме:

Все явления в электричестве важны, некоторые вносят меньшее влияние, некоторые большее. Однако понимать, где и как они проявляются должен каждый, кто связан с этой сферой, независимо электромонтер, АСУшник или КИПовец. Надеемся, теперь вы знаете, что описывает закон Ампера, а также какое его практическое значение!

Материалы по теме:

  • Закон Джоуля-Ленца
  • Как перевести амперы в киловатты
  • Распределение зарядов в проводнике

Как найти индуктивность

Формулы индуктивности будут выглядеть следующим образом:

  • Ф = LI (магнитный поток в контуре);
  • Е= LdI/dt (ЭДС самоиндукции).

ЭДС определяет энергию магнитного поля, от этой величины зависит противодействие системы при изменении тока. При этом ЭДС самоиндукции направлена противоположно последнему.

Перевод слова «индукция» с латинского языка (induct) — побуждение, наведение. Исходя из сказанного, понятно, что это величина, которая характеризует магнитные свойства электрической цепи. Ток проводящего контура создаёт в окружающем его пространстве магнитное поле. При этом, возникающий в контуре поток Ф, имеет прямую ему пропорциональность. Формально записывается это так: Ф=LI, где L — коэффициент пропорциональности или коэффициент самоиндукции контура. Его определяют размеры и формы контура, а также, магнитная проницаемость среды.

Энергия W магнитного поля тока I определяется по формуле: W =LI2/2. При проведении аналогии между электрическим и механическими явлениями, энергия сопоставима с кинетической энергией тела T=mv2/2, где m — масса, v — скорость. Тогда индуктивность подобна массе, а ток — скорости. Это наглядное сравнение помогает лучше понять суть. Эта интересная характеристика определяет инерционные свойства электрического тока.

На практике для увеличения её значения применяют катушки с сердечниками из ферромагнетиков, их свойства имеют зависимость от напряжённости магнитного поля и, следовательно, I. В основном это ферритовые пластины из электротехнической стали. Эффективность применения сердечников довольно значительна: индуктивность катушки возрастает в несколько раз. Помимо цилиндрических, распространены тороидальные варианты, они позволяют достичь большей индуктивности, из-за наличия замкнутого магнитного потока.

Индуктивность соленоида определённой длины, имеющего N витков и площадь поперечного сечения S в среде, имеющей проницаемость m равна:

L=mm0N2S/l,

где m0— магнитная проницаемость вакуума.

Способы расчёта

Существует несколько основных способов определить индуктивность катушки. Все формулы, которые будут использоваться в расчётах, легко можно найти в справочной литературе или интернете. Весь процесс вычисления довольно простой и не составит труда для людей, имеющих элементарные математические и физические знания.

Через силу тока

Этот расчёт считается самым простым способом определения индуктивности катушки. Формула через силу тока вытекает из самого термина. Какова индуктивность катушки — можно определить по формуле: L=Ф/I, где:

  • L — индуктивность контура (в генри);
  • Ф — величина магнитного потока, измеряемого в веберах;
  • I — сила тока в катушке (в амперах).

Соленоид конечной длины

Соленоид представляет собой тонкую длинную катушку, где толщина обмотки значительно меньше диаметра. В этом случае расчёты ведутся по той же формуле, что и через силу тока, только величина магнитного потока будет определяться следующим образом: Ф=µ0NS/l, где:

  • µ0 — магнитная проницаемость среды, определяющаяся по справочным таблицам (для воздуха, который принимается по умолчанию в большинстве расчётов, она равна 0,00000126 генри/метр);
  • N — количество витков в катушке;
  • S — площадь поперечного сечения витка, измеряемая в квадратных метрах;
  • l — длина соленоида в метрах.

Коэффициент самоиндукции соленоида можно рассчитать и исходя из способа определения энергии магнитного потока поля. Это более простой вариант, но он требует наличия некоторых величин. Формула для нахождения индуктивности — L=2W/I 2 , где:

  • W — энергия магнитного потока, измеряемая в джоулях;
  • I — сила тока в амперах.

Катушка с тороидальным сердечником

В большинстве случаев тороидальная катушка наматывается на сердечник, изготовленный из материала, обладающего большой магнитной проницаемостью. В этом случае для расчётов индуктивности можно использовать формулу для прямого соленоида бесконечной длины. Она имеет такой вид: L=N µ0 µS/2 πr, где:

  • N — число витков катушки;
  • µ — относительная магнитная проницаемость;
  • µ0 — магнитная постоянная;
  • S — площадь сечения сердечника;
  • π — математическая постоянная, равная 3,14;
  • r — средний радиус тора.

