Основные понятия
Водонагреватели электрического типа представляют собой устройства, в которых энергия тока превращается в тепловую, а затем передается воде. Условно такие устройства можно разделить на 2 группы:
- Проточные. Вода нагревается в них, проходя сквозь специальные системы с теплыми пластинами или трубами, которые мгновенно отдают ей тепло. Нагреватели проточного типа отличаются большой мощностью.
- Накопительные. К ним относится обычный бойлер с ТЭНом, который последовательно греет воду внутри бака.
Принцип его работы можно описать таким образом:
- Устройство устанавливается непосредственно перед самим нагревателем. Сквозь него проходит весь ток, который и питает механизм.
- Если внутри нагревателя произошла утечка тока, тогда УЗО улавливает ее, после чего срабатывает отключение всей системы. Его работа обеспечивается с помощью специальных датчиков и переключателей.
Следует отметить, что УЗО по принципу работы напоминает автомат, но технически не является им. Оно улавливает даже небольшие колебания тока, которые автоматы не способны проанализировать.
Сегодня подобные механизмы не всегда обеспечивают оптимальный уровень безопасности, поэтому водонагреватель также дополнительно должен оснащаться заземлением. Не следует путать УЗО с дифавтоматом, так как это две разные конструкции. Первый механизм способен улавливать только утечки тока, а второй является более универсальным: дифавтомат также реагирует на короткие замыкания, перегрузки и другие подобные проблемы, при этом «вышибает» электричество.
Основные понятия в электронике
Родоначальником открытия электричества считается английский физик Уильям Гилберт. В 1600 году он ввёл понятие «янтарность», что в переводе обозначает электричество. Ученым было обнаружено на опытах с янтарем, что если его потереть о шёлк, он приобретает свойства притягивать к себе другие физические тела. Так было открыто статическое электричество. Первая электрическая машина была создана немецким инженером Отто фон Герике. Агрегат выглядел в виде металлического шеста с надетым на его верхушку серным шаром.
Последующие годы ряд физиков и инженеров из различных стран исследовали свойства электричества, открывая новые явления и изобретая приборы. Наиболее выдающимися учёными, которые внесли весомый вклад в науку, считаются Гальвани, Вольт, Эстред, Ом, Фарадей, Герц, Ампер
Признавая важность их открытий, фундаментальные величины, характеризующие различные электрические явления, назывались их именами
Итогом их экспериментов и теоретических догадок стал труд Максвелла, создавшего теорию электромагнитных явлений в 1873 году. А через двадцать лет англичанин Томсон обнаружил частицу, участвующую в образовании электричества (электрон), положение которой в атомной структуре тела после указал Резерфорд.
Так было обнаружено, что электрический заряд — это способность физических тел создавать вокруг себя особое поле, оказывающее воздействие на другие вещества. Электричество связано с магнетизмом, который влияет на положение электронов, являющихся элементарными частицами тела. Каждая такая частица обладает определённой энергией (потенциалом) и может перемещаться по телу в хаотично.
Придание же электронам направленного движения приводит к возникновению тока. Работа, затраченная на перемещение элементарной частички, называется напряжением. Если ток течёт в замкнутой цепи, то он создаёт магнитное поле, то есть силу, действующую на электроны.
Все вещества разделяются на три типа:
- проводники — это тела, свободно пропускающие через себя ток;
- диэлектрики — в этих телах невозможно появление свободных электронов, а значит, ток через них протекать не может;
- полупроводники — материалы, свойство которых пропускать ток зависит от внешних факторов, например, температуры.
Активное сопротивление
На прохождение электрического тока в итоге оказывают влияние три физические величины: сопротивление, индуктивность и ёмкость. Каждый радиоэлемент (не исключение и дроссель) обладает ими в какой-то мере.
Активное сопротивление представляет собой величину, препятствующую прохождению тока и равную отношению разности потенциалов к силе тока (закон Ома). Его сущность объясняется тем, что в кристаллической решётке различных физических тел содержится разное число свободных носителей зарядов. Кроме этого, сама структура может быть неоднородной, то есть содержать примеси или дефекты. Электроны, перемещаясь под действием поля, сталкиваются с ними и отдают часть своей энергии кристаллам тела.
В результате таких столкновений частички теряют импульс, а сила тока уменьшается. Рассеиваемая электрическая энергия превращается в тепло. Элементом, использующим естественные свойства физического тела, является резистор.
Что же касается дросселя, то его активное сопротивление считается паразитным, вызывающим нагревание и ухудшение параметров. Зависит оно от типа материала и его физических размеров.
Определяется по формуле R = p * L / S, Ом, где:
- p — удельное сопротивление (справочная величина), Ом*см;
- L — длина проводника, см;
- S — площадь поперечного сечения, см2.
Ёмкостная составляющая
Любой проводник тока в разной мере имеет свойство накапливать электрический заряд. Эта способность называется ёмкостью элемента. Для одних радиодеталей она считается вредной составляющей (в частности, для дросселя), а для других — полезной (конденсатор). Относят это понятие к реактивному сопротивлению. Его величина зависит от вида подаваемого сигнала на элемент и ёмкости материала, из которой он сделан.
Вам это будет интересно Все об напряженности электрического поля
Математически реактивное сопротивление описывается выражением Xc = 1/w*C, где:
- w — циклическая частота, скалярная угловая величина, определяющаяся числом колебаний сигнала за единицу времени (2*p*f), Гц;
- C — ёмкость элемента, Ф.
Из формулы видно, что чем больше будет ёмкость и частота тока, тем выше сопротивление элемента, а значит, имеющий большое ёмкостное сопротивление дроссель будет нагреваться. Значение ёмкости в дросселе зависит от размеров проводника и способа его укладки. При спиралевидной намотке между рядом лежащими кольцами возникает ёмкость, также влияющая на протекающий ток.
Паразитная составляющая ёмкости проявляется и в образовании собственного резонанса изделия, так как дроссель на эквивалентной схеме можно представить в виде последовательной цепочки индуктивности и конденсатора. Такое включение создаёт колебательный контур, работающий на определённой частоте. Если частота сигнала будет ниже резонансного значения, то преобладать будет индуктивная составляющая, а если выше — ёмкостная.
Поэтому существенной задачей изготовления дросселя в электронике считается увеличение собственного резонанса конструкции.
Индуктивность и самоиндукция
Электрическое поле неразрывно связано с магнитным. Там, где существует одно, неизменно появляется и второе. Индуктивность — это физическая величина, характеризующаяся накоплением энергии, но в отличие от ёмкости эта энергия является магнитной. Её величина зависит от магнитного потока, образованного силой тока, протекающего через радиоэлемент. Чем больше ток, тем сильнее магнитный поток пронизывает изделие. Интенсивность накопления элементом энергии зависит от этого потока.
Математическая формула нахождения индуктивности — L = Ф/ I, где:
- Ф — магнитный поток, Вб;
- I — сила тока, текущая через элемент, А.
Сопротивление, оказываемое индуктивностью, во многом зависит от частоты приложенного сигнала. Для его расчёта используется выражение XL = w*L. То есть для постоянного тока она равна нулю, а для переменного — зависит от его частоты. Иными словами, для высокочастотного сигнала элемент будет обладать большим сопротивлением.
Физический процесс, наблюдаемый при прохождении переменного тока через индуктивность, можно описать следующим образом: в течение первой декады сигнала (ток возрастает) магнитное поле усиленно потребляет энергию из электрической цепи, а в последней декаде (ток убывает) отдаёт её обратно, поэтому за период прохождения тока мощность не потребляется.
Но эта модель подходит к идеальному элементу, на самом же деле некоторая часть энергии превращается в тепло. То есть происходят потери, характеризующиеся добротностью Q, определяемую отношением получаемой энергии к отдаваемой.
При изменении тока, текущего через проводник в контуре, возникает электродвижущая сила индукции (ЭДСИ) — самоиндукция. Другими словами, переменный ток изменяет величину магнитного потока, который приводит в итоге к появлению ЭДСИ. Проявляется этот эффект в замедлении процессов появления и спадания тока. Амплитуда самоиндукции пропорциональна величине тока, частоте сигнала и индуктивности. Её отставание по фазе от сигнала составляет 90 градусов.
Когда отключают водонагреватель
Причины, по которым требуется отключить водонагреватель, могут быть разными: от экономии энергии до проведения необходимой профилактики, а потому и длительность отключения варьируется от нескольких часов до нескольких месяцев.
Как отключить водонагреватель при подаче горячей воды
Самой частой причиной, по которой устанавливают бойлеры является отсутствие горячего водоснабжения. Если же на данный момент в бойлере отпала необходимость и требуется выключить его до очередной аварийной ситуации, то план действий будет следующий:
- отключение прибора на панели управления;
- отключение из розетки;
- полное освобождение бака от жидкости;
- перекрытие вентилей, которые подают холодную и горячую воду в бак;
- включение крана с горячей водой на стояке.
Как отключить бойлер на ночь
Если по утрам вы принимаете душ или используете горячую воду для других целей, то для включения бойлера придётся проснуться заранее, поскольку процесс нагрева воды занимает время. В среднем требуется примерно 2 часа, чтобы жидкость нагрелась и была необходимой температуры. Если утром нет необходимости в горячей воды, то отключение бака на ночь позволит сэкономить электроэнергию.
Способы отключения зависят от вида управления:
- механический требует перевода регулятора в режим «Выключено» и отключение из сети;
- электронный отключается после нажатия на специальную кнопку «Off», на нём можно настроить таймеры, которые будут переводить бойлер в спящий режим в ночное время, а включаться и нагревать воду к моменту пробуждения.