Длинный проводник

Большинство таких квазилинейных проводников имеет круглое сечение. В этом случае величина коэффициента самоиндукции будет определяться по стандартной формуле для приближённых расчётов: L= µ0l (µelnl/r+ µi/4)/2 π. Здесь используются следующие обозначения:

  • l — длина проводника в метрах;
  • r — радиус сечения провода, измеряемый в метрах;
  • µ0 — магнитная постоянная;
  • µi — относительная магнитная проницаемость, характерная для материала, из которого изготовлен проводник;
  • µe — относительная магнитная проницаемость внешней среды (чаще всего принимается значение для вакуума, которое равняется 1);
  • π — число Пи;
  • ln — обозначение логарифма.

Самоиндукция. Энергия магнитного поля

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре.

Собственный Φ, пронизывающий контур или катушку с током, пропорционален силе тока I

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукциииндуктивностью катушки. Единица индуктивности в СИ называется генри (Гн). Индуктивность контура или катушки равна или 1 Гн, если при силе постоянного тока 1 А собственный поток равен 1 Вб

В качестве примера рассчитаем индуктивность длинного соленоида, имеющего N витков, площадь сечения S и длину l. Магнитное поле соленоида определяется формулой (см. § 1.17)

где I – ток в соленоиде, n = N / e – число витков на единицу длины соленоида.

Магнитный поток, пронизывающий все N витков соленоида, равен

Следовательно, индуктивность соленоида равна

где V = Sl – объем соленоида, в котором сосредоточено магнитное поле. Полученный результат не учитывает краевых эффектов, поэтому он приближенно справедлив только для достаточно длинных катушек. Если соленоид заполнен веществом с μ, то при заданном токе I индукция магнитного поля возрастает по модулю в μ раз (см. § 1.17); поэтому индуктивность катушки с сердечником также увеличивается в μ раз:

ЭДС самоиндукции, возникающая в катушке с постоянным значением индуктивности, согласно формуле Фарадея равна

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы (рис. 1.21.1). Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Рисунок 1.21.1.
Магнитная энергия катушки. При размыкании ключа K лампа ярко вспыхивает.

Из закона сохранения энергии следует, что вся энергия, запасенная в катушке, выделится в виде джоулева тепла. Если обозначить через R полное сопротивление цепи, то за время Δt выделится количество теплоты ΔQ = I2RΔt.

Ток в цепи равен

Выражение для ΔQ можно записать в виде

В этом выражении ΔI < 0; ток в цепи постепенно убывает от первоначального значения I до нуля. Полное количество теплоты, выделившейся в цепи, можно получить, выполнив операцию интегрирования в пределах от I до 0. Это дает

Эту формулу можно получить графическим методом, изобразив на графике зависимость магнитного потока Φ(I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, равное первоначальному запасу энергии магнитного поля, определяется площадью изображенного на рис. 1.21.2 треугольника.

Рисунок 1.21.2.
Вычисление энергии магнитного поля.

Таким образом, энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна

Применим полученное выражение для энергии катушки к длинному соленоиду с магнитным сердечником. Используя приведенные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, можно получить:

где V – объем соленоида. Это выражение показывает, что магнитная энергия локализована не в витках катушки, по которым протекает ток, а рассредоточена по всему объему, в котором создано магнитное поле. Физическая величина

равная энергии магнитного поля в единице объема, называется объемной плотностью магнитной энергии. Дж. Максвелл показал, что выражение для объемной плотности магнитной энергии, выведенное здесь для случая длинного соленоида, справедливо для любых магнитных полей.

Таблица индуктивностей

Символ μ{\displaystyle \mu _{0}} обозначает магнитную постоянную (4π⋅10−7 Гн/м). В высокочастотном случае ток течёт в поверхности проводников (скин-эффект) и в зависимости от вида проводников иногда нужно различать индуктивность высокой и низкои частоты. Для этого служит постоянная Y: Y = 0, когда ток равномерно распределён по поверхности провода (скин-эффект), Y = 14, когда ток равномерно распределён по поперечному сечению провода. В случае скин-эффекта нужно учитывать, что при маленьких расстояниях между проводниками в поверхностях текут дополнительные вихревые токи (эффект экранирования), и выражения, содержащие Y, становятся неточными.

Коэффициенты самоиндукции некоторых замкнутых контуров
Вид Индуктивность Комментарий
соленоидс тонкой обмоткой μr2N23l−8w+41+mm(K(m1+m)−(1−m)E(m1+m)){\displaystyle {\frac {\mu _{0}r^{2}N^{2}}{3l}}\left}

=μr2N2πl1−8w3π+∑n=1∞(2n)!2n!4(n+1)(2n−1)22n(−1)n+1w2n{\displaystyle ={\frac {\mu _{0}r^{2}N^{2}\pi }{l}}\left}=μr2N2πl(1−8w3π+w22−w44+5w616−35w864+…){\displaystyle ={\frac {\mu _{0}r^{2}N^{2}\pi }{l}}\left(1-{\frac {8w}{3\pi }}+{\frac {w^{2}}{2}}-{\frac {w^{4}}{4}}+{\frac {5w^{6}}{16}}-{\frac {35w^{8}}{64}}+…\right)} для w≪1{\displaystyle w\ll 1}=μrN2(1+132w2+O(1w4))ln⁡(8w)−12+1128w2+O(1w4){\displaystyle =\mu _{0}rN^{2}\left[\left(1+{\frac {1}{32w^{2}}}+O\left({\frac {1}{w^{4}}}\right)\right)\ln(8w)-1/2+{\frac {1}{128w^{2}}}+O\left({\frac {1}{w^{4}}}\right)\right]} для w≫1{\displaystyle w\gg 1}

N: Число витковr: Радиусl: Длинаw = r/lm = 4w2E,K: Эллиптический интеграл
Коаксиальный кабель,высокая частота μl2πln⁡(a1a){\displaystyle {\frac {\mu _{0}l}{2\pi }}\ln \left({\frac {a_{1}}{a}}\right)} a1: Радиусa: Радиусl: Длина
единичныйкруглый виток μr⋅(ln⁡(8ra)−2+Y+O(a2r2)){\displaystyle \mu _{0}r\cdot \left(\ln \left({\frac {8r}{a}}\right)-2+Y+O\left(a^{2}/r^{2}\right)\right)} r: Радиус виткаa: Радиус проволоки
прямоугольник μπ(bln⁡(2ba)+dln⁡(2da)−(b+d)(2−Y)+2b2+d2){\displaystyle {\frac {\mu _{0}}{\pi }}\left(b\ln \left({\frac {2b}{a}}\right)+d\ln \left({\frac {2d}{a}}\right)-\left(b+d\right)\left(2-Y\right)+2{\sqrt {b^{2}+d^{2}}}\right)}

−μπ(b⋅arsinh⁡(bd)+d⋅arsinh⁡(db)+O(a)){\displaystyle \;\;-{\frac {\mu _{0}}{\pi }}\left(b\cdot \operatorname {arsinh} \left({\frac {b}{d}}\right)+d\cdot \operatorname {arsinh} \left({\frac {d}{b}}\right)+O\left(a\right)\right)}

b, d: Длины краёвd >> a, b >> aa: Радиус проволоки
Две параллельныепроволоки μlπ(ln⁡(da)+Y){\displaystyle {\frac {\mu _{0}l}{\pi }}\left(\ln \left({\frac {d}{a}}\right)+Y\right)} a: Радиус проволокиd: Расстояние, d ≥ 2al: Длина пары
Две параллельныепроволоки, высокаячастота μlπarcosh⁡(d2a)=μlπln⁡(d2a+d24a2−1){\displaystyle {\frac {\mu _{0}l}{\pi }}\operatorname {arcosh} \left({\frac {d}{2a}}\right)={\frac {\mu _{0}l}{\pi }}\ln \left({\frac {d}{2a}}+{\sqrt {{\frac {d^{2}}{4a^{2}}}-1}}\right)} a: Радиус проволокиd: Расстояние, d ≥ 2al: Длина пары
Проволока параллельнаидеально проводящейстене μl2π(ln⁡(2da)+Y){\displaystyle {\frac {\mu _{0}l}{2\pi }}\left(\ln \left({\frac {2d}{a}}\right)+Y\right)} a: Радиус проволокиd: Расстояние, d ≥ al: Длина
Проволока параллельнастене,высокая частота μl2πarcosh⁡(da)=μl2πln⁡(da+d2a2−1){\displaystyle {\frac {\mu _{0}l}{2\pi }}\operatorname {arcosh} \left({\frac {d}{a}}\right)={\frac {\mu _{0}l}{2\pi }}\ln \left({\frac {d}{a}}+{\sqrt {{\frac {d^{2}}{a^{2}}}-1}}\right)} a: Радиус проволокиd: Расстояние, d ≥ al: Длина
No tags for this post.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Электрошок
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.

Adblock
detector