Как отключить водонагреватель на длительное время
Самое важное при отключении нагревателя на длительный период – это избавление от жидкости в баке, поскольку, если оставить жидкость внутри, то может произойти окисление, появление накипи, размножение бактерий и как результат сокращение срока эксплуатации прибора. Прежде чем подключать бойлер после длительного простоя обработайте его специальными средствами против коррозии
Прежде чем подключать бойлер после длительного простоя обработайте его специальными средствами против коррозии.
Если у вас нет уверенности в том, что получится произвести отключение системы самостоятельно, то доверьте это дело профессионалам. Обязательно соблюдайте требования безопасности, особенно при сливе воды и отключении устройства от электросети.
Особенности обустройства заземления
При решении проблем, возникающих из-за неправильно сделанного заземления, следует ознакомиться с системами электропитания многоквартирных домов и частных строений
В первую очередь обратим ваше внимание на следующие моменты
Городские строения советского периода (из старого фонда) имеют систему заземления TN-C со следующими подводимыми к объекту жилами:
- голубой рабочий нулевой провод, используемый в паре с красным (фазным) для получения напряжения 220 Вольт;
- защитный нулевой проводник PE в изоляции жёлто-зелёной расцветки, предназначенный специально для оформления заземления;
- и, наконец, сам фазный провод.
Но поскольку в жилищах городского типа обустроить отдельное заземляющее устройство в виде вбитого в землю металлического штыря не представляется возможным – принято объединять нулевой защитный проводник (землю) с рабочим “0”. Таким образом, к питающей розетке в таких домах хотя и подводится 3 жилы, но две из них всё равно объединены в распределительном шкафу.
Также это не относится к домам новой застройки с системой питания типа TN-C-S, в которой предусмотрены отдельные защитный и рабочий нулевые проводники с повторным заземлением. При такой подводке в доме существует предусмотренная ПУЭ защита от удара и вопросы типа «почему ванна бьёт током» возникают крайне редко.
Дополнительная информация: В частном доме всё значительно проще, поскольку там обустроить полноценное заземление можно в любом месте земельного участка рядом со строением.
В данном случае хозяину следует соединить заземлитель с проводом PE, подводимым в водно-распределительное устройство, что гарантирует ему надёжную защиту от пощипывания или удара током от воды из крана.
В заключении отметим, что неприятные явления, когда вода из крана бьёт током, чаще всего наблюдаются в городских домах старой застройки. В жилых строениях, оборудованных полноценным заземлением (включая частные дома) они возможны лишь в редких случаях, когда напряжение 220 Вольт напрямую попало на металлические корпуса повреждённой техники. Для исключения поражения током в этих случаях рекомендуется устанавливать в цепи питания специальные отключающие устройства (УЗО).
Перечень возможных причин
Итак, для начала поговорим о том, из-за чего струя воды с крана или же сама ванна щиплет пальцы. Проблемы могут быть как из-за неисправности Вашей проводки, так и по вине соседей. В первом случае основными причинами ударов током считаются:
- Стиральная машинка либо водонагреватель не заземлены и при выходе из строя бьются током. Если до сих пор Вы не сделали заземление в частном доме, то как можно быстрее решите этот момент. Желто-зеленый провод, именуемый также «землей» защитит Вас при утечках электричества, тем самым кран либо трубы не будут щипаться. О том, как заземлить проводку в квартире мы также рассказывали.
- Повреждение изоляции в проводке. Очень часто причиной неисправности является перебитый провод в стене, который, собственно, и создает утечки электрического тока на металлический кран, ванну и влажные стены. Найти обрыв провода в стене можно с помощью специального прибора для поиска скрытой электропроводки. Если у Вас нет навыков в использовании таких приборов, можете ознакомиться с нашей инструкцией либо вызвать профессионала, чтобы он нашел проблемный участок.
- Если струя воды из крана бьет током, то вероятнее всего произошел выход из строя ТЭНа водонагревателя. Проверить этот момент можно с помощью мультиметра, опять-таки, если знать, как им пользоваться. Если Вы живете в квартире, то, возможно, водонагреватель сломался у соседей, в результате чего вода из смесителя щиплет пальцы.
- Также, в случае с квартирой, довольно часто весьма необразованные соседи делают заземление в ванной, подключая провод PE к стояку. Как результат — при утечках у них в квартире током бьет Вас. Сюда же можно отнести еще один неблагополучный случай. Некоторые соседи пытаются сэкономить на электроэнергии, подключив нулевой провод к водопроводным трубам, что позволяет отматывать электросчетчик. Как Вы понимаете, при таком подключении электричество будет проходить по трубам и к Вашей ванной, в результате чего, кран и влажные стены будут немного бить током.
Наглядно увидеть одну из причин Вы можете на видео:
Как понять что дело в бойлере?
https://youtube.com/watch?v=u2AdoiVViok
Выше мы указали основные причины,почему Вам может немного пощипывать пальцы в ванной. Теперь поговорим о том, как самому решить каждую из проблем